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Abstract—Control charts are used to determine whether or not a 
manufacturing or business process is in a state of statistical 
control. Various schemes of the standard (Shewhart) X  chart for 
autocorrelated data at sample sizes of 2 and 3 are developed and 
compared with the schemes of the same chart for IID data at 
various process shifts in the process mean. It is clear from the 
comparison that the in-control ARL of 370 is achieved by 
employing the X  chart for the IID and autocorrelated data but 
as the level of correlation increases, the performance of 
conventional (Shewhart) X  chart deteriorates. It is concluded 
that for faster detection in the process mean, the larger sample 
sizes (n) may be used. Thus the X  chart for autocorrelated data 
should be used with carefully and judiciously.  
 
Index Terms— Autocorrelated data, In-control ARLs, 
conventional X  chart, Out-of control ARLs 
 
 

I. INTRODUCTION 
Control charts; one of the important tools of quality control, 
are also known as Shewhart charts or process behavior charts. 
Control charts were developed by Dr. Walter F. Shewhart [1] 
in 1931. When control charts are used to monitor a process, it 
is assumed that the observations from the process output are 
independent and identically distributed (IID). However, for 
many processes; the observations are correlated and when this 
correlation builds-up automatically in the entire process, it is 
known as autocorrelation. In order to deal with autocorrelated 
data, modification in the design of control charts for 
monitoring the process mean is done. The performance of a 
control chart is measured in terms of average run length 
(ARL). Page [2] defined ARL as, “as the average number of 
articles inspected between two successive occasions when 
rectifying action is taken” 
  

A. AUTOCORRELATION 
One of the assumptions of implementing the chart is that the 
process outputs must be IID but usually there is some 
correlation among the data. When this correlation builds up 
automatically in the entire process, this phenomenon is called 
autocorrelation. The observations from the process output are 
usually positively correlated in most of the cases.  
In this case, if the current observation is on one side of the 
mean, the next observation will most likely be found on the 
same side of the mean. Positively correlated data are 
characterized by runs above and below the mean. Positive 
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correlation is more often encountered in practice than negative 
autocorrelation.   
           Autocorrelation is inherent to many processes like: 
chemical, manufacturing processes and service sectors. When 
X  charts are applied to the autocorrelated data, the false alarm 
rate increases and performance of the chart is suspected. So 
improvement in the (Shewhart)  X chart is needed to improve 
its performance for the correlated data. The following section 
deals with the literature review in this area. 
 

B.  CONVENTIONAL (SHEWHART) X  CHART 
 
In conventional X  chart, means of small samples are taken at 
regular intervals, plotted on a chart, and compared against two 
limits. The limits are known as upper control limit (UCL) and 
lower control limit (LCL). These limits are defined as under: 
  LCL = X  - 3σ’/√n 
  UCL = X  + 3σ’/√n  
The process is assumed to be in a state of out-of-control when 
the sample average falls beyond these limits. Figure 1 
represents the plotting of sample averages on the X chart. 
 

 
 

Fig. 1  Plotting of sample averages in the X chart 

II. NOMENCLATURE 
 
Following symbols have been used in this paper: 
 
X = Target mean  
σ’ = Population standard deviation  
n =  Sample size 
ARL = Average Run Length 
UCL = Upper control limit  
LCL = Lower control limit 
Φ = Level of correlation 
δ = Amount of shift in the process average  
      from its target 
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III. LITRETURE REVIEW 

 
Several researchers examined the performance of control 
charts in the presence of autocorrelation. Consequently, there 
has been considerable research in recent years on designing 
the control charts suitable for autocorrelated processes. 
Goldsmith and Whitfield [3] showed that positive 
autocorrelation can increase the false alarm rates for CUSUM 
control charts, while negative autocorrelation decreases the 
rates. Bagshaw and Johnson [4] investigated the effect of 
autocorrelation on the run length distribution when the process 
follows either an autoregressive of order one model, AR (1) 
model, or a moving-average of order one model, MA (1) 
model, where the run length is the number of observations 
plotted before an out-of-control signal. They also 
approximated the average run length (ARL) of CUSUM 
control charts for the autocorrelated data.  

According to Alwan and Roberts [5]; more than 70% 
of the studied processes subject to change detection in quality 
control are autocorrelated. Because of more complexity, more 
effort is involved in designing change detection procedures for 
autocorrelated processes than for independent and identically 
distributed (IID) processes. If the presence of autocorrelation 
is ignored it may seriously reduce the effectiveness of the 
designed control charts. The run length properties of 
traditional control charts like Shewhart control chart, 
cumulative sum (CUSUM) control chart and exponentially 
weighted moving average (EWMA) control charts are strongly 
affected by the presence of autocorrelation in the data. Harris 
and Ross [6] discussed the impact of autocorrelation on 
CUSUM and EWMA control charts and claimed that the in-
control ARL of these charts is sensitive to the presence of 
autocorrelation. Maragah and Woodall [7] provided results on 
the effect of autocorrelation on the performance of the 
Shewhart individuals control chart. Woodall and Faltin [8] 
then gave a brief summary on the effect of autocorrelation on 
the performance of control charts and explained methods to 
deal with autocorrelation. VanBrackle and Reynolds [9] 
evaluated the performance of EWMA and CUSUM charts for 
the process mean when the observations are from an AR(1) 
process with additional random error. They concluded that 
positive correlation may decrease the in-control ARL, shorten 
the time required to detect small to moderate shifts, and 
lengthen the detection time for large shifts. They also provided 
tables to aid in the design of the control charts. Noorossana et 
al. [10] presented an artificial neural network model for 
detecting and classifying three types of non-random 
disturbances referred to as level shift, additive outlier and 
innovational outlier, which were common in autocorrelated 
processes. An autoregressive of order one, AR(1) model, was 
considered to characterize the quality characteristic of interest 
in a continuous process where autocorrelated observations 
were generated over time.  

Yang and Yang [11] found that autocorrelation had a 
significant effect on the performance of the control chart. 
They considered the problem of monitoring the mean of a 
quality characteristic X on the first process step and the mean 
of a quality characteristic Y on the second process step, in 

which the observations X could be modeled as, an 
autoregressive of order one, AR(1) model, and observations Y 
could be modeled as a transfer function of X.  Thaga and 
Yadavalli [12] proposed EWMA chart, that was capable of 
detecting changes in both process mean and standard deviation 
for autocorrelated data (referred to as the Maximum 
Exponentially Weighted Moving Average Chart for 
Autocorrelated Process, or MEWMAP chart). This chart is 
based on fitting a time series model to the data, and then 
calculating the residuals. The observations are represented as a 
first order autoregressive process plus a random error term. 
The ARLs for fixed decision intervals and reference values (h, 
k) are calculated. Vermaat et al. [13] investigated that the 
serial correlation can seriously affect the performance of the 
traditional control charts. They derived explicit easy-to-use 
expressions of the variance of a EWMA statistic, when the 
process observations are autoregressive of order 1 or 2. These 
variances can be used to modify the control limits of the 
corresponding EWMA control charts.  Cisar et al. [14] 
observed that intrusion detection was used to monitor and 
capture intrusions into computer and network systems which 
compel to compromise their security. Many intrusions 
manifested in changes in the intensity of events occurring in 
computer networks. Because of the ability of EWMA charts to 
monitor the rate of occurrences of events based on their 
intensity; this technique is appropriate for implementation in 
control limits based algorithms. 

 Lee and Apley [15] investigated that the Residual-
based control charts for autocorrelated processes are sensitive 
to time series modeling errors, which can seriously inflate the 
false alarm rate. They proposed a design approach for a 
residual-based EWMA chart that mitigates this problem by 
modifying the control limits based on the level of model 
uncertainty. Using a Bayesian analysis, they derived the 
approximate expected variance of the EWMA statistic, where 
the expectation is with respect to the posterior distribution of 
the unknown model parameters. They compared their 
approach to two other approaches for designing robust 
residual-based EWMA charts and claimed that their approach 
generally results in a more appropriate widening of the control 
limits. Hachicha and Ghorbel [16] concluded that the Control 
Chart Pattern Recognition  
 (CCPR) is a critical task in Statistical Process Control 
(SPC). Abnormal patterns exhibited in control charts can be 
associated with certain assignable causes, adversely affecting 
the process stability. Abundant literature treats the detection of 
different Control Chart Patterns (CCPs). They surveyed and 
proposed a new conceptual classification scheme, based on 
content analysis method, to classify past and current 
developments in CCPR research. More than 120 papers 
published on CCPR studies within years 1991 to 2010, were 
classified and analyzed by them. 
    The next section deals with various schemes of 
conventional chart. 
 

IV. FORMILATION OF AUTOCORRELATED DATA 
 
In the autocorrelated series of observation, each individual 
observation is dependent upon the previous observation. A 
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series of positively autocorrelated numbers with a mean of 
zero and standard deviation of one is generated, using the 
MATLAB at various levels of correlation (Φ). Assuming N 
pairs of observations on two variables, x and y. The 
correlation coefficient between x and y is given by equation 
(1). Some authors use coefficient of correlation (Φ) instead of 
 “r”. 
 
 
 
 
 
 
 
Where, the summations are over the N observations.  
 
The series generated are positively correlated in nature. For 
each level of correlation (Φ), various schemes of   chart are 
developed, using MATLAB. The detailed procedure to 
implement the   chart is explained in the following section. 
 

 
V. PPOCEDURE TO IMPLEMENT THE X CHART 

 
Step 1 Take the observations from industry at random basis. 
Step 2  Observations are generated randomly at a given mean 
and standard   deviation. 
Step 3  For simulation, 10,000 observations with a sample 
sizes (n) of 5 are generated.   
Step 4  The observations are generated in such a way that 
there should be positive correlation with their previous data.  
Step 5  Those sets of parameters of the X  chart, which give 
the in-control ARLs of approximately 370 are considered for 
comparison. 
Step 6  For the selected combinations, the ARLs are 
calculated at various shifts in process mean at different width 
of the control limits (L) and at the each levels of correlation 
(Φ). 
Step 7  Optimal schemes of modified   chart are obtained for 
levels of correlation (Φ) of 0.00, 0.50 and 1.00. 
             Next section deals with the computation of ARLs of 
the   chart, at different sample sizes and levels of correlation 
(Φ).     

 

VI. VARIOUS SCHEMES OF THE CONVENTIONAL X  
CHART 

 

In the conventional (Shewhart) X chart, two control limits are 
used to decide the state of the process. The control limits in 
the conventional (Shewhart) chart are also assumed at ‘L’ 
times sample standard deviation on both sides from center 
line. 
 

A. Average run length of conventional X chart for sample 
size of two 

 

If Shewhart X  chart is applied to an IID data, with no change 
in the process mean, the average occurrence of false alarm is 
371. Which means the chart will give a false signal after every 
371 samples, while the process mean is under control. This 
ARL is also known as the in control ARL as there is no drift in 
the process. When the process average shifts from its target, 
the corresponding ARL is called out-of-control ARL. The out-
of-control ARL depends upon: 
 
(i) The sample size (n) 
(ii) Amount of shift (δ) of the process average from its target. 
(iii)  Level of correlation (Φ) present in the measured data. 
 
The width of control limits (L) is taken as 3. The average run 
lengths (ARLs) of various schemes of X  chart for sample size 
of two at the levels of correlation (Φ) of 0.00 and 0.25 are 
shown in Table I.   
 
 

Table I 
ARLs of X  chart for sample size of two at Φ = 0.00 and 0.25 
 

ARLs of conventional X chart for n = 2 

Shift    
(in 

mean) 

Φ = 0.00 Φ = 0.25 

L = 
2.95 

L= 
3.0 

L= 
3.05 

L = 
2.95 

L= 
3.0 

L= 
3.05 

0.00 370.4 370.4 370.4 370.4 370.4 370.4 

0.25 263.2 277.8 312.5 271.5 285.5 303.0 

0.50 158.7 169.5 169.5 161.2 175.4 204.1 

0.75 80.0 84.6 86.7 85.5 95.2 104.2 

1.00 48.6 55.5 58.2 52.9 56.3 61.5 

1.25 24.6 33.2 35.4 26.8 34.7 39.6 

1.50 15.2 15.6 18.2 16.3 16.8 20.5 

1.75 9.5 13.9 14.4 10.3 14.5 15.7 

2.00 6.2 6.3 6.5 6.8 6.8 8.1 

2.50 3.3 3.3 3.6 3.3 3.6 4.4 

3.00 2.0 2.5 2.6 2.1 2.6 3.1 

3.50 1.4 1.5 1.5 1.5 1.5 1.9 

4.00 1.2 1.2 1.2 1.2 1.2 1.5 

       
 The ARLs of various schemes of X  chart for sample size of 
two at the levels of correlation (Φ) of 0.50 and 0.75 are shown 
in Table II.   
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Table II 
ARLs of X  chart for sample size of two at Φ = 0.50 and 0.75 
 

Schemes of conventional X chart for n = 2 

Shift    
(in 

mean) 

Φ = 0.50 Φ = 0.75 

L= 
3.0 

L= 
3.05 

L = 
2.95 

L= 
3.0 

L= 
3.05 

0.00 370.4 370.4 370.4 370.4 370.4 

0.25 285.5 333.3 287.5 312.5 333.3 

0.50 185.2 204.1 200.0 262.2 277.7 

0.75 99.3 113.6 106.4 128.2 142.8 

1.00 58.8 70.4 75.8 90.4 81.0 

1.25 37.4 41.5 44.4 53.8 54.4 

1.50 23.4 28.6 28.8 39.5 41.2 

1.75 14.6 16.0 17.6 28.1 31.0 

2.00 10.4 10.5 12.4 17.0 21.4 

2.50 4.9 5.2 6.2 8.2 9.6 

3.00 2.9 3.0 3.5 4.7 5.8 

3.50 2.8 1.9 2.4 3.4 4.1 

4.00 1.4 1.5 1.7 2.7 3.0 

      
 The ARLs of various schemes of X  chart for sample size of 
two at the levels of correlation (Φ) of 1.00 are shown in Table 
III.   
 

Table III 
ARLs of X  chart for sample size of two at 

Φ = 1.00 
 

Schemes of conventional X chart for     
n =2 

Shift       
(in mean) 

Φ = 1.0 

L=3.0 L= 3.05 

0.00 370.4 370.4 

0.25 333.3 312.5 

0.50 285.7 244.0 

0.75 156.3 161.3 

1.00 98.2 93.5 

1.25 64.5 65.0 

1.50 46.6 41.3 

1.75 36.3 27.0 

2.00 23.4 17.5 

2.50 12.3 9.5 

3.00 7.2 5.4 

3.50 4.4 3.4 

4.00 3.4 2.4 

   

 
 

Out of above suggested schemes, those schemes which have 
the in-control ARL of approximately 370 and having the out-
of-control ARLs consistently lower than other schemes are 
selected as the optimal schemes. Table IV shows optimal 
schemes of the conventional X chart for n = 2, for various 
levels of correlation (Φ) 
 

Table IV 
ARLs of optimal schemes X  chart for sample size of two 

 
 

Shift        
(in 
mean) 

Optimal schemes of the  conventional 

Φ = 
0.00 

Φ = 
0.25 

Φ = 
0.50 

Φ = 
0.75 

Φ = 
1.00 

L=2.95 L=2.95 L=3.0 L=2.9
5 

L=3.0 

0.00 370.4 370.4 370.4 370.4 370.4 

0.25 263.2 271.5 285.5 287.5 333.3 

0.50 158.7 161.2 185.2 200.0 285.7 

0.75 80.0 85.5 99.3 106.4 156.3 

1.00 48.6 52.9 58.8 75.8 98.2 

1.25 24.6 27.1 37.4 44.4 64.5 

1.50 15.2 16.3 23.4 28.8 46.6 

1.75 9.5 10.3 14.6 17.6 36.3 

2.00 6.2 6.8 10.4 12.4 23.4 

2.50 3.3 3.3 4.9 6.2 12.3 

3.00 2.0 2.1 2.9 3.5 7.2 

3.50 1.4 1.5 2.8 2.4 4.4 

4.00 1.2 1.2 1.4 1.7 3.4 

 
 
 The out-of-control average run lengths (ARLs) of 
conventional X  chart for sample size of three have also been 
computed by keeping the in-control ARLs of approximately 
370. Various schemes at the levels of correlation (Φ) of 0.00, 
0.25, 0.50, 0.75 and 1.00 are obtained but not included in this 
paper due to limitations of space. Only optimal schemes of the 
conventional X  chart for n = 3, for various levels of 
correlation (Φ) are shown in Table V. 
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Table V 
ARLs of optimal schemes X  chart for sample size of three 

 
 

Following facts are summarized from the Tables 1 to 5: 
 
1) The false alarm rate (in-control ARL) of approximately 370 
is maintained, for all the optimal schemes of traditional X 
chart. 
 
2) For a particular sample size; when the level of correlation 
(Φ) increases, the sensitivity of the conventional X  chart to 
detect shift in the process mean decreases. For sample size of 
two and level of correlation (Φ) of zero, the conventional 
X chart detects 1σ shift in the process mean after about 48 
samples whereas at level of correlation (Φ) of one, it detects 
same shift in the process mean after 98 samples. 
 
3) The performance of optimal schemes of 
conventional X chart improves on increasing the sample size.  
 
4) The in-control and out-of-control ARLs of the optimal 
schemes of the conventional X  chart also depends on the 
width of control limit (L). 
 

 
VI. CONCLUSIONS 

 
Taguchi (1989) and others researchers have recommended that 
inspection cannot be relied upon to judge the quality of 
product. So, instead of 100% inspection, it is better to design a 
suitable statistical tools e.g. control charts, which can be used 
to monitor the manufacturing process. The false alarm rate (in-
control ARL) of approximately 370 is maintained, for all the 
optimal schemes of conventional X chart. Control charts are 
used to detect the presence of assignable causes of variation 
by checking the desired stable state of the process. Reduction 
of variation is thus achieved via rapid detection and 
elimination of such special causes. A process is said to be in a 

state of statistical control, if it operates under common causes 
of variation and the probability distribution representing the 
quality characteristic is constant over time. If there are some 
changes over time in this distribution, the process is said to be 
out-of-control. 
 

It is clear from all the tables that autocorrelation 
distort the performance of conventional (Shewhart) chart. It is 
also observed that the in-control and out-of-control ARLs of 
the optimal schemes of the conventional X chart also depends 
on the width of control limit (L) and sample size. The 
performance of conventional X chart also improves on 
increasing the sample sizes. 
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