
A Graph Model Proposal for Convex Non Linear
Separable Problems with Linear Constraints

Jaime Cerda, Alberto Avalos

Abstract—The solution of non linear problems are based
on very well grounded mathematical theories. This document
proposes a Newton step graph-based model for convex non
linear separable problems (NLP) with linear constraints. The
Newton step is well suited for this kind of problems, but
when the problem size grows the NLSP model will grow in
a non linear manner. Furthermore, the constraints handling
becomes the main problem as we have to select the right
constraints in the different solution steps. When this happens,
the sparse matrix representation is the path to follow, but very
little has been made in order to fully explode the sparsity
structure. Indeed, the Hessian matrix for the NLSP model has
a very particular structure which can be exploited by using
the graph underlying the problem, this is the approach taken
in this document. To this end a graph is built derived from
the components involved in the Newton step. which describes
the solution for the NLSP problem. Based on this graph, the
gradient can be evaluated directly based on the graph topology,
as it will be shown, the information needed for such evaluation
is embedded within the graph. Furthermore, the explicit graph
model derived from the mathematical model allows us to think
about it in terms of its structure which will be used in further
works.

Index Terms—Non Linear Programming, Linear Constraints,
Graph-based Systems, KKT Conditions.

NOMENCLATURE

N Number of decision variables.
L Number of equality constraints.
M Number of inequality constraints.
zi Decision variable i.
!zi" Upper limit value of variable zi.
#zi$ Lower limit value of variable zi.
zi Slack variable for zi uppper bound.
zi Slack variable for zi lower bound.
∆zi Variable xi increment.
f(z) Objective function
gl(z) Equality constraint l.
hm(z) Inequality constraint m.
ali ith coefficient in equality constraint l.
bmi ith coefficient in inequality constraint m.
rl RHS of equality constraint l.
sm RHS of inequality constraint m.
λl Dual variable for equality constraint l.
µm Dual variable for inequality constraint m.
ρi Dual variable for zi uppper bound.
ρ

i
Dual variable for zi lower bound.

℘(S) Power set of set S.
Γi Set of variables connected to zi.
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I. INTRODUCTION

Non linear separable problems (NLSP) are NLPs whose
objective function can be decomposed as a sum of functions
with only one variable each. The solution of NLSPs are
based on very well grounded mathematical theories [1]. This
document proposes a Newton step graph-based model for
convex non linear separable problems (NLP) with linear
constraints. The Newton step is well suited for this kind
of problems, but when the problem size grows the NLSP
model will grow in a non linear manner. Furthermore, the
constraints handling task becomes the main problem as we
have to select the right constraints in the different solution
steps. When this happens, the sparse matrix representation
is the path to follow, but very little has been made in order
to fully exploit the sparsity structure. Indeed, the Hessian
matrix for the NLSP model has a very particular structure
which can be exploited by using the graph underlying the
problem, this is the approach taken in this document. To this
end a graph is built derived from the components involved
in the Newton step. which describes the solution for the
NLSP problem. Based on this graph, the gradient can be
evaluated directly based on the graph topology, as it will
be shown, the information needed for such evaluation is
embedded within the graph. Furthermore, the explicit graph
model derived from the mathematical model allows us to
think about it in terms of its structure which will be used
to derive more efficient models as well as decentralization
tasks. Finally, even that this model is for convex models it
has to be remarked that when used with non convex models
this will find local minimizers.

II. A GRAPH-BASED MODEL FOR CONVEX NLSP

In this section a graph topology for the Newton step
method is proposed. For this purpose, let us base the discus-
sion with the NLSP described by Eq. 1 . This NLSP consists
of N variables, L equality constraints, and M inequality
constraints.

min
zi

∑N
i=1 fi(zi)

st. gl(z) = 0, l = 1, 2, ..., L (1)
hm(z) ≤ 0, m = 1, 2, ...,M

where fi(zi) are non linear functions, furthermore, we as-
sume they have second order derivatives. On the other hand,
gl(z) are linear equations while hm(z) linear inequalities
denoted as follows:
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L∑

l=1

alizi = rl

M∑

m=1

bmizi ≤ sm

In general, a NLP solver starts by building the Lagrangian
given by Eq. 2.

L(z) =
N∑

i=1

fi(zi) +
L∑

l=1

λlgl(z) +
M∑

m=1

µmhm(x) (2)

This is the base to implement the Newton step, whose
formulation is given by Eq. 3 [1]:

H(L(z))∆z = −∇(L(z)) (3)

Table I, shows the involved elements to compute the
Newton step for problem 1. Do notice we have introduced
slack variables as well dual variables which are used to
control the bounds of the decision variables. ρ

i
and zi are

used for the lower bound while ρi and zi are used for the
upper bound of zi

This model can be represented with the graph shown in
figure 1.
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Fig. 1. Proposed topology for the Newton step method

Each constraint is represented by a dual variable and a
set of links which represent the linear terms within the con-
straint. The terms in the constraints are represented by links
which join the primal variables with the dual variables. The
only difference between equality contraints and inequality
constraints is the kind of links used to build the linking
structure. In the case of equality constraints, the linking
structure will be active along the whole solution process.
On the other hand, the linking structure for the inequality
contraints will be active only when the constraint is binding.
This is represented by the gray color given to the links
belonging to inequality constraints as opposed to the black
links which belong to equality constraints. In table I, the
same criterion has been imposed in the elements of H(L(z)).
As it can be noticed, it is full of empty spaces and gray color,
the first are long term sparsity patterns and the second ones
are temporary sparsity patterns awaiting to be exploited.
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Fig. 2. Subgraph for a primal variable (i.e. zl).

III. SELF CONTAINED GRAPHS

An interesting fact when this kind of graphs is used is
that the information to build and compute the gradient is
contained in the graph topology. First, the case where the
gradient for a primal variable, zi, is analysed. The discussion
will be focused on the subgraph delineated in figure 2. From
table I, it is known that ∇zi = ∇fi(zi)−λl −µm− ρ

i
+ ρi.

Figure 3 shows the gradient evaluation process for a primal
variable. Let us suppose that every node has the value related
to the variable which itself represents. Therefore, the node
gradient evaluaton starts by taking into account the gradient
information within the node which in this case would be
∇fi(zi), as shown in figure 3(a).

Then it starts to evaluate the portion of the gradient which
is a function of the variables contained by the neighbours of
zi, as shown in figures from 3(b) to 3(e).

Now, let us turn the attention to the case where the gradient
for a dual variable is to be found, λl in this case. The
discussion will be focused on the subgraph delineated in
figure 4.

Figure 3 shows the gradient evaluation process for a dual
variable. From table I it is known that ∇λl = rl − z1l − ..−
znl. As before, the gradient evaluation starts by taking into
account the information contained within the node itself, in
this case rl, as shown in figure 5(a). Then the evaluation of
the links attached to this node and the variables at the other
extreme of the link is performed as shown in figures 5(b)
and 5(c)

From the previous discussion, as there exist only dual
variables and primal variables, the gradient for every variable
can be derived straightforwardly from the graph topology.
Therefore, the graph can be said to be self-contained as no
external information is needed.

IV. KARUSH-KHUN-TUCKER CONDITIONS

The Langrange multipliers method define optimality con-
ditions for equality constraints. However, many problems are
defined in terms of inequality constraints defined by 4.

min
z

f(z)

st. gl(z) = 0, l = 1, 2, ..., L (4)
hm(z) ≤ 0, m = 1, 2, ...,M
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L(z) =
PN

i=1 fi(zi)−
PL

l=1 λlgl(z)−
PM

m=1 µmhm(z)
∇(L(z)) H(L(z))

zi λl µm ρ
i

ρi zi zi

zi ∇zifi(zi)− λl − µm − ρ
i
+ ρi ∇(L(z))2zi

ali bmi −1 1
λl gl(z) ail

µm hm(z) bim

ρ
i

#zi$ − zi + zi
2/2 −1 zi

ρi zi − %zi&+ zi
2/2 1 zi

zi ρ
i
zi zi ρ

i
zi ρizi zi ρi

TABLE I
THE NEWTON STEP INGREDIENTS

To face this problem, Karush-Khun-Tucker conditions
(KKT) generalize the Langrange multipliers method defining
a minimum set of conditions which guarantee the optimality
conditions for non lineal programming problems with in-
equality constraints. Furthermore, KKT conditions provide
sufficient optimality conditions for convex programming
problems, as the one we are dealing with. If z∗ is the optimal
solution for a non lineal problem with N decision variables,
L equality constraints and M inequality constraints, these
conditions are [1]

∇f(z∗) +
L∑

l=1

λl∇gl(z∗) +
M∑

m=1

µm∇hm(x∗) = 0 (5)

gl(z∗) = 0, l = 1, 2, .., L (6)
hm(z∗) ≤ 0, m = 1, 2, ..,M (7)

µmhm(z∗) = 0, m = 1, 2, ..,M (8)
µm ≥ 0, m = 1, 2, ..,M (9)

Where Eq. 5 represents equilibrium between the gradients
of the objective function and the active constraints. Equa-
tions 6 and 7 represent the feasibility of the solution in the
optimum point z∗. Equation 8 represent the complementarity
conditions (i.e. µm = 0 or hm(z∗) = 0). Finally, Eq. 9
represents dual feasibility.

Condition 9, establishes the Lagrange multipliers non
negativity property. If the Lagrange multiplier was a negative,
then z∗ is within the feasible region, not at the boundary, and
is even feasible to improve the objective function. Therefore,
we can conclude that its corresponding constraint is not
active anymore. This condition is exploited to discriminate
the active from the non active parts of the graph.

V. GRAPH ANALYSIS

A node and the links which are attached to it represent
an equation. In this section the analysis for a node and the
equation it represents is done. To this end let us extract
the equation corresponding to zi from the system of linear
equations which describes the Newton step. This is given by
Eq. 10.

∂2L(z)
∂2zi

∆zi +
∑

∀j∈Γi

∂2L(z)
∂zi∂zj

∆zj = −∇ziL(z) (10)

solving for ∆zi leads to

∆zi =
−∇ziL(z)−

∑
∀j∈Γi

∂2L(z)
∂zi∂zj

∆zj

∂2L(z)
∂2zi

(11)

This can be rewritten as

∆zi =
−∇ziL(z)

∂2L(z)
∂2zi

−
∑

∀j∈Γi

∂2L(z)
∂zi∂zj

∂2L(z)
∂2zi

∆zj (12)

This expression can be thought as the improvement in the
solution for the component in the orthogonal axis zi. It can be
split into two parts. The first part, described by expression 13,
is a component which involves the gradient and, therefore,
it is needed within any solution approach for the graph.

−∇ziL(z)
∂2L(z)
∂2zi

(13)

This is the contribution based on −∇ziL(z) just like in the
steepest descent methods. However the length of the step will
be reinforced with the second order information provided
by 1/∂2L(z)

∂2zi
. This will be the case for the primal variables,

however for the dual variables there will not be second order
information, and therefore the gradient step size will have to
be controlled by some other means.

The second part, described by expression 14, is composed
by all the second order contributions which will be collected
by zi from its neighbours (i.e. Γi).

−
∑

∀j∈Γi

∂2L(z)
∂zi∂zj

∂2L(z)
∂2zi

∆zj (14)

This part has several of components which will allow us
to formulate models which can go from taking into account
the second order information from all the neighbors to the
other extreme where no second order information from them
will be collected at all. The first approach would be the
full centralised Newton step and the second one would
result in the steepest descent reinforced with the second
order information for the same orthogonal axis. Nevertheless,
between these two approaches there is a plethora of options
which involves a different number of the components of
second order information. In fact there are |℘(Γi)| choices
and the choice at any point will impact the precision of the
Newton step and therefore the convergence. Let us define
Lk as the set of links which are taken into account for this
process, do notice |Lk| = k. In fact k = 0 denotes the
steepest descent reinforced with second order information
for the same orthogonal axis whereas k = |Γi| denotes the
full Newton step. Finally, with this in mind expression 10
can be rewritten as expression 15
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(a) ∇zi = ∇fi(zi)
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(b) ∇pg = ∇fi(zi)−λl
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(c) ∇pg = ∇fi(zi)− ailλl+bimµm
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(d) ∇pg = ∇fi(zi)− ailλl + bimµm−ρi
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(e) ∇pg = ∇fi(zi)− ailλl + bimµm−ρi+ρ
i

Fig. 3. Graph-based gradient evaluation for a primal variable (i.e. zi).

∆zi =
−∇ziL(z)

∂2L(z)
∂2zi

−
∑

∀j∈Γi
(i,j)∈Lh

∂2L(z)
∂zi∂zj

∂2L(z)
∂2zi

∆zj (15)

VI. CONCLUSIONS

This document has presented a graph model proposal for
convex non linear separable problems with linear constraints.
It has been set the ingredients involved in the Newton step,
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Fig. 4. Subgraph for a dual variable (i.e. λl).
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Fig. 5. Graph-based gradient evaluation for a dual variable (i.e. λl).

which is based on the Lagrangian of the system. In this rep-
resentation it has been notorious the sparsity patterns of both
types long term and temporary. The first are patterns which
are present at the beginning of every Newton step iteration,
whereas the send ones are patters which can differ between
each Newton step iteration. Then, it has been shown how
to transit from the matrix model to the graph model, which
reflects the sparsity already noticed in the matrix representa-
tion. Following, by analyzing the graph interconnections, it
has been uncovered the self-containing characteristic whose
basic mean is that no information beyond that involved in
the graph is needed to compute the gradient. This allow us
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to compute the gradient directly from the graph, provided
the correct information is attached to each node. Finally, it
has been presented an analysis of the equation represented
by the node and its links. This analysis uncovered different
patterns to compute the Newton step with different precision
levels ranging from the gradient oriented model reinforced
with its proper second order information to the full Newton
step model where all the second order information terms
are taking into account. Furthermore, in between there is a
plethora of models which can be derived which will allow
more efficient models as well as decentralized models to face
problems such as those in [2], [3], [4].
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