
Linux Based Control Framework for Mecnaum
Based Omnidirectional Automated Guided

Vehicles
Daniel Heß, Frank Künemund and Christof Röhrig

Abstract—This paper gives an overview on a control and nav-
igation system for omnidirectional Automated Guided Vehicles
(AGVs) implemented by the authors. On the hardware side
this framework only uses an industrial grade embedded PC.
All closed-loop controllers as well as a sophisticated navigation
system including path-planning and global and local localization
is implemented in the authors real-time Linux based AGV
framework. In this paper the fundamental concept of the
architecture of this control system is discussed and the benefits
such as offering to execute high level robotic frameworks, like
Player/Stage or Robot Operating System (ROS), in parallel to
the low level controllers on the same PC are shown.

While the sophisticated localization system and the genera-
tion of trajectories where already presented, this paper focuses
on the overall software structure including the communication
system, the modular design including a client/server model,
client multiplexing and the hardware interface supporting
different types of AGVs utilized by the Intelligent Mobile
Systems Lab (IMSL) of the University of Applied Sciences and
Arts Dortmund. The application source and also the compiled
binaries are executed unchanged on all the AGVs with just
different runtime configurations.

Index Terms—Robot design, development and control; Mo-
bile robots and autonomous systems; Real-time systems control;
Mecnaum based omnidirectional vehicles, Automated Guided
Vehicles

I. INTRODUCTION

THE requirements on the transportation of pallets and
other logistic loads have changed over the time. Some

decades ago mostly pallet jacks and later forklift trucks
where used and manually operated. In production environ-
ments the short production cycles now require a flexible ma-
terial flow. Not only warehouses recently switched to small
transportation units. By using Automatic Guided Vehicles
(AGVs) and focusing on a flexible material flow more and
more small units are moved instead of large pallet sized
bins. Supported by an just-in-time inventory management
small AGVs can provide the required material in a timely
manner without requiring the overhead of a static warehouse
management system in terms of storage area.

Most modern AGVs are still bound to static guide wires
or are utilizing expensive localization systems. While using
static guide wires is very inexpensive, they cost the flexibility
required by just-in-time inventory management and flexible
material flow. Using expensive ready-to-use localization sys-
tems raises not only the flexibility, but also the costs. A third

Manuscript received July 16, 2013; revised August 02, 2013.
D. Heß, F. Künemund and C. Röhrig are with the Intelligent Mobile Sys-

tems Lab, University of Applied Sciences and Arts Dortmund, Germany e-
mail: daniel.hess@fh-dortmund.de, frank.kuenemund@fh-dortmund.de and
christof.roehrig@fh-dortmund.de.

more flexible approach, utilizing existing sensors like safety
laser range finders and IEEE 802.15.4a sensor networks,
combines the previous two approaches. While implementing
a flexible laser based localization system, basically following
similar concepts to those used in the second approach, only
hardware already deployed to the AGV is used and therefore
no additional costs for extending the AGV are generated.

Beside of implementing a new and novel localization and
navigation engine providing open path navigation to AGVs,
the team of the Intelligent Mobile Systems Lab (IMSL) has
also integrated all control and communication layers into one
single real-time Linux based software environment, which
provides an open environment, without knowledge hidden in
black box systems, allowing algorithms to work with superior
knowledge about the whole state of the AGV.

The design of a control and navigation system for AGVs
sets many tough requirements. The closed-loop controllers,
controlling the AGV’s drive, have strict requirements on hard
real-time execution for a high grade controlling. Modern
navigation systems have a high demand on computational
power, in order to process the data provided by sensors like
laser range finders and to provide a sophisticated localization
out of this ranging data. While splitting the control system
into a real-time and a high performance part is still very com-
mon and widely-used in commercial systems like Adept’s
mobile robots using the Advanced Robotics Interface for
Applications (ARIA) programming interface (see [1]) and
Segway’s RPM family using the Segway Robotic Mobility
Platform interface (see [2]), this paper presents a fully
integrated control system joining the low and high level
control in one single system based on a real-time Linux
environment executed on a single embedded PC.

With the gain of freedom in navigation raises the need
of computational power for the real-time localization of the
AGV. For some ready-to-use sensors, like the SICK NAV200,
all calculations required for localizing the AGV are done
within the sensor. Only the calculated position is provided
to the AGV’s main controller. Other sensors might require
processing the raw ranging data by the main controller, to
estimate the AGV’s pose. The estimation of the AGV’s
pose is only the first step to an autonomous navigation,
as the controller can not just follow a simple guide line.
After successfully estimating the position, the controller has
to calculate the required steps to follow a calculated path
as closely as possible. This requires a more sophisticated
position control and steering system that keeps track on
the offsets between the desired position on the path and
the measured position. So even with sensors like the SICK
NAV200, the controller of the AGV has to execute the control

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I 
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013



Fig. 1. Industrial AGV with Mecanum drive c⃝ MBB Fertigungstechnik

algorithms needed for the position controller.
The AGVs discussed in this paper are using omnidirec-

tional Mecanum drives, that require more advanced control
algorithms. Vehicles built with Mecanum wheels are subject
of ongoing research. The first systems were mainly used
as platforms for mobile service robots. Early examples are
URANUS [3], KAMRO [4] and PRIAMOS [5]. Since the po-
sition accuracy of a Mecanum based vehicle depends mainly
on the control system, kinematic and dynamic modeling as
well as control algorithms are subject of extensive research
[6], [7], [8].

Nowadays Mecanum based vehicles have found their
way into factories and warehouses. Omnidirectional vehicles
for heavy loads are commercially available from different
manufactures. Examples are the OCS from MIAG, the MC-
Drive from MBB Fertigungstechnik (see Fig. 1) or the
Omnimove from KUKA. These vehicles are mainly manually
controlled. Automatic control as well as mechanical design of
small vehicles for warehouse automation is still an ongoing
research [9], [10], [11].

This paper describes a solution developed at the IMSL.
One main concern of this solution is the implementation of
advanced control algorithms by following a model based
design approach. The control architecture is implemented
as an open architecture that can be easily extended. The
core decision about the architecture was, to move all parts
(e.g. controllers) to one embedded PC running a real-time
Linux based operating system, that provides all the hard real-
time facilities required by the advanced control algorithms.
To archive this goal the traditional Programmable Logic
Controller (PLC) and micro controller based control system
is replaced with a standard embedded PC. Instead of utilizing
expensive localization sensors working in a black box like
manner completely hiding the localization algorithms as part
of the manufactures intellectual property inside the sensor’s
embedded software, the ranging data of the safety laser range
finders, installed for safety reasons on many AGVs, are used.
A localization engine developed at the IMSL, that was first
presented at IROS 2010 (see [11]), uses the raw ranging data
of the safety laser range finders together with the odometry
data, to estimate the position of the AGV. Following this
open approach allows the advanced control algorithms to
directly interact with the localization engine and to fine
tune its parameters based on advanced knowledge about the
usage pattern of the AGV. The localization methods used
in our framework are presented in [12], the path planning is
presented in [13]. All required calculations are performed on
a single embedded PC, that also executes all the closed-loop
controllers, controlling the AGV’s drive motors.

By choosing a centralized design executing all computa-
tional tasks on a single embedded PC featuring hard real-time

Fig. 2. Embedded PC as a central controlling unit

capabilities and utilizing the sensor data from safety laser
range finders and sensor network nodes, already installed for
safety and communication reasons, this approach minimizes
the costs needed to implement autonomous navigation and
rises the flexibility of the system by providing an open pro-
gramming environment capable of executing even resource
hungry algorithms for further extending the system. For ex-
ample detecting obstacles and using the position information
of the detected obstacles during path planing is as simple as
implementing the new algorithm in C or C++ and load it as
standard shared object into the control environment.

This paper focuses on the overall design chosen to form
the base of a integrated control and navigation system
for omnidirectional Mecanum-wheel based AGVs, including
the implemented Inter-Process Communication (IPC) layer
linking hard real-time task with userspace client programs.

In contrast to related works like RoboBuntu (described in
[14]) this project does not focus on a ready to use distribution
but on providing a integrated control system running on
any Xenomai enabled Linux installation. Furthermore this
project is not limited to middleware functionality like Miro
(described in [15]) focusing on localization and general robot
behavior services. By including low-level controllers, this
project aims to be independent of a underlaying second
real-time low-level control system. Instead of focusing on
integrating as much functionality as possible to become a
general-purpose robot control package like OROCOS (de-
scribed in [16]) does, this project focuses on providing a
sophisticated and full featured control system for omnidi-
rectional mobile robots used for dynamic and autonomous
navigation.

II. SYSTEM ARCHITECTURE

The architecture described in this paper provides a control
environment for omnidirectional AGVs. It features a cen-
tralised design utilizing an embedded PC with a powerful
CPU providing all required computational processing pow-
ers. All sensors and actuators, like the safety laser range
finders or the motors used in the AGVs drive, are directly
connected to an embedded PC using standard interfaces like
RS-422 and Controller Area Network (CAN) or are indirectly
connected through CAN controllers (see Fig. 2).

By directly connecting the two 270◦ SICK S300 safety
laser range finders to the central embedded PC using the
S300’s RS-422 interface, real-time processing of the mea-
sured distance data is possible. This approach directly corre-
lates every measurement with the odometry pose the control

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I 
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013



Fig. 3. Mecanum wheeled based omnidirectional AGV

Fig. 4. Coordinate systems and degrees of freedom on the plain

environment believes the AGV to be at during the measure-
ment. This information is used by localization algorithms
to allow an exact position estimation even through fast
movements of the AGV. Together with distance information
obtained through the IEEE 802.15.4a sensor network precise
position deltas can be calculated. This deltas are then used
by the position control algorithm and the path planner to
eliminate drifts based on constraints given by the user.

For real life experiments, the discussed software frame-
work architecture is deployed on three different types of om-
nidirectional AGVs without the need for any adoption of the
software. One AGV was build by the IMSL team (see Fig. 3),
while the second AGV is a commercial system targeted at
educational and scientific facilities. A third type of AGVs are
commercial systems used in industrial environments. While
only the self build omnidirectional AGV is equipped with
an electronic load lift suitable for AGV scenarios, all AGVs
feature a Mecanum wheel based omnidirectional drive. With
this holonomic drive, all AGVs can make use of all three,
the two coordinate degrees and the orientation of the AGV,
degrees of freedom on the plane (see Fig. 4). Not only
the AGVs can drive sideways, they also can freely change
their orientation while driving in one direction on a straight
line. Combining the localization engine and the electronic
load lift, the self build AGV can autonomously load and
unload euro bins through specially crafted stations. In this
scenario the AGV uses the omnidirectional drive and the
precise positioning information provided by the localization
engine to access a station. Using the electronic load lift either
a euro bin formally transported by the AGV is then unloaded
to the station or a euro bin resting on top of the station is
picked up by the AGV.

Regarding the schematic structure displayed in Fig. 2, the
self build AGV displayed in Fig. 3 uses non-integrated ampli-
fiers external to the motors. Each of the four amplifiers takes
an analog set-point. The second non-displayed AGV uses
fully embedded motors containing an integrated amplifier,

Fig. 5. Mecanum wheel with schematics

which take digital set-points through a CAN interface. The
design of the third commercial AGV type features a safety
PLC containing the required transformation from set-points
in AGVs frame into the four wheel speeds then handled by
the four motors’ integrated amplifiers. This type of AGVs
was tested in real life with two vehicles formerly operated
by hand. Both vehicles already contained a safety PLC for
transforming the operators commands into wheel speeds.
The employed PLC already handles all safety concerns and
therefore was required to coordinate the actual set-points
handed to the motor amplifiers. For this third type of AGVs
set-points in AGV’s frame are used as set-point towards the
safety PLC. From the controllers point of view the main
difference between the first and the other AGV types is
that the fully integrated motors feature a digital closed-loop
controller. The integrated controllers are directly (as for the
second type) or indirectly (as for the third type through the
safety PLC) parameterized through the CAN interface and
follow the digital set-point dictating the speed in revolutions
per minute (RPM) more precisely. In contrast the separate
motor amplifiers, used with the first AGV, are featuring an
analog closed-loop controller that only directly controls the
motor’s current. Because of this difference, an additional
control layer is needed for the self build AGV. This additional
layer forms a second closed-loop controller that uses the
motor’s encoders to derivate the actual motor speed and sets
a suitable set-point.

A. Mecanum Wheels and Mecanum Wheel Based Drives

The Mecanum wheel has a special design that allows
omnidirectional movements with just one motor per wheel.
Instead of changing single or all wheels orientation relative
to the chassis, passive free moving rollers are placed on the
wheel’s hub (see Fig. 5). This passive rollers are typically
made of rubber or other flexible plastics like Vulkollan, to
maximize the friction and weight distribution of the whole
wheel.

Through the special form of the rollers and the wheel hub,
a Mecanum wheel has nearly a round form like a normal
tire (see Fig. 5). For this reason the most basic cases a
Mecnaum wheel could be viewed like any other wheel of
the same diameter. By design simple forward and backward
movements are accomplished by moving all four wheels
equaly.

For any other, more advanced movements the rollers are
used as well. The rollers are passive. Any single wheel can
only be rotated around the main axis of the wheel’s hub.
This way an additional force outside to the wheel is needed
to accomplish the desired roller movement. Fig. 6 illustrates
how the basic force created by the wheels motors (dashed

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I 
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013



Fig. 6. Mecanum based AGV with the AGV’s coordinate system and
Mecanum forces vectors

in red) and an external force that draws the wheel sideways
(doted in green) can add to a force standing perpendicular
on the rollers axis (dash-doted in blue). The external force
(doted in green), which draws the wheel sideways, is a
product of the forces created by the other three Mecanum
wheels. Being connected by a common chassis, the forces
created by the other motors add up to the external force
vector (see Fig. 6). The overall resulting movement of the
AGV depends on the speed of all four motors.

Fig. 6 shows two ways to defines the AGV’s velocity. The
three parameters (xR, yR and θ) shown at the center of the
AGV define the internal coordinate system of the AGV. The
four other parameters printed next to the wheels (φ̇1, φ̇2, φ̇3

and φ̇4) are the wheel speeds of the Mecanum drive. This
two parameter sets need to be transformed both ways by
the controller for steering the AGV. The internal coordinate
system, which stays fix with the AGV and moves alongside
the AGV in the world frame, is defined by the two axis
xR and yR, that describes a position relative to the AGV’s
center, and θ which describes the orientation with respect
to world coordinate system. While the AGV’s pose changes
inside the world coordinate system and stationary objects like
walls stay fixed, in the AGV’s internal coordinate system
everything mounted to the AGV, like the safety laser range
finders, stays fixed an everything else changes its poses. This
way obstacles like walls or furniture can easily be handled
through the sensors. For steering the AGV, velocities given
in the AGV coordinate system are used. This way the AGV
drives forward if a positive ẋR speed is given, while setting
a positive ẏR speed lets the AGV drive to its left. Turning
the AGV is possible by using a velocity given as angular
velocity θ̇.

For actually moving the AGV, the given velocities need
to be transformed into wheel speeds. As equation 1 shows
(variables r, a and b are defined in Fig. 6), the three parts of
the velocities in the AGV’s coordinate system ẋR, ẏR and θ̇
are transformed into four wheel speeds φ̇1, φ̇2, φ̇3 and φ̇4.
While the two translatoric degrees of freedom can be directly
mapped to the four wheel speeds, mapping the rotational
speed θ̇ also requires knowledge about the distance between
the left and right wheel pairs (in Fig. 6 half the distance
is marked as a) and the front and rear axis (in Fig. 6 half

the distance is marked as b). Therefore a and b as well as
the wheel diameter are parameters specific to one AGV type
and need to be configured for the controller to successfully
transform the velocities.

φ̇1

φ̇2

φ̇3

φ̇4

 =
1

r


1 −1 (a+ b)
1 1 −(a+ b)
1 −1 −(a+ b)
1 1 (a+ b)


 ẋR

ẏR
θ̇

 (1)

For calculating the odometry pose of the AGV, the inverse
equation 2 (variables r, a and b are defined in Fig. 6) is used.
The four dimensional vector of wheel speeds is turned into
the three dimensional vector of speeds defined by the AGV
internal coordinate system. To calculate the odometry pose
this speed vector needs to be integrated over time. Because
of the lost information in the odometry pose a controller
error, still visible in the wheel speed vector, can not be
detected through the odometry data. In consequence not only
the odometry pose is required as controller feedback, but
also the raw wheel speeds need to be taken into account for
calculating the correct set-point. By integrating the possible
erroneous speed vector of the backward transformation, also
an error is integrated into the odometry pose. For this reason
an sophisticated localization engine is needed to remove
this errors from time to time. Even through only using the
odometry data would be too error prone it is possible to use
odometry data between two localization steps.

 ẋR

ẏR
θ̇

 =
r

4

 1 1 1 1
−1 1 −1 1
1

a+b
−1
a+b

−1
a+b

1
a+b




φ̇1

φ̇2

φ̇3

φ̇4


(2)

While offering a great flexibility, Mecanum based drives
require high grade closed-loop controller, which also takes
care of the coupling of the speeds of all four wheels. The
controller software created by the authors is based on the
concepts described in [8].

B. Control Architecture

The modular control framework provides different con-
trollers, which are parametrized at runtime. In depends to
the underlaying hardware of the AGV a set of controllers is
chosen for precise control of the given AGV. Fig. 7 shows the
full structure of the used control hierarchy, which is based
on the classical cascade control and the model based control
for Mecanum-wheel based vehicles developed in [8].

The control hierarchy includes a PD position controller
and a PID speed controller for each wheel. A feedforward
controller part is also implemented in both position and the
wheel control. The position control uses the odometry pose
tracked by the odometry module starting from an initial
pose X0 using the data received from the motor’s encoders.
For a more accurate odometry a gyroscope can be used to
measure the AGVs true orientation θ, which is used for the
transformation R−1(θ) between velocities in world frame
coordinates and corresponding velocities in the AGVs R-
frame. The Jacobian matrix J and its pseudo-inverse J∗

provide transformations between velocities in the AGV’s
frame and related wheel velocities. The wheel control uses

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I 
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013



Fig. 7. Controller structure

the four wheel speeds derived from the motor’s encoders.
This very same wheel speeds are also used by the coupling
control to fix coupling errors created by the underlaying
hardware because of the small differences in following the
given set-point of all four motors and gears.

The first custom-built AGV uses all components displayed
in Fig. 7, while the other two AGVs discussed in this paper
do not use the wheel control part and the position control
directly generates the output set-point for the underlaying
hardware. The position control is executed every 15 ms
as a real-time task, receiving its set-point from the path
interpolator. With the first custom build AGV the position
control sets the set-point of the wheel control, which is
executed every 3 ms also as a real-time task.

The analog drive units of the custom-built AGV consist
of brushless 3-phase DC servomotors with gearing and
resolvers. By design the Mecanum drive consists of four
drive units. Resolver feedback provides input to the ana-
log quadrature axis servo controller, while the set-point is
provided through analog DC signals by the embedded PC.
The servo controller accomplishes commutation, control of
phase currents, pulse-width modulation, power amplification
and generation of incremental pulses. Because of the com-
pensation of electrical time constants by means of analog
current control a nearly immediate request of a desired motor
torques can be assumed.

C. Software Structure

The software system developed by the authors aims to be
compatible with different AGV hardware by implementing
a generic control structure for omnidirectional AGVs. This
is necessary because of the different characteristics of the
target AGVs used. The first AGV, using four analog motor
amplifiers, require an additional closed-loop controller in
software, to ensure a comparable wheel speed on all four
motors when the same set-point is given. For the other AGV
types this is not necessary.

To respect this differences, the overall design is struc-
tured into separate modules, with communication channels
transferring data between the modules. As Fig. 8 shows,
the developed software contains two closed-loop controllers.

The lower end controller, titled “Wheel Control” in Fig. 8,
operates on the wheel speeds of the four motors. The set-
point of the controller is the desired value of the analog
motor amplifiers used in the first AGV. Because of the higher
quality of the controllers integrated in the motors of the other
AGV types, this lower controller is not needed for the second
and third type of AGVs. The second higher level controller ti-
tled “Position Control” in Fig. 8 controls the AGV’s position
in a fixed world coordinate system. This controller is required
to compensate positioning errors not visible to the wheel
control. The controller is also using information about the
remaining errors lost in the backward transformation from
wheel speeds to velocities in the AGV’s coordinate frame,
to fix errors in the coupling of the four wheels (referenced
as “Coupling Control” in Fig. 7). The “Position Control” is
also responsible for that the AGV arrives at the set-point that
is given by either the “Path Interpolator” or the “Joystick
Steering“ module. The feedback for this set-point tracking
is done by the “Odometry” module, which transforms the
four wheel speeds into a position information. As shown in
Fig. 8 the set-point handed to the AGV’s hardware is either
provided by the wheel control or directly by the position
controller. For the first AGV requiring a wheel speed control
layer in the software, a vector of four wheel speeds is handed
over to the hardware layer. For the two other types of AGVs
the position control provides the set-point either as a vector
of four wheel speeds, like for the second AGV, or in speeds
of the AGV’s frame, like for the third type of AGVs. This
different set-point handling is part of the modular design,
that ensures, that the developed software can be used with a
wide range of different AGV types.

The closed-loop controllers are controlling the four motors
of the AGV more or less directly. Any jitter in the controllers
execution directly lowers the controller’s grade by limiting
its performance. For many scenarios, where AGVs are used,
a high positioning accuracy has to be accomplished. On two
AGVs the set-points for the motors are given as revolutions
per minute and are therefore time based. Operating the
motors in a motor’s own position mode, where the set-point
defines the position of the motor like in a high resolution
stepper motor, is not feasible either. The jitter of the closed-
loop controller running on the control PC would also cause

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I 
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013



Fig. 8. Simplified system structure

a jitter on the set-points send towards the motors and as a
result the AGV would move in stop and go manner.

To gain a high grade controller behavior, a real-time Linux
system is used. By employing a real-time operating system
the performance of all low level controllers as well as all time
critical high level functionality is guarantied. In contrast to
other real-time operating systems, real-time Linux systems
allows the parallel execution of real-time and non-real-time
tasks on the same system. This allows all components shown
in Fig. 8 to be executed on the same embedded PC.

1) Real-Time Linux: Real-time Linux systems available
today represent an ongoing effort started in the mid 90s.
With both highly flexible Linux systems on the one hand
and real-time systems suitable for precise real-time execution
on the other hand, developers started to join the benefits
of both types of operating systems. Today most real-time
Linux systems are following a micro kernel based approach
to implement a fast interrupt processing. They have reached
a comparable quality compared to other real-time operating
systems as show in [17]. Even the standard Linux kernel,
without an additional micro kernel, is aiming to implement
hard real-time capabilities. This approach called Linux-RT is
described in [18] and could, once merged into the main Linux
version, provide a good out of the box real-time behavior for
most Linux systems.

The authors have compared different real-time Linux ex-
tension in [19] (in German) and settled for the micro kernel
based extensions RTAI (at first) and Xenomai (currently
used). While both extensions offer sufficiently good real-time
scheduling, Xenomai has a much broader device support, like
drivers for popular CAN controllers, through real-time device
drivers developed by the Xenomai project.

For the controller program described, the closed-loop
controllers are executed periodically. The first AGV uses
the wheel speed controller setup as a periodic task with a
period of 3 ms. The position controller triggered through
semaphores every 5th execution of the wheel speed controller
and has therefore a period of 15 ms. In case of the second
AGV, the wheel speed controller is not executed at all and
the position controller is setup directly as an periodic task of
15 ms periodicity.

III. CONCLUSIONS

In this paper, a modular control architecture which is built
on top of a real-time Linux system is presented. The control
architecture was implemented and tested in three different
AGVs with different controller concepts. Due to the modular
design the control system can easily adapted to new kinds
of AGVs and controller designs, which removes constraints

regarding the hardware architecture of the AGV. This way
for example upcoming cheaper drive components like new
motors can be easily adopted. Using an open design approach
the presented framework makes use of raw sensor date
from odometry and laser range finders to provide advanced
knowledge to the localization engine.

REFERENCES

[1] MobileRobots Advanced Robotics Interface for Appli-
cations (ARIA) - ARIA Developer’s Reference Manual,
http://robots.mobilerobots.com/wiki/ARIA, 2012.

[2] Segway Robotic Mobility Platform (RMP) - Interface Guide, Segway
LLC, 14 Technology Drive, Bedford, NH 03110, 2005.

[3] M. Blackwell, “The uranus mobile robot,” Carnegie Mellon University,
Tech. Rep., 1990.

[4] A. Hormann and U. Rembold, “Development of an advanced robot
for autonomous assembly,” in Proc. of the 1991 IEEE International
Conference on Robotics and Automation (ICRA), vol. 3, apr 1991, pp.
2452–2457.

[5] R. Dillmann, J. Kreuziger, and F. Wallner, “Priamos: An experimental
platform for reflexive navigation,” Robotics and autonomous systems,
vol. 11, no. 3-4, pp. 195–203, 1993.

[6] P. Muir and C. Neuman, “Kinematic modeling for feedback control of
an omnidirectional wheeled mobile robot,” in Robotics and Automa-
tion. Proceedings. 1987 IEEE International Conference on, vol. 4.
IEEE, 1987, pp. 1772–1778.

[7] R. Dillmann, J. Kreuziger, and F. Wallner, “The control architecture
of the mobile system priamos,” in Proc. of the 1st IFAC International
Workshop on Intelligent Autonomous Vehicles. Southampton, 1993.

[8] A. Jochheim, “Controller design for multivariable systems under
the restriction of the given coupling constraints (Reglerentwurf für
Mehrgrößensysteme unter der Nebenbedingung vorgegebener Aus-
gansgrößenverkopplungen),” Ph.D. dissertation, FernUniversität Ha-
gen, 1995.

[9] K. Furmans, C. Nobbe, and M. Schwab, “Future of material handling–
modular, flexible and efficient,” in Proc. of the Workshop Metrics
and Methodologies for Autonomous Robot Teams in Logistics at IROS
2011, 2011.

[10] L. Schulze, S. Behling, and S. Buhrs, “Development of a micro
drive-under tractor-research and application,” in Proceedings of the
International MultiConference of Engineers and Computer Scientists,
vol. 2, 2011.

[11] C. Röhrig, D. Heß, C. Kirsch, and F. Künemund, “Localization of an
omnidirectional transport robot using ieee 802.15.4a ranging and laser
range finder,” in Proceedings of the 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2010),
October 2010, pp. 3798–3803. [Online]. Available: http://www.inf.fh-
dortmund.de/personen/professoren/roehrig/papers/iros10.pdf

[12] C. Kirsch, F. Künemund, D. Heß, and C. Röhrig, “Comparison
of localization algorithms for agvs in industrial environments,” in
Proceedings of the 7th German Conference on Robotics (ROBOTIK
2012), Munich, Germany, May 2012, pp. 183–188.

[13] F. Künemund, C. Kirsch, D. Heß, and C. Röhrig, “Fast and accurate
trajectory generation for non-circular omnidirectional robots in indus-
trial applications,” in Proceedings of the 7th German Conference on
Robotics (ROBOTIK 2012), Munich, Germany, May 2012, pp. 377–
382.

[14] A. Mancini, E. Frontoni, A. Ascani, and P. Zingaretti, “Robobuntu: A
linux distribution for mobile robotics,” in Robotics and Automation,
2009. ICRA ’09. IEEE International Conference on, may 2009, pp.
2544 –2549.

[15] H. Utz, S. Sablatnog, S. Enderle, and G. Kraetzschmar, “Miro -
middleware for mobile robot applications,” Robotics and Automation,
IEEE Transactions on, vol. 18, no. 4, pp. 493 – 497, aug 2002.

[16] H. Bruyninckx, “Open robot control software: the orocos project,”
in Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE
International Conference on, vol. 3, 2001, pp. 2523 – 2528 vol.3.

[17] A. Barbalace, A. Luchetta, G. Manduchi, M. Moro, A. Soppelsa, and
C. Taliercio, “Performance comparison of vxworks, linux, rtai and
xenomai in a hard real-time application,” in Real-Time Conference,
2007 15th IEEE-NPSS, 29 2007-may 4 2007, pp. 1 –5.

[18] W. Betz, M. Cereia, and I. Bertolotti, “Experimental evaluation of the
linux rt patch for real-time applications,” in Emerging Technologies
Factory Automation, 2009. ETFA 2009. IEEE Conference on, sept.
2009, pp. 1 –4.

[19] C. Röhrig and D. Heß, “Comparison of current linux real-time
extensions (Vergleich aktueller Linux-Echtzeit-Erweiterungen),” atp -
Automatisierungstechnische Praxis, vol. 50, no. 1, pp. 21–24, 2008.

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I 
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013




