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Abstract—The conventional Takagi-Sugeno (T-S) fuzzy 

model is an effective tool used to approximate the behaviors of 
uncertain nonlinear systems on the basis of precise 
observations. In many real-life situations, however, the 
observations can be imprecise due to limited precisions of 
devices. This paper presents a systematic method to design T-S 
fuzzy model when the observations are imprecise, represented 
as fuzzy data, and then proposes the so-called fuzzy T-S 
regression model (FTS). The consequents of FTS are identified 
by using a fuzzy EM algorithm, a fuzzy extension of EM 
algorithm. The antecedents of FTS are automatically 
constructed by using a data-driven strategy, considering both 
the accuracy and complexity of the produced FTS. The 
performance of FTS was illustrated by using some simulations. 
 

Index Terms—Takagi-Sugeno fuzzy model, fuzzy data, 
imprecision, regression, soft computing 
 

I. INTRODUCTION 

akagi-Sugeno (T-S) fuzzy model recently has attracted 
most attention [14]. The T-S fuzzy model consists of 

IF-THEN rules with fuzzy antecedents and mathematical 
functions in the consequent part. The fuzzy antecedents 
partition the input space into a number of fuzzy regions, 
while the consequent functions describe the system’s 
behavior in these regions [10]. The construction of a T-S 
fuzzy model is generally done in two steps. In the first step, 
the fuzzy sets in the rule antecedents are determined. In the 
second step, the parameters of the consequent functions are 
estimated.  

There emerges a surge of versions of T-S fuzzy models 
since the birth of the original T-S fuzzy model. The popular 
two are the population stochastic algorithm based methods, 
for example, see in [1, 6, 8, 17], and the clustering algorithm 
based methods, e.g., see in [7, 11, 13, 15]. As far as we know, 
all the recent T-S fuzzy models assume a perfect knowledge 
of the value of the response x for the learning samples. That is 
to say, the observations are supposed to be precise (i.e., 
point-valued). However, in many real-life situations, we 
cannot obtain such standard observations. Quite often, 
information about the response is obtained through 
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measuring devices, or sensors, with limited precision. 
Therefore, on the one hand, it is interesting to extend the T-S 
fuzzy model to deal with imprecise data. On the other hand, it 
is necessary to propose a new methodology in the imprecise 
setting. Up to date, there is few literatures on extending T-S 
fuzzy model to deal with imprecise data. In this paper, we 
suppose the imprecise data are represented by fuzzy data and 
investigate on the T-S fuzzy regression with crisp inputs and 
fuzzy output, represented by fuzzy data. 

There exist two obstacles preventing the conventional T-S 
fuzzy model to deal with imprecise data. The first one is how 
to determine the fuzzy sets (i.e., to find fuzzy rules or 
structure of data) in the antecedents when the response x is 
fuzzy data. The second obstacle is how to identify the linear 
functions in the consequent when observations (of responses) 
are fuzzy data. To solve the first problem, we propose a 
data-driven automatic method. This method views the input 
data and output data separately, but it considers both the 
structure of input data and the performance of T-S fuzzy 
model so as to find optimal number of rules with an 
acceptable accuracy. More precisely, we firstly partition the 
input data space with an initial rule, and then the following 
other rules are iteratively produced when the performance of 
and number of existing rules commit some conditions. When 
a given maximal rule number or predetermined accuracy is 
committed, the iteration will be terminated. To identify the 
linear behaviors in these fuzzy regions (i.e., to solve the 
second problem), a novel algorithm used to estimating 
parameters in fuzzy setting is needed. Recently, a significant 
contribution is the extension of Expectation-Maximization 
(EM) algorithm [2] to fuzzy data, i.e., the so-called fuzzy EM 
(FEM) algorithm [3]. Use of such a contribution makes the 
parameter estimation in statistic models be implemented in 
the case where data are imprecise represented as fuzzy data. 
Using FEM algorithm makes the consequents in T-S fuzzy 
model can be identified when observations are fuzzy data. 
Therefore, the so-called fuzzy T-S regression model is 
derived and automatically driven by data. In addition, we 
observe that the investigations on T-S fuzzy regression of 
point-valued data can be covered when the FEM inversely 
degenerates to traditional EM algorithm and the output fuzzy 
data become to be point values. Based on our above 
observations, we therefore propose the so-called a classical 
data-driven T-S fuzzy regression model.  

The rest of this paper is organized as follows. Section 2 
recalls the preliminaries for the paper. Section 3 presents the 
proposed systematical methodology. Section 4 applies some 
numerical experiments to validate the performance of the 
proposed methods. The last section concludes the paper. 
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II. PRELIMINARIES: FUZZY EM ALGORITHM 

Let X, referred to as the complete-data vector, be a random 
vector, taking value in sample space ΩX and describing the 
result of a random experiment. The probability density 
function (p.d.f.) of X is denoted by g(x, ), where  = (1, 
2, …, d) is a column vector of unknown parameters with 
parameter space Ω, where superscript “  ” indicates 
transposition. If x, a realization of X, is known exactly, we 
could compute the maximum likelihood estimate (MLE) of 
as any value maximizing the complete-data likelihood 
function: 

   ; ;x xL g                               (1) 

However, x is usually not observed precisely, e.g., only 
imprecise information about x is available in the form of a 
fuzzy subset x of ΩX. Therefore, the complete-data likelihood 
function (1) should be extended. Given x and assume its 
membership function to be the Borel measurable, the 
probability of fuzzy set x can be computed according to 
Zadeh’s definition of the probability of a fuzzy event [16]. 
Thus, the observed-data likelihood in the imprecise setting 
can then be defined as. 

       ; ; ;xx x x x xL P g d

                              (2) 

In the special case where the complete data x = (x1, x2, …, 
xn) is a realization of an independent identically distributed 
(i.i.d.) random vector X = (X1, X2, …, Xn), and assuming the 
joint membership function x   to be decomposed in the 

product of
ix  (i = 1, 2, …, n), i.e., 

 
1

( )x x
i

n

x i
i

x 


                        (3) 

the likelihood function (2) can be written as a product of n 
items: 

1

; )= ( ) ( ; )( x
i

n

x
i

L x g x dx

                          (4) 

and the observed-data log likelihood is: 

1

log ; )= log ( ) ( ; )( x
i

n

i

L x g x dx

  x                                (5) 

The fuzzy EM algorithm approaches the problem of 
maximizing the observed-data log likelihood logL(, x ) by 
proceeding iteratively with the complete-data likelihood 
logL(, x) = logg(x, ). Each iteration of the fuzzy EM 
algorithm involves two steps called the expectation step 
(E-step) and the maximization step (M-step). 

The E-step consists in the calculation of 

       
  

log ; ,
,

;

x x x x

x

q

q

q

L g d
Q

L

   

 



 
 


                 (6) 

where the expectation of logL(, X) is taken with respect to 
the conditional p.d.f. of x given x , using vector (q): 

            ; x xx x x x u u uq q qg g g d        

The M-step requires the maximization of Q(, (q)) with 
respect to over the parameter space Ω. The fuzzy EM 
algorithm alternately repeats the E- and M-steps above until 
the increase of observed-data likelihood becomes smaller 
than some threshold. 

III. THE PROPOSED FUZZY T-S FUZZY REGRESSION MODEL 

In this section, we consider the problem of approximating 
a continuous multiple input single output (MISO) function to 
clarify the basic ideas of the presented method, since the 
extension of the method to a multiple output function is 
straightforward. Let u = (u1, u2, …, up)' be a p-dimensional 
input variable vector, and x be the associated output variable. 
The T-S fuzzy model comprises of a set of IF-THEN fuzzy 
rules having the following form: 

Rk: IF u1 is 1kA  and … and up is kpA , THEN  

xk = bk0 + bk1u1 + bk2u2 + … + bkpup                       (7) 

where k = 1 to M, xk is the output of the kth rule, bk = (bk0, bk1, 
…, bkp)' is the consequent coefficients in the kth rule, and kjA (j 

= 1, 2, …, p) are fuzzy sets in antecedent defined: 

    2 2exp 2
kj

j j kj kjA u u v s              (8) 

where vkj and skj (k = 1 to M, j = 1 to p) are respectively the 
center and width of the jth memberships in the kth rule. 

Given arbitrary input data ui = (ui1, ui2, …, uip)', each rule 
provides a predicted output. The overall output of the T-S 
fuzzy model is computed as follow: 

1 1

M Mk k k
i i i ik k

x x 
 

                (9) 

where ik is the firing strength of Rk for the ith input, which is 
defined as: 

     1 1 2 2
k
i k i k i kp ipA u A u A u                (10) 

A. Identification of antecedents in FTS  

This section presents the strategy used to identify 
antecedent of fuzzy T-S fuzzy model when the observations 
are in the following form: 

  , , 1, 2, ,ui i i iT e e x i n               (11) 

where ix is the imprecisely observed values for response x, 

represented as fuzzy data. 
The basic idea of the proposed strategy is similar to the 

method in the context of RBF network [4], which is firstly 
extended to construct classical T-S fuzzy model by Rezaee 
and Fazel Zarandi [9]. Here, we further extend it to deal with 
fuzzy data. To present the strategy, a new performance 
measure is first needed, which, called mean square fuzzy 
expectation error, is defined as follow: 

  2

1 1

1 1
_

n n

fuzzy fuzzy i i
i i

MSE MSE i x x
n n 

    E       (12) 
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where    
i

X
i xx d  


 E   is the fuzzy expectation 

associated to ix . When ix degenerate to be point values, 

criteria (12) will degenerate to be mean square error (MSE). 
The proposed strategy is an iterative procedure satisfying 

the following two termination conditions: (1) the 
approximate accuracy is higher than a given acceptable 
performance (), i.e., MSEfuzzy > ; and (2) the size of rule 
base is not bigger than a given maximum rule number (Rmax), 
i.e., M  Rmax. These two conditions let the designer(s) adjust 
the desirable tradeoff between accuracy and the size of rule 
base according to his or her intuition or expertise. For 
instance, if the designer knows the accuracy as a prior,  can 
be set to be the user-given threshold and Rmax can be set to be 
a large number. In this case, the rule number increases until 
the performance of the model meets the use-given accuracy. 
This case is useful when the designer has nothing priori 
knowledge on the rule number. On the contrary, if the 
designer prefers to have a model with certain rule number, he 
or she can preset a small value for . The four-step proposed 
strategy is interpreted as follows. 

Firstly, data preprocess is an import step for model 
construction. Preprocessing involves both identifying and 
eliminating the outliers in the data set and selecting the 
significant input variables among the candidates. However, 
we do not focus on the solution to this step and left it as a 
further study. 

Secondly, an initial fuzzy rule is generated in the rule base. 
The initial fuzzy rule is extracted by a simple method. The 
fuzzy sets kjA in antecedent of the initial fuzzy rule are 

determined by: 

1
1

1 n

j ij
i

v u
n 

                     (13) 

 2

1 11

1

1

n

j ij ji
s u v

n 
 

                  (14) 

In this original initial rule, the behavior in consequent is 
identified using fuzzy EM algorithm (FEM), which will be 
detailed in the consequent section. Here, we assume we have 
obtained the linear behavior in this rule. This assumption is 
held in this section. 

Thirdly, a new rule is constructed and is added to the 
original rule base. The vector that has the worst MSEbetp_i, 
denoted by iu , is considered as the candidate center for this 

new rule: 

  1,2, ,
_ max _u ui j fuzzy fuzzy

i n
MSE j MSE i


 


      (15) 

Because the candidate rule is only based on performance 
error, it is possible for an outlier to be considered as a new 
rule’s center. Although the preprocessing of data maybe 
detects and eliminates the outliers, it is still need to reduce the 
effects of the noisy data and exclude the chance of an outlier 
to become a rule center. In addition, we do not want the new 
candidate center is too close to the existing centers. In this 
regard, the following conditions should be satisfied: 

 

 

2
1 , 11

2
2 2

1,2, ,
min u v

n

i ii

i k
k M

 




  


  





             (16) 

where 1 and 2 are constants, and ,i i  is the membership 

degree of the ith data belonging to the i'th cluster, determined 
in the following way [5]: 

,

12 2
, ,*
2 21
, ,*

min

min
i i

M i i i

k
i k i

d d

d d
 







 
 
  
                (17) 

where di,k is distance between the ith sample and the kth 

center, defined as ik i kd  u v , and the item 2
,*min id  is 

defined: 

2 2
,* ,min min{ 1, 2, } , 0i i k

i
d d k M           (18) 

As can be seen from conditions (1) and (2), a low 2
,1

n

i ii
   

indicates the i'th data is far away from other data and it cannot 
be considered as a new rule’s center, and a low 

2
1,2, ,min u vi kk M    indicates the i'th data locates too close 

to one existing rule center. Therefore, the role of condition 
(1) is to prevent an outlier to be a new rule’s center, and the 
condition (2) ensures that the new rule’s center is not located 
very close to the other existing rule centers. In these 
viewpoints, the constant 1 and 2 can be defined 
respectively as follows:  

2
1 ,1 1

M n

i kk i
M 

 
               (19) 

2

22 2
, ,1 1

u u
n n

i i i i i ii i
      

          (20) 

where 0    1 is a soft factor used to control the effects of 
the average membership degrees of all data over all rules. 
Through our experiments, we found that sometimes there are 

no points satisfying 2 2
,,1 1 1

n M n
i ki ii k i

M   
   . In other 

words, we usually can only obtain one rule, i.e., the initial 
rule. In this case, we can soft the constraint by using small. 

If the selected vector iu satisfies (16), then it is declared as 

the center of a new rule. Otherwise, it is marked as an outlier 
and the process of selecting the vector that has the worse 
performance is repeated without considering the outliers. 
When none of the existing vectors satisfy (16), the procedure 
is terminated to avoid over-fitting. The fuzzy antecedents 

,new jA of the generated new rule is then characterized by (vnew, j, 

snew, j), which are defined by 

, , , 1, 2, ,new j i j new iv u j p or   v u       (21) 

22 2
, , , , ,1 1

n n

new j i i i j new j i ii i
s u v   

       (22) 

Finally, once the new fuzzy rule is added to the rule base, 
the rule number increases one, i.e., M = M + 1, and we have 
vM,j = vnew, j, sM,j = snew, j. Due to the added rule, the rule base 
should be updated. The centers vk of the previous M-1 rules 
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existing in the rule base can be maintained whereas their 
widths sk j (k = 1, 2, …, M-1) should be updated and can be 
updated according to (37) only by replacing index i with the 
index k for k = 1, 2, …, M-1. 

B. Identification of consequents in FTS  

For the sequent discussion, we firstly transform overall 
output (9) to the following vector or matrix form: 

, 1,2, ,i ix i n h b  , or x H b             (23) 

where h, H and b are defined respectively as follows 

   

1 1 1
1 1

1 1 2

, , , , , , , ,

, , , , , , ,

h

H h h h b b b b

M M M
i i i i i ip i i i i ip

i n M

w w u w u w w u w u    
   

  

 

    (24) 

where wik is the weight of the ith data in the kth rule, defined 

as
1

M jk k
i i ij

w  


  . 

To solve the above regression with fuzzy data as output, it 
can be assumed that each component xi of the complete-data 
vector x is a realization of a normal random variable Xi with 

mean '
ih b and standard deviation σ, and observer encodes 

his/her imprecise knowledge of xi in the form of pieces of 
fuzzy data ix . In other words, the observed data x is 

multivariate Gaussian with mean 'H b and variance σ2Ip+1 
associated with ix , where Ip+1 denotes the (p+1)-dimensional 

identity matrix. With such assumption, the complete 
parameter vector is thus  = (b', σ)' that should be identified 
in the case where only ix can be observed. 

According to above interpretations, the complete-data 
p.d.f. can therefore be defined as 

   2' 2

1

1
; exp 2

2
x h b

n

i i
i

g x 
 

    
        (25) 

By using the complete-data p.d.f., the complete-data log 
likelihood is thus: 

   

   
1

' ' ' '
2

log ; log ;

1
log 2 log 2

2 2

x

x x b Hx b HH b

n

i
i

L g x

n
n 







     

 
   (26) 

Taking the expectation of logL(, x) conditionally on the 
observed ix  and using the fit (q) of  to perform the E-step, 

it can get 

       

   

( )

' ' '
2

1

, log ; log 2
2

1
log 2

2

x x

b Hβ b HH b

q
q

n
q q

i
i

n
Q L

n



 
 

    

 
     

 


E 
  

 (27) 

where  
( )

2
q

q
i ii X x    

 
E 
 and    ( )q

q
i ii X x  E 

 , and (q) = 

(1
(q), …, n

(q)) are expectations conditioning on fuzzy data. 
The detail computations of these expectations can refer to our 
previous work [12] for completeness. 

The M-step requires maximizing QFE
2
M(, (q)) with 

respect to . This can be achieved by differentiating 
QFE

2
M(, (q)) with respect to b and σ, which results in: 

     '
2

, 1
Hβ HH b

b

q

q
Q




  


+

 
 

       ' '
3

1

, 1
2 'b Hβ b HH b

q
n

q q
i

i

Q n 
   

  
        


 

 

Equating these derivatives to zero and solving for b and σ, 
we get the following unique solution: 

     11 'q q b HH Hβ                (28) 

         1 1 1 1' ' '

1

1
2

n
q q q q qq

i
i

n
    



 
    

 
 b Hβ b HH b  

(29) 

When the iteration terminates, we can obtain the 
regression coefficients b and thus obtain the multiple 
regression model with crisp inputs and fuzzy output. 

IV. EXPERIMENTS 

In the experiment, we suppose that the domain of input Ωu 
= [0, 10]. The true output xis were generated using the 
following specific nonlinear model: 

 sin , 0,10x u u u                         (30) 

To model the situation where response x can only be 
imprecisely observed, triangular fuzzy data (see equation () 
in Appendix) is adopted. The core and support of such kind 
of fuzzy observations were generated according to the 
following two-step strategy: 

Step 1: Generate the cores xi of fuzzy observations xi = f(ui) + 
i, where  max0,i N � . 

Step 2: The supports of the fuzzy observations ix are defined 

as  ,i i i ix x   , where  min max,i rand  � .  

By taking the nonlinear function (30) as the example in 
this section, we analyze the performance of the proposed 
fuzzy T-S fuzzy model when the imprecision (δi) takes 
different ranges of values: [0.2, 2.2], [0.1, 1.1], [0.01, 0.1], 
[0, 0]. Note that, when δi  [0, 0], the study on classical T-S 
fuzzy model is covered. In these four cases, we suppose   = 
1, accuracy threshold  = 10-5 and maximum rule number 
Rmax = 4, 5, 6, and 7. 

In each case study, one hundred data sets T(l), l = 1, 2, …, 
100 were generated using above strategy. The sample size of 
each data T(l) is n = 21. The FTS are identified on each set T(l). 
To measure the prediction accuracy of the identified model 
on each training set, we regularly generate number nt of 
testing samples from the input domain according to: 

 0.1 1 , 1, 2, ,101

sin

t
i

t t t
i i i

u i i

x u u

  




                   (31) 
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TABLE 2 
APPROXIMATION AND PREDICTION ACCURACIES IN DIFFERENT RANGES OF IMPRECISION *1 

Imprecision Error type 
(mean  std) 

Maximum rule number Rmax Remark 
4 5 6 7 

δi  [0.2, 2.2] 
Approximation 1.1331  0.6761 1.0284  0.6192 0.9329  0.2984 0.7256  0.3761 M = 4 
Prediction 0.6768  0.2704 0.8090  0.3957 1.0402  0.3620 1.1059  0.5102 Over-fitting 

δi  [0.1, 1.1] 
Approximation 0.3008  0.0877 0.3489  0.1656 0.2061  0.0897 0.1589  0.0643 M = 7 
Prediction 0.2828  0.1213 0.2936  0.1091 0.3239  0.2346 0.2692  0.0810  

δi  [0.01, 0.1] 
Approximation 0.1076  0.0388 0.0296  0.0173 0.0123  0.0028 0.0049  0.0025 M = 7 
Prediction 0.1057  0.0396 0.0310  0.0191 0.0128  0.0017 0.0052  0.0027  

δi  [0, 0] 
Approximation 0.1405  0 0.0422  0 0.0088  0 0.0017  0 M = 7 
Prediction 0.1383  0 0.0438  0 0.0091  0 0.0018  0  

*1 The bold number indicates best performance without considering over-fitting, and the shadow cells indicate over-fitting cases. 
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Fig. 1 Four random results over 100 trials for the specific nonlinear system (30). The dot curve indicates the true output values xi as a function of inputs ui. The 
cross denotes the core bi of fuzzy number. Each vertical segment represents the support [bi – δi, bi + δi]. The dash line indicates the prediction results. 

The error was computed as the mean squared differences 

between the true output xi and model prediction  ˆ l
ix : 

    2

1

1
ˆ

tn
l l

i i
it

MSE x x
n 

          (32) 

The numerical results are presented in Table 1, and four 
graphical results randomly selected from the 100 trials in 

each case are shown in Fig. 1. 
As an illustration, the FTS model structure for one training 

data present in upper-left subplot of Fig. 1 is presented as 
following if we preset Rmax = 5 and  = 0.001, we can derive 
the following fuzzy T-S regression model: 

R1: IF u1 is 11A , THEN x1 = -2.9282 -0.7753u1; 
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R2: IF u1 is 21A , THEN x2 = 79.8857-8.5144u1; 

R3: IF u1 is 31A , THEN x3=-4.0260 + 0.2162u1; 

R4: IF u1 is 41A , THEN x4 = 0.1216 +0.8476u1; 

R5: IF u1 is 51A , THEN x5= 8.7062-3.1560u1; 

where the fuzzy sets 1kA  (k = 1, 2, …, 5) in antecedents are 

shown in Fig. 2. 
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Fig. 2 The membership function of antecedent fuzzy sets in each rule 
corresponding to Fig. 2. The centers of 1kA (k = 1, 2, …,5) is 5, 10, 7, 2, and 

3.5, and the bandwidths of 1kA (k = 1, 2, …,5) is 0.9183, 0.8462, 0.9092, 

1.2668 and 0.9719. 

 
Fig. 1 intuitively illustrates the prediction results of fuzzy 

T-S model in different cases. It can be seen that the predicted 
curves can approach to the true behavior. The difference 
between the predicted curves and true behavior becomes 
smaller with decreasing of imprecision. Especially, such 
difference approaches to zero in the precise and certain case 
(see in the below-left subplot in Fig. 1). 

Tables 1 presents the approximate and prediction 
accuracies when maximum rule number Rmax takes different 
values in different ranges of imprecision and uncertainty. 
They numerically show the performance of FTS model. For a 
given range of imprecision, the Rmax corresponding to the 
highest approximate accuracy is determined as the rule 
number without considering over-fitting. For instance in the 
first case   [0.2, 2.2] in Table 1, the highest approximate 
accuracy appears when Rmax = 4, therefore, number of rule in 
rule base is 4, i.e., M = 4. We call a model over-fitting if its 
approximate accuracy becomes small whereas its associated 
prediction accuracy approaches to high, see the shadow cells 
in Table 1. The over-fitting always occurs in the cases when 
low reliability and/or high imprecision exist. In this regard, it 
suggests constructing FTS with small size of rule base in the 
high imprecision and uncertainty cases. 

In a word, the FTS model can deal with imprecise data, and 
its performance is determined by the ranges of imprecision: 
the lower the imprecision IS, the higher approximate and 
predication accuracies are. 

V. CONCLUSIONS 

This paper proposes a T-S fuzzy regression method used to 
deal with problems when response cannot be precisely 
observed and can only be represented by fuzzy data. In this 
approach, both the performance accuracy and size of rule 
number in rule base (i.e., the complexity of produced model) 
are considered simultaneously. The proposed approach starts 

with an initial rule, and then a new rule is added to the rule 
base. The antecedents of the new rule are constructed by 
using an automatic data-driven strategy, and the consequents 
are identified by using fuzzy EM algorithm. This procedure is 
terminated when the accuracy and rule number of the 
proposed approach meet the preset stopping criterions.   

The proposed approach can not only deal with regression 
of fuzzy data, but also can be used in crisp setting. With some 
simplifications, we therefore derive the so-called a classical 
data-driven automatic T-S fuzzy model. The proposed 
models are validated by using some numerical experiments. 
The experimental results suggest that the proposed models 
have high prediction accuracy and can be used to interpret 
nonlinear system when the observations of response are 
fuzzy data. 
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