

 Algorithm for Inputting Fixed Point Numbers in
E-notation

Edosomwan Joseph H. E., Member IAENG

Abstract-The purpose of this paper is to forward an
algorithm that is useful to the assembly language
programmer to enable him/her input numbers that are in
fixed point or e-notation form. This algorithm shall enhance
the maximization of the potentials of the Numerical Data
Processor – the co-processor that performs floating point
arithmetic.

Index Terms-Algorithm, Assembly language, Programmer,
Fixed-point, Floating-point, co-processor

I INTRODUCTION

Programming in assembly language requires the use of
explicit input/output routines. Be it manipulation of integer
numbers, character data, fixed point numbers or floating
point numbers, the programmer must either write and make
use of his own input/output routines using the DOS service
functions (for IBM microcomputer) or the ones pre-written
and assembled into object codes by someone else.

Writing of an efficient input/output routine is like writing a
normal program. And achieving the intended result
depends largely on how efficient is this algorithm.

 The algorithm below converts a number supplied in either
fixed point form such as 357.896 or scientific e-notation
form like 3.5796E02 to its ASC11 string code equivalent
number.

This article assumed that the ASC11 string representing
the number is terminated by a dollar ($) sign.

II THE ALGORITHM AND THE NUMERICAL

DATA PROCESSOR

The numerical data processor (hereafter referred to as
NDP) is a co-processor dedicated to the manipulation of
very large or very small floating point or fixed point
numbers. It uses the ten-bytes (eighty binary digits) format
to represent number[2]. With the ten-byte notation, the NDP
uses the long format, so the range of numbers represented
is:

 4.19x10 -307 to 1.67x10 308 (4)

 [1] Gives an algorithm with which to convert fixed point
numbers to its ASCII string form like 1.67 x 10, 308 it has

Snr. Lecturer, Department of Computer Science, College
of Education, Ekiadolor-Benin. P. .M. .B. 1144, Benin
City, Edo State, Nigeria.. (maryjoe872002@yahoo.com)

to be converted to ASCII form or in e-notation form
(1.67E308) before the intended result can be achieved.
This is what the algorithm intended to address.

III THE ALGORITHM

Below is the algorithm for inputting fixed and/e-notation
numbers:

1. Initialise appropriate variables

VALUE = 0.0;

MINUS = FALSE;

EXMINUS = FALSE;

E_FOUND = FALSE;

THE_DET = -1;

2. Point to first ASCII character;

3. Repeat the following until ‘e’ or ‘E’ or ‘$’ is found.

If (character = ‘e’) then

Replace character with ‘E’

E_ FOUND = TRUE;

Exit loop;

Elseif (character = ‘E’) then

E_FOUND = TRUE

Exit loop;

Elseif (character = ‘$’) then

Exit loop;

Else

Point at next ASCII character;`

Endif;

End repeat;

4. Point at first ASCII character;

5. if (character = (‘.’) then

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

MINUS = TRUE;

Point at next ASCII character;

Endif

6. Increase pointer until point (.) is found;

7. if (E_FOUND = TRUE) then

While (character not ‘E’) do

Increment THE-DET;

Point at next ASCII character;

Endwhile;

Else

 While (character not ‘$’) do

Increment THE _DET;

Point at next ASCII character;

 Endwhile

Endif

8. If (E_FOUND = TRUE) then

Move pointer until ‘E’ is found;

Point at next ASCII character;

If (character = ‘-‘) then

EXMINUS = TRUE;

Point at next ASCII character;

Endif

Initialize EXPONENT to zero

(i.e. EXPONENT = 0)

While (character not ‘$’)

Multiply EXPONENT BY 10;

Add digit equivalent of character to EXPONENT;

Point at next ASCII character;

Endwhile;

If (EXMINUS = TRUE) then

Negate EXPONENT;

Endif;

Endif;

9. If (E_FOUND = TRUE) then

Subtract THE _DET from EXPONENT
and store result as EXPONENT;

10. Point at first ASCII character;

11. If (MINUS = TRUE) then

Advance pointer to next ASCII character;

Endif;

12. If (E_FOUND = TRUE) then

While (character not ‘E’)

If (character = ‘.’) then

Point to next ASCII character;

Endif;

This algorithm below converts characters to its digit
equivalent and vice versa:

Multiply VALUE by 10.0;

Add the equivalent fixed point number to VALUE;

Point at next ASCII character;

Endwhile;

Else

While (character not ‘’0

If (character = ‘.’) than

Point at next ASCII character;

Endif;

Convert character to equivalent digit, and

Convert digit to equivalent fixed point number;

Multiply VALUE by 10.0;

 Add equivalent fixed point number to VALUE;

Point at next ASCII character;

Endwhile;

Endif;

13. If (E_FOUND = TRUE) then

If (EXPONENT less 0)then

Negate EXPONENT;

Multiply VALUE by 0.1

(EXPONENT) times;

Elseif (EXPONENT ›0) then

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

Multiply VALUE by 10.0

(EXPONENT) times;

Else

VALUE = VALUE;

Endif;

Else

If (THE_DET I Greater than 0) then

Multiply VALUE by 0.1

(THE_DET) times;

Endif;

Endif;

14. If (MINUS = TRUE) then

Negate VALUE;

Endif;

Stop3

IV EXPLANATION OF THE ALGORITHM

In the above algorithm, certain variables are used and
initialized for a start. These variables and what they depict
are:-

1. VALUE represents the final number after it is converted.

2. THE DET is a variable used to represent fractional digits
numbers physically supplied along with the original
number.

3. MINUS is a Boolean variable whose value will be
TRUE if the original number is negative (numbers less
than one).

4 EXMINUS is another Boolean variable whose value will
be TRUE if the sign of the exponent (numbers in E-
notation) is negative (exponent less than one) otherwise its
value remains FALSE (numbers in fixed point form).

5 E-FOUND is the last of the Boolean variables and its
values will be TRUE if ‘e’ or ‘E’ is in the original number
(number in e-notation) else the value remains FALSE
(number in fixed point form).

6 EXPONENT represents the exponent (i. e. for numbers
in E-notation).

Step 2 of the algorithm sets pointer to the beginning of the
ASCII string (first ASCII character).

In step 3, the ASCII string is scanned through and if a
small letter ‘e’ is found (numbers in E-notation), the small
letter is replaced with big letter E and E-FOUND is set to
TRUE. Also if an upper case ‘E’ is found, E-FOUND is set

TRUE and this conditions lead to exit from the loop.
However, if a dollar sign (which marks the end of the
string) is encountered, then the number is not in e-notation.

Step 4 takes us back to the beginning of the string.

In step 5, the first character of the ASCII string is checked,
if it is the negative (-) sign, then it is a real number less
than zero and accordingly, the Boolean variable MINUS is
set to TRUE. The value of the variable remains FALSE if
the first character is positive.

Step 6, causes the pointer to point to character point (.)

In step 7, if E_FOUND is TRUE, then the variable
THE_DET is incremented by one (1) as many times as the
number of ASCII characters is encountered, before the
character ‘E’, otherwise it is incremented by one (1) as
many times as the number of ASCII characters
encountered before ‘$’.

Step 8, sets the Boolean variable EXMINUS to TRUE if
the first byte after ‘E’ (numbers in E-notation) is a negative
(-) sign otherwise its initial value of FALSE remains.
Afterward, it obtains the exponent by multiplying the
variable EXPONENT by 10 and adding the value
equivalent of each ASCII character to EXPONENT for
every ASCII character encountered before dollar ($) sign.
Finally if EXMINUS was TRUE the eventual EXPONENT
is negated.

Step 9 serves to obtain the difference between the exponent
and number of fractional digits for real numbers in E-
notation. This is necessary in determining how many times
to the right or left the decimal point will be moved by way
of multiplication by 10.0 or 0.1 to obtain the final number.

Step 10 takes the pointer to the first character of the ASCII
string again.

Step 11.Advances pointer to the second ASCII character if
the first was the negative (-) sign.

In step 12, the initial number is built and stored as
VALUE. If the original number was supplied in e-notation,
then for every ASCII character encountered before ‘E’ its
equivalent digit is obtained and converted to an equivalent
fixed point number. Then VALUE which was initially set
to 0.0 is multiplied by 10.0 and the fixed point number
equivalent of the encountered character is added to it
(VALUE) after the multiplication by 10.0. However, if the
number was supplied in fixed point form then the character
that terminates the process above will be the dollar ($) sign
and not ‘E’.

Step 13.The value obtained in step 12 will be of the form
357896.0 if the number supplied were 357.896 or
3.57896E02. Therefore for a number supplied in fixed
point form, the initial values obtained have to be multiplied
by 0.1 as many times as the number of fractional digits to
fix the decimal point at its right position. If the number
were supplied in E-notation, the difference between the
exponent and the number of fractional digits will have to
be obtained. If this difference is negative, then the initial
value will be multiplied by 0.1 as many times as the

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

positive value of the difference; and if the difference is
positive, the initial value is multiplied by 10.0 as many
times as the differences to fix the decimal point at its
proposition. This is what step 13 achieves.

However, if the difference between the exponent and
fractional digits is zero, thus for a numbers in E-notation
form and there are no fractional digits (number in fixed
point form), then VALUE remains the same.

Step 14 negates VALUE to obtain the final equivalent
number if the number was negative else the final number
equivalent to the ASCII string remains what is now and
stored in position of VALUE.

Step 15 ends the algorithm.

V CONCLUSION

This algorithm is not meant to compete with any other in
terms of complexity and efficiency except that it seeks to
complement Detmer’s work[1] and to enable assembly
language programmers to be able to input very small and
very large numbers such as are manipulated by the NDP.

However, it has the weak point of not being able to detect
illegal characters in a number4.

REFERENCES

[1] R. C. Detmer, “Fundamentals of Assembly

Programming Using the IBM PC and Compatibles.” D.C. Health

and Company, Massachusetts. 1990, Pp. 530.

[2] Sanchez, “Assembly Language Tools and Techniques for the

IBM Microcomputers”. Prentice-hall; New Jersey: 1990, pp 447.

[3] K. R. Robert, Data Structure and Programming Design: Prentice Hall

 3rd edition New Jersey. 1981

[4] J. H. Edosomwan, Sorting Algorithm: Analysis and comparison of

 Performance, Msc Project thesis at the University of Port Harcourt,

 Feb. 2004

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

