

Abstract—In this work, a novel gate-level delay computing

method for common subexpression elimination (CSE)
algorithm is proposed. The computing method is based on delay
matrix and suitable for implementation with computers. A CSE
algorithm with gate-level delay computing (GLDC-CSE) is
developed. The GLDC-CSE algorithm is demonstrated through
a case study in AES S-box implementation with composite field
arithmetic (CFA). Experimental results have shown that the
period of delay computing accounts for 34.46% of GLDC-CSE
algorithm running time on an average. Using GLDC-CSE
algorithm, the gate counts and area-delay-production (ADP) of
constant matrix multiplications in AES S-box is reduced by
39.20% and 28.56% respectively on an average. Also, the
minimal area combination of matrices and the shortest critical
path delay (CPD) combination of matrices can be determined
by using GLDC-CSE algorithm, respectively.

Index Terms—gate-level delay computing, common
subexpression elimination, critical path delay, multiple constant
multiplication, composite field arithmetic.

I. INTRODUCTION

ULTIPLE constant multiplication (MCM) is widely
used in many digital signal processing (DSP)
applications, such as digital filtering, image

processing, linear transforms, etc. In high level synthesis of
VLSI design, the optimization of MCMs can lead to
significant improvements in various design parameters like
area or power consumption. Common subexpression
elimination (CSE) is an effective optimization method to
solve the MCM problems . The idea of CSE is to identify
patterns (common subexpressions) that are present in
expressions more than once and replace them with a single
variable. With this, each of these patterns needs only to be
computed once, thus reducing the size of the hardware
required in VLSI implementation. However, how to select a

Manuscript received June 17, 2013; revised August 20, 2013. This work

was supported by the National Natural Science Foundation of China
(61376025 and 61106018), Industry-academic Joint Technological
Innovations Fund Project of Jiangsu (BY2013003-11).

Ning Wu is with the College of Electrical and Information Engineering,
Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing
210016, China (e-mail: wunee@nuaa.edu.cn).

Xiaoqiang Zhang is with the College of Electrical and Information
Engineering, NUAA, Nanjing 210016, China (e-mail: zxq198111@qq.com).

Yunfei Ye is with the College of Electrical and Information Engineering,
NUAA, Nanjing 210016, China (e-mail: yunfye@nuaa.edu.cn).

Lidong Lan is with the College of Electrical and Information Engineering,
NUAA, Nanjing 210016, China (e-mail: lanlidongdt@126. com).

pattern to eliminate for achieving optimal results is an
NP-complete problem [1]–[2].

Constant matrix multiplications over Galois field is a
special case of the MCM problem, which is widely used in
cryptography and coding theory, because in the Galois field,
addition is performed via XOR and multiplication is
performed in several different ways. Many CSE algorithms
have been used to reduce the complexity architectures for
constant matrix multiplications over Galois field [1]–[10].

Both area and throughput are significant for VLSI design.
Previous CSE algorithms mostly focused on reducing the
area complexity without providing complete control on the
CPD, which ultimately determines throughput [11]. The
delay is easy to determine for a straightforward
implementation of constant matrix multiplication. CSE
algorithms try to reduce the area complexity via transforming
the constant matrix. Thus, the first challenge for the CPD
control of a CSE algorithm is how to compute the delay
associated with each transformation of the matrix. Chen et al.
first proposed a gate-level delay computing method for CSE
algorithm based on restriction graph [11]. The method selects
a restriction graph to represent the transformed constant
matrix after running a CSE algorithm, and the CPD can be
determined by translating the restriction graph to an optimal
XOR tree. Both restriction graph transforming and optimal
XOR tree translating are needed to complete the complicated
operations.

In this paper, a new gate-level delay computing method for
CSE algorithm is proposed. The new method is based on a
delay matrix and should be carried out with CSE algorithm
simultaneously. Since our method adopts matrix form in the
computing process, compared with the method presented in
[11], which adopts restriction graph form, our method is more
suitable for implementation with computers.

The rest of the paper is organized as follows. Section II
describes the basic principles of CSE algorithm. The detailed
description of the new gate-level delay computing method is
introduced in section III. In section IV, a CSE algorithm with
gate-level delay computing (GLDC-CSE) is proposed and
demonstrated through a case study in implementation of AES
S-box based on composite field arithmetic (CFA). Finally,
the conclusions are given in Section V.

II. THE BASIC PRINCIPLES OF CSE ALGORITHM

MCM over Galois field can be expressed as a linear
transform Y = MX, where Y and X are m- and n-dimensional
column vectors, respectively, and M is an m×n constant

Improving Common Subexpression Elimination
Algorithm with A New Gate-Level Delay

Computing Method

Ning Wu, Xiaoqiang Zhang, Yunfei Ye, and Lidong Lan

M

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol II
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19253-1-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

matrix over the Galois field [1]–[2]. X represents the input
variables and Y represents the output variables, while M
indicates the set of constant coefficients. Clearly, such a
transform requires only additions. Take note that, additions
over Galois Field are referring to XOR operation, and hence
the MCM over Galois Field can be implemented by a
combinational logic with XOR gates only.

The linear transform Y = MX can be expressed in bit-level
equations. A CSE algorithm can be exploited to extract the
common factors in all the bit-level equations, in order to
reduce the area cost of combinational logic implementation.
In general, any CSE algorithm involves the following general
steps [2]:

1) Identify patterns (common factors) that are present in the
transformation.

2) Select a pattern for elimination.
3) Remove all the occurrences of the selected pattern.
4) The eliminated pattern is computed only once.
5) Repeat Step 1-4 until none of multiple patterns is

present.
Consider the computation as follows:

0 0 0 1 2 3 4

1 1 0 1 3 4

2 2 0 1

3 3 0 1 3

4 4 2

1 1 1 1 1

1 1 0 1 1

1 1 0 0 0

1 1 0 1 0

0 0 1 0 0

y x x x x x x

y x x x x x

y x x x

y x x x x

y x x

 (1)

A simple CSE algorithm applied to (1) is illustrated in

Fig.1. The CSE algorithm identifies “x0+x1+x3+x4” as the
pattern in the first iterative, and generates a new variable “x5”
to replace it. The identified pattern is appended to the bottom
of constant matrix as an additional row to be further
optimized by the CSE algorithm. In the following iterative,
the patterns “x0+x1+x3” and “x0+x1” are identified and
replaced by variables “x6” and “x7” respectively.

A straightforward realization of computation in (1) is
shown in Fig.2(a) which requires 10 XOR gates. However,
after the CSE optimization, there are only 4 XOR gates
required to realize, as illustrated in Fig.2(b). The reduction of
XOR gates can be up to 60%.

III. GATE-LEVEL DELAY COMPUTING METHOD BASED ON

DELAY MATRIX

In this section, a new gate-level delay computing method
for CSE algorithm is proposed. A similar method has been
presented in [11], which is based on a restriction graph. The
restriction-graph-based method should be carried out after
running a CSE algorithm, and the computing process of the
method can be divided into three steps:

1) Establish a restriction graph based on the transformed
constant matrix after running a CSE algorithm.

2) Translate the restriction graph to an optimal XOR tree.
3) Compute delay value based on the optimal XOR tree and

determine the CPD.
Same as the method in [11], the method presented in this

paper can be also divided into three steps:

Fig. 2 Realization of the computation in (1). (a) Straightforward
realization. (b) After optimized by the simple CSE algorithm.

1 1 1 1 1

1 1 0 1 1

1 1 0 0 0

1 1 0 1 0

0 0 1 0 0

0 0 1 2 3 4

1 0 1 3 4

2 0 1

3 0 1 3

4 2

y x x x x x

y x x x x

y x x

y x x x

y x

Matrix Equations

0 0 1 0 0 1

0 0 0 0 0 1

1 1 0 0 0 0

1 1 0 1 0 0

0 0 1 0 0 0

1 1 0 1 1 0

Pattern1 Elimination

0 2 5

1 5

2 0 1

3 0 1 3

4 2

5 0 1 3 4

y x x

y x

y x x

y x x x

y x

x x x x x

0 0 1 0 0 1 0

0 0 0 0 0 1 0

1 1 0 0 0 0 0

0 0 0 0 0 0 1

0 0 1 0 0 0 0

0 0 0 0 1 0 1

1 1 0 1 0 0 0

0 2 5

1 5

2 0 1

3 6

4 2

5 4 6

6 0 1 3

y x x

y x

y x x

y x

y x

x x x

x x x x

Pattern2 Elimination

0 0 1 0 0 1 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 1 0

0 0 0 1 0 0 0 1

1 1 0 0 0 0 0 0

Pattern3 Elimination

0 2 5

1 5

2 7

3 6

4 2

5 4 6

6 3 7

7 0 1

y x x

y x

y x

y x

y x

x x x

x x x

x x x

Fig. 1 Example of a simple CSE algorithm

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol II
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19253-1-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

1) Establish a initial delay matrix based on the primitive
constant matrix before running a CSE algorithm.

2) Update delay matrix during a CSE algorithm running.
3) Compute delay value based on the delay matrix and

determine the CPD.
Different from [11], our method is based on a delay matrix

and should be carried out with CSE algorithm
simultaneously. The details of our delay computing method
will be described below.

A. Establish Initial Delay Matrix

Consider a constant matrix M, in which a row corresponds
to an output variable and a column corresponds to an input
variable. In a row of constant matrix M, “1” represents that
the input variable participates in computing of the output
variable, and therefore the initial delay value of the input
variable should be set to 0. On the other hand, “0” represents
that the input variable does not participate in computing of
the output variable, and therefore the initial delay value of the
input variable should be invalid. Digit “–1” can be chose to
represent the invalid value. According to the above
discussion, an initial delay matrix Md can be obtained by
formula:

1dM M M (2)

where M is the constant matrix and M1 is a matrix that has the
same dimension as M, and all elements value of M1 is 1.
According to (3), the initial delay matrix Md1 of (1) can be
figured out as follows:

1

1 1 1 1 1 1 1 1 1 1

1 1 0 1 1 1 1 1 1 1

1 1 0 0 0 1 1 1 1 1

1 1 0 1 0 1 1 1 1 1

0 0 1 0 0 1 1 1 1 1

0 0 0 0 0

0 0 1 0 0

0 0 1 1 0

0 0 1 1 1

1 1 0 1 1

dM

 (3)

B. Update Delay Matrix

The constant matrix M has been changed during the
running period of a CSE algorithm, therefore the delay matrix
should be updated accordingly. During a CSE algorithm
running, suppose that a pattern “xi+xj+…+xk” is replaced by a
new variable “xnew” and appended to the bottom of constant
matrix as an additional row. Suppose the delay value of
“xnew” is represented by “dnew” and the delay value of “xi”,
“xj” , ... , and “xk” is represented by “di”, “dj” , ... , and “dk”
respectively. Correspondingly, an additional row should be
appended to the bottom of delay matrix according to the “di”,
“dj” , ... , and “dk”. Then “dnew” can be figured out by running
Algorithm 1 according to the additional row of delay matrix.

Algorithm 1: Compute Delay Value
1) Input a row of delay value d0 d1 …dn (n≥2).
2) Sort the row in an increasing order.
3) Select the smallest two delay values di and di+1 which

is no less than 0.
4) Update new values of di and di+1 using the following

equations:

1 1max(,) 1;

1;
i i i

i

d d d

d

 (4)

5) Repeat steps 2-4 until there is only the last delay value

dn no less than 0.

Note that Algorithm 1 is essentially as same as Algorithm
2 in [11] and algorithm in Fig.4 in [12], both of which are
used to compute delay value of output variable from an
optimal XOR tree, and the latter has been proved to be
optimal in [12]. After running Algorithm 1, “dnew” is the
computing result of “dn” in Algorithm 1. The updated process
of “dnew” is described below.

Algorithm 2: Update Delay Value

1) Append new row with “di”, “dj”, ... , and “dk”
according to the transformation of constant matrix M.

2) Append new column with “dnew” according to the
transformation of constant matrix M.

3) Detect the row-number of the position of “dnew”, if the
row-number “l” is greater than the
maximum-row-number “m-1” of original matrix
(suppose the original matrix is m×n-dimensional
matrix), re-compute and re-update the delay value
“dl”.

4) Take delay value “dl” as “dnew” to repeat step 3, until
there is no row-number of the position of “dnew” that is
greater than the maximum-row- number “m-1”.

Consider the computation in (1), a new variable “x5”

replaces the pattern “x0+x1+x3+x4” in the first iterative of the
CSE algorithm. The updated process of constant matrix M is
shown in Fig.1. The corresponding updated process of delay
matrix can be expressed as follows:

0 0 0 0 0

0 0 1 0 0

0 0 1 1 0

0 0 1 1 1

1 1 0 1 1

0 0 0 0 0

0 0 1 0 0

0 0 1 1 0

0 0 1 1 1

1 1 0 1 1

0 0 1 0 0

append new row

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol II
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19253-1-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

5

1 1 0 1 1 2

1 1 1 1 1 2

0 0 1 1 1 1

0 0 1 0 1 1

1 1 0 1 1 1

0 0 1 0 0 1

compute d and

append new column

 (5)

In the second iterative, the pattern “x0+x1+x3” is replaced

by “x6”. The updated process of delay matrix can be
expressed as follows:

1 1 0 1 1 2

1 1 1 1 1 2

0 0 1 1 1 1

0 0 1 0 1 1

1 1 0 1 1 1

0 0 1 0 0 1

1 1 0 1 1 2

1 1 1 1 1 2

0 0 1 1 1 1

0 0 1 0 1 1

1 1 0 1 1 1

0 0 1 0 0 1

0 0 1 0 1 1

append new row

6

1 1 0 1 1 2 1

1 1 1 1 1 2 1

0 0 1 1 1 1 1

1 1 1 1 1 1 2

1 1 0 1 1 1 1

1 1 1 1 0 1 2

0 0 1 0 1 1 1

compute d and

append new column

5

1 1 0 1 1 3 1

1 1 1 1 1 3 1

0 0 1 1 1 1 1

1 1 1 1 1 1 2

1 1 0 1 1 1 1

1 1 1 1 0 1 2

0 0 1 0 1 1 1

recompute d

 (6)

The original constant matrix M of computation in (1) is

5×5-dimensional matrix. As shown in (6), the row-numbers
of the positions of “d6” are 3 and 5, respectively. Among
which, 5 is greater than 4, which is the maximum-row-
number of original constant matrix M. Therefore “d5” shall be
re-computed and re-updated again.

Likewise, the updated process of delay matrix in the last
iterative can be expressed as follows:

1 1 0 1 1 3 1

1 1 1 1 1 3 1

0 0 1 1 1 1 1

1 1 1 1 1 1 2

1 1 0 1 1 1 1

1 1 1 1 0 1 2

0 0 1 0 1 1 1

1 1 0 1 1 3 1

1 1 1 1 1 3 1

0 0 1 1 1 1 1

1 1 1 1 1 1 2

1 1 0 1 1 1 1

1 1 1 1 0 1 2

0 0 1 0 1 1 1

0 0 1 1 1 1 1

append new row

7

1 1 0 1 1 3 1 1

1 1 1 1 1 3 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 2 1

1 1 0 1 1 1 1 1

1 1 1 1 0 1 2 1

1 1 1 0 1 1 1 1

0 0 1 1 1 1 1 1

compute d and

append new column

6 5

1 1 0 1 1 3 1 1

1 1 1 1 1 3 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 2 1

1 1 0 1 1 1 1 1

1 1 1 1 0 1 2 1

1 1 1 0 1 1 1 1

0 0 1 1 1 1 1 1

recompute d and d

 (7)

C. Determine the CPD

After running the CSE algorithm, the delay value of each
output variable can be determined by running Algorithm 1
for first m rows of delay matrix. Considering the computation
in (1), the computing result of each output variable delay
value is shown as follows:

1 1 0 1 1 3 1 1

1 1 1 1 1 3 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 2 1

1 1 0 1 1 1 1 1

1 1 1 1 1 1 1 4

1 1 1 1 1 1 1 3

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 2

1 1 1 1 1 1 1 0

running Algorithm

(8)

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol II
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19253-1-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

The maximum delay value of computing results in (8) is 4,
hence the CPD value of circuit structure optimized with the
CSE algorithm, as shown in Fig.2(b), is 4 XOR gates. From
Fig.2(b), the path from x0 to y0 and the path from x1 to y0 can
be determined as critical path.

The CPD value of circuit structure in Fig.2(a) can be
determined from initial delay matrix in (3) via running
Algorithm 1, and the computing result is shown as follows:

0 0 0 0 0

0 0 1 0 0

0 0 1 1 0

0 0 1 1 1

1 1 0 1 1

1 1 1 1 3

1 1 1 1 2

1 1 1 1 1 2

1 1 1 1 1

1 1 1 1 0

running Algorithm

 (9)

According to (9), the CPD value of circuit structure in

Fig.2(a) is 3 XOR gates, which is shorter than the one in
Fig.2(b). This is because the circuit structure of MCM before
any CSE transformations has the shortest CPD [11].

IV. GLDC-CSE AND ITS APPLICATION

In this section, we will illustrate our gate-level delay
computing method by applying it to an existing CSE
algorithm proposed in [4]. This algorithm is based on an
iterative pairwise matching heuristic. More details of this
CSE algorithm can be found in [4]. A new CSE algorithm
named GLDC-CSE is developed that combines the CSE
algorithm with the delay computing method proposed in this
paper.

In the following, the GLDC-CSE algorithm is
demonstrated by applying it to binary linear transformations
for Advanced Encryption Standard (AES) S-box
implementation with CFA. AES is a symmetric block
encryption standard selected by NIST to replace the Data
Encryption Standard (DES) in 2001. AES algorithm
performs four transformations, namely SubBytes, ShiftRows,
MixColumns and AddRoundKey through out the encryption
process. The SubBytes, commonly known as S-box, consists
of a multiplicative inverse over GF(28) followed by an affine
transformation. The S-box can be described as:

1Y MX C (10)

where M is an 8×8 binary constant matrix of affine
transformation, C is an 8-bit binary constant vector of affine
transformation, and X and Y represent 8-bit input vector and
output vector respectively. CFA has been widely utilized in
designing an optimized combinatorial circuit of AES S-box
[2], [6]–[7], [11], [13]. CFA can be built iteratively from the
lower order fields in order to simplify mathematical
manipulation. By using CFA, the multiplicative inverse over
GF(28) can be mapped to the subfield (either GF(24) or

GF(22)), hence an isomorphism function and its inverse are
required for mapping. The S-box with CFA can be described
as:

1 1(())Y M X C (11)

where β is an 8×8 binary matrix of isomorphism function and
β–1 is an 8×8 binary matrix of inverse isomorphism function.
The inverse isomorphism matrix β–1 and affine
transformation matrix M are both linear transformations, so
they can be merged into a new matrix L = Mβ–1 to reduce the
gate count. The new matrix L is named “Inverse
Isomorphism-Affine Transformation (II-AT) matrix” in the
following. Both isomorphism matrix and II-AT matrix are
8×8 binary matrices. Then, CSE algorithm could be
performed to reduce the common factors in the equations
effectively.

Composite field can be constructed by using different
isomorphism matrices. There are 432 isomorphism matrices
for mapping 8-bit vector from GF(28) to the subfield [6]. An
algorithm for isomorphism matrices generation can be found
in [13]. In the following, Eight isomorphism matrices
(β0~β7)), which are generated by the algorithm in [13] in the
case of {ф=(10)2, λ=(1100)2}, and their corresponding II-AT
matrices (L0~L7) are taken to test the performance of
GLDC-CSE algorithm. Fig.3(a) shows the running time of
each matrix optimized by original CSE algorithm in [4] and
GLDC-CSE algorithm proposed in this paper. The value in
Fig.3(a) is an average of the periods of 10 times runing
repeatedly with Matlab. The GLDC-CSE algorithm combine
the CSE algorithm in [4] with the delay computing method
proposed in this paper, so the period of delay computing is
the difference of running time between original CSE
algorithm and GLDC-CSE algorithm. The periods of delay
computing account for the periods of GLDC-CSE algorithm
running time is shown in Fig.3(b). Fig.3(b) also shows area
reduction percentage and ADP reduction percentage of each
matrix optimized by GLDC-CSE. The performance of
GLDC-CSE algorithm can be summarized in table I.

In the determination of the optimal composite field
construction, both isomorphism matrices and II-AT matrices
should be considered together. Table II shows the sum of
optimization results of isomorphism matrices and II-AT
matrices optimized by GLDC-CSE algorithm. As shown in
table II, combination of matrices β0+L0 has the minimal total
area and ADP. Although combination of matrices β7+L7 has
the largest total area, it has the shortest CPD.

TABLE I
SUMMARIES OF GLDC-CSE ALGORITHM PERFORMANCE

Performance minimal maximum average
GLDC-CSE Running Time (mS) 1.2605 1.7358 1.5536
Delay Computing Period (%) 31.40 37.88 34.46
Area Reduction (%) 27.78 51.85 39.20
ADP Reduction (%) 12.82 40.91 28.56

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol II
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19253-1-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

V. CONCLUSION

In this work, a novel gate-level delay computing method
based on delay matrix is proposed. The proposed computing
method adopts matrix form, so it is more simple and more
easy to be implemented than restriction graph form presented
in [11]. Combining our gate-level delay computing with an
existing CSE algorithm, a GLDC-CSE algorithm is
developed. A case study in AES S-box implementation with
CFA shows that the period of delay computing accounts for
34.46% of GLDC-CSE algorithm running time on average,
and the gate counts and area-delay-production (ADP) of
constant matrix multiplications in AES S-box is reduced by
39.20% and 28.56% respectively on average by using
GLDC-CSE algorithm. The GLDC-CSE algorithm also can
determine the minimal area combination of matrices and the
shortest critical path delay (CPD) combination of matrices
respectively.

REFERENCES
[1] N. Chen, and Z. Y. Yan, “Cyclotomic FFTs With Reduced Additive

Complexities Based on a Novel Common Subexpression Elimination
Algorithm,” IEEE Trans. Signal Processing, Vol. 57, no. 3, pp.
1010-1020, Mar. 2009.

[2] M. M. Wong, and M. L. D. Wong, “A new common subexpression
elimination algorithm with application in composite field AES S-box,”
Tenth Int. Conf. Information Sciences Signal Processing and their
Applications (ISSPA 2010), pp. 452-455, May 2010.

[3] C. Paar, “Optimized arithmetic for Reed-Solomon encoders,” in Proc.
IEEE International Symp. Inf. Theory, p. 250, June-July 1997.

[4] Y. Chen, and K. K. Parhi,, “Small Area Parallel Chien Search
Architectures for Long BCH Codes,” IEEE Transaction on Very Large
Scale Integration (VLSI) systems, Vol. 12, No. 5, pp.545-549, May
2004.

[5] Q. Hu, Z. Wang, J. Zhang and J. Xiao, “Low Complexity Parallel Chien
Search Architecture for RS Decoder,” IEEE International Symposium
on Circuits and Systems, 2005 (ISCAS 2005), Vol. 1, pp.340-343.

[6] D. Canright, “A very compact Rijndael S-box,” Technical report
NPSMA-04-001, Naval Postgraduate School, 2005.

[7] S. Hsiao, M. Chen, and C. Tu, “Memory-free low-cost designs of
Advanced Encryption Standard using common subexpression
elimination for subfunctions in transformations,” IEEE Trans. Circuits
Syst. I, vol. 53, no. 3, pp. 615-626, 2006.

[8] O. Gustafsson and M. Olofsson, “Complexity Reduction of Constant
Matrix Computations over the Binary Field,” First International
Workshop on Arithmetic of Finite Fields (WAIFI 2007),
Springer-Verlag, LNCS 4547, pp. 103–115, 2007.

[9] Y. Lee, H. Yoo, and I.-C. Park, “ Low-Complexity Parallel Chien
Search Structure Using Two-Dimensional Optimization,” IEEE
Transaction on Circuits and Systems—II: Express Briefs, Vol. 58, No.
8, pp.522-526, August 2011.

[10] S. Bellini, M. Ferrari, and A. Tomasoni, “On the Structure of
Cyclotomic Fourier Transforms and Their Applications to
Reed-Solomon Codes,” IEEE Transactions on Communications, Vol.
59, No. 8, pp.2110-2118, August 2011.

[11] N. Chen, and Z. Y. Yan, “High-Performance Designs of AES
Transformations,” IEEE International Symposium on Circuits and
Systems (ISCAS 2009), 2009, pp. 2906 – 2909.

[12] N. Petra, D. De Caro, and A. G. M. Strollo, “A novel architecture for
Galois fields GF(2m) multipliers based on Mastrovito scheme,” IEEE
Trans. Comput., vol. 56, no. 11, pp. 1470–1483, Nov. 2007.

[13] X. Zhang and K. K. Parhi, “On the optimum constructions of composite
field for the AES algorithm,” IEEE Transaction on Circuits and
systems–II: Express Briefs, vol. 53, no. 10, pp. 1153–1157, Oct. 2006.

(a)

(b)

Fig. 3 Perfomance of GLDC-CSE Algorithm. (a) Running time of
Paar’s algorithm and GLDC-CSE algorithm. (b) Percentage of delay

computing period, area reduction and ADP reduction.

TABLE II
OPTIMIZATION RESULTS OF COMBINATIONS OF MATRICES

β0

+L0
β1

+L1
β2

+L2
β3

+L3
β4

+L4
β5

+L5
β6

+L6
β7

+L7

Area 26 28 28 28 28 29 30 31

Delay 7 8 7 7 7 7 8 6

ADP 182 224 196 196 196 203 240 186

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol II
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19253-1-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

