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Abstract—In this work, a novel gate-level delay computing 

method for common subexpression elimination (CSE) 
algorithm is proposed. The computing method is based on delay 
matrix and suitable for implementation with computers. A CSE 
algorithm with gate-level delay computing (GLDC-CSE) is 
developed. The GLDC-CSE algorithm is demonstrated through 
a case study in AES S-box implementation with composite field 
arithmetic (CFA). Experimental results have shown that the 
period of delay computing accounts for 34.46% of GLDC-CSE 
algorithm running time on an average. Using GLDC-CSE 
algorithm, the gate counts and area-delay-production (ADP) of 
constant matrix multiplications in AES S-box is reduced by 
39.20% and 28.56% respectively on an average. Also, the 
minimal area combination of matrices and the shortest critical 
path delay (CPD) combination of matrices can be determined 
by using GLDC-CSE algorithm, respectively. 
 

Index Terms—gate-level delay computing, common 
subexpression elimination, critical path delay, multiple constant 
multiplication, composite field arithmetic. 
 

I. INTRODUCTION 

ULTIPLE constant multiplication (MCM) is widely 
used in many digital signal processing (DSP) 
applications, such as digital filtering, image 

processing, linear transforms, etc. In high level synthesis of 
VLSI design, the optimization of MCMs can lead to 
significant improvements in various design parameters like 
area or power consumption. Common subexpression 
elimination (CSE) is an effective optimization method to 
solve the MCM problems . The idea of CSE is to identify 
patterns (common subexpressions) that are present in 
expressions more than once and replace them with a single 
variable. With this, each of these patterns needs only to be 
computed once, thus reducing the size of the hardware 
required in VLSI implementation. However, how to select a 
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pattern to eliminate for achieving optimal results is an 
NP-complete problem [1]–[2]. 

Constant matrix multiplications over Galois field is a 
special case of the MCM problem, which is widely used in 
cryptography and coding theory, because in the Galois field, 
addition is performed via XOR and multiplication is 
performed in several different ways. Many CSE algorithms 
have been used to reduce the complexity architectures for 
constant matrix multiplications over Galois field [1]–[10]. 

Both area and throughput are significant for VLSI design. 
Previous CSE algorithms mostly focused on reducing the 
area complexity without providing complete control on the 
CPD, which ultimately determines throughput [11]. The 
delay is easy to determine for a straightforward 
implementation of constant matrix multiplication. CSE 
algorithms try to reduce the area complexity via transforming 
the constant matrix. Thus, the first challenge for the CPD 
control of a CSE algorithm is how to compute the delay 
associated with each transformation of the matrix. Chen et al. 
first proposed a gate-level delay computing method for CSE 
algorithm based on restriction graph [11]. The method selects 
a restriction graph to represent the transformed constant 
matrix after running a CSE algorithm, and the CPD can be 
determined by translating the restriction graph to an optimal 
XOR tree. Both restriction graph transforming and optimal 
XOR tree translating are needed to complete the complicated 
operations.  

In this paper, a new gate-level delay computing method for 
CSE algorithm is proposed. The new method is based on a 
delay matrix and should be carried out with CSE algorithm 
simultaneously. Since our method adopts matrix form in the 
computing process, compared with the method presented in 
[11], which adopts restriction graph form, our method is more 
suitable for implementation with computers.  

The rest of the paper is organized as follows. Section II 
describes the basic principles of CSE algorithm. The detailed 
description of the new gate-level delay computing method is 
introduced in section III. In section IV, a CSE algorithm with 
gate-level delay computing (GLDC-CSE) is proposed and 
demonstrated through a case study in implementation of AES 
S-box based on composite field arithmetic (CFA). Finally, 
the conclusions are given in Section V. 

II. THE BASIC PRINCIPLES OF CSE ALGORITHM 

MCM over Galois field can be expressed as a linear 
transform Y = MX, where Y and X are m- and n-dimensional 
column vectors, respectively, and M is an m×n constant 

Improving Common Subexpression Elimination 
Algorithm with A New Gate-Level Delay 

Computing Method 

Ning Wu, Xiaoqiang Zhang, Yunfei Ye, and Lidong Lan 

M

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol II 
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19253-1-2 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013



 

matrix over the Galois field [1]–[2]. X represents the input 
variables and Y represents the output variables, while M 
indicates the set of constant coefficients. Clearly, such a 
transform requires only additions. Take note that, additions 
over Galois Field are referring to XOR operation, and hence 
the MCM over Galois Field can be implemented by a 
combinational logic with XOR gates only.  

The linear transform Y = MX can be expressed in bit-level 
equations. A CSE algorithm can be exploited to extract the 
common factors in all the bit-level equations, in order to 
reduce the area cost of combinational logic implementation. 
In general, any CSE algorithm involves the following general 
steps [2]: 

1) Identify patterns (common factors) that are present in the 
transformation. 

2) Select a pattern for elimination. 
3) Remove all the occurrences of the selected pattern. 
4) The eliminated pattern is computed only once. 
5) Repeat Step 1-4 until none of multiple patterns is 

present. 
Consider the computation as follows:  
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 (1) 

 
A simple CSE algorithm applied to (1) is illustrated in 

Fig.1. The CSE algorithm identifies “x0+x1+x3+x4” as the 
pattern in the first iterative, and generates a new variable “x5” 
to replace it. The identified pattern is appended to the bottom 
of constant matrix as an additional row to be further 
optimized by the CSE algorithm. In the following iterative, 
the patterns “x0+x1+x3” and “x0+x1” are identified and 
replaced by variables “x6” and “x7” respectively.  

A straightforward realization of computation in (1) is 
shown in Fig.2(a) which requires 10 XOR gates. However, 
after the CSE optimization, there are only 4 XOR gates 
required to realize, as illustrated in Fig.2(b). The reduction of 
XOR gates can be up to 60%. 

III. GATE-LEVEL DELAY COMPUTING METHOD BASED ON 

DELAY MATRIX 

In this section, a new gate-level delay computing method 
for CSE algorithm is proposed. A similar method has been 
presented in [11], which is based on a restriction graph. The 
restriction-graph-based method should be carried out after 
running a CSE algorithm, and the computing process of the 
method can be divided into three steps: 

1) Establish a restriction graph based on the transformed 
constant matrix after running a CSE algorithm.  

2) Translate the restriction graph to an optimal XOR tree. 
3) Compute delay value based on the optimal XOR tree and 

determine the CPD. 
Same as the method in [11], the method presented in this 

paper can be also divided into three steps: 

 

 

 
 

Fig. 2  Realization of the computation in (1). (a) Straightforward 
realization. (b) After optimized by the simple CSE algorithm.  
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Fig. 1  Example of a simple CSE algorithm 
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1) Establish a initial delay matrix based on the primitive 
constant matrix before running a CSE algorithm.  

2) Update delay matrix during a CSE algorithm running. 
3) Compute delay value based on the delay matrix and 

determine the CPD. 
Different from [11], our method is based on a delay matrix 

and should be carried out with CSE algorithm 
simultaneously. The details of our delay computing method 
will be described below. 

A. Establish Initial Delay Matrix 

Consider a constant matrix M, in which a row corresponds 
to an output variable and a column corresponds to an input 
variable. In a row of constant matrix M, “1” represents that 
the input variable participates in computing of the output 
variable, and therefore the initial delay value of the input 
variable should be set to 0. On the other hand, “0” represents 
that the input variable does not participate in computing of 
the output variable, and therefore the initial delay value of the 
input variable should be invalid. Digit  “–1” can be chose to 
represent the invalid value. According to the above 
discussion, an initial delay matrix Md can be obtained by 
formula: 
 

1dM M M    (2) 

 
where M is the constant matrix and M1 is a matrix that has the 
same dimension as M, and all elements value of M1 is 1. 
According to (3), the initial delay matrix Md1 of (1) can be 
figured out as follows: 
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 (3) 

 

B. Update Delay Matrix 

The constant matrix M has been changed during the 
running period of a CSE algorithm, therefore the delay matrix 
should be updated accordingly. During a CSE algorithm 
running, suppose that a pattern “xi+xj+…+xk” is replaced by a 
new variable “xnew” and appended to the bottom of constant 
matrix as an additional row. Suppose the delay value of 
“xnew” is represented by “dnew” and the delay value of “xi”, 
“xj” , ... , and “xk” is represented by “di”, “dj” , ... , and “dk” 
respectively. Correspondingly, an additional row should be 
appended to the bottom of delay matrix according to the “di”, 
“dj” , ... , and “dk”. Then “dnew” can be figured out by running 
Algorithm 1 according to the additional row of delay matrix. 

 
 

Algorithm 1: Compute Delay Value 
1) Input a row of delay value d0 d1 …dn (n≥2). 
2) Sort the row in an increasing order. 
3) Select the smallest two delay values di and di+1 which 

is no less than 0. 
4) Update new values of di and di+1 using the following 

equations: 
 

1 1max( , ) 1;

1;
i i i

i

d d d

d
   

   
  (4) 

 
5) Repeat steps 2-4 until there is only the last delay value 

dn no less than 0. 
 

Note that Algorithm 1 is essentially as same as Algorithm 
2 in [11] and algorithm in Fig.4 in [12], both of which are 
used to compute delay value of output variable from an 
optimal XOR tree, and the latter has been proved to be 
optimal in [12]. After running Algorithm 1, “dnew” is the 
computing result of “dn” in Algorithm 1. The updated process 
of “dnew” is described below. 

 
Algorithm 2: Update Delay Value 

1) Append new row with “di”, “dj”, ... , and “dk” 
according to the transformation of constant matrix M. 

2) Append new column with “dnew” according to the 
transformation of constant matrix M. 

3) Detect the row-number of the position of “dnew”, if the 
row-number “l” is greater than the 
maximum-row-number “m-1” of original matrix 
(suppose the original matrix is m×n-dimensional 
matrix), re-compute and re-update the delay value 
“dl”.  

4) Take delay value “dl” as “dnew” to repeat step 3, until 
there is no row-number of the position of “dnew” that is 
greater than the maximum-row- number “m-1”. 

 
Consider the computation in (1), a new variable “x5” 

replaces the pattern “x0+x1+x3+x4” in the first iterative of the 
CSE algorithm. The updated process of constant matrix M is 
shown in Fig.1. The corresponding updated process of delay 
matrix can be expressed as follows: 
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 (5) 

 
In the second iterative, the pattern “x0+x1+x3” is replaced 

by “x6”. The updated process of delay matrix can be 
expressed as follows: 
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The original constant matrix M of computation in (1) is 

5×5-dimensional matrix. As shown in (6), the row-numbers 
of the positions of “d6” are 3 and 5, respectively. Among 
which, 5 is greater than 4, which is the maximum-row- 
number of original constant matrix M. Therefore “d5” shall be 
re-computed and re-updated again.  

Likewise, the updated process of delay matrix in the last 
iterative can be expressed as follows: 
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       



 

6 5

1 1 0 1 1 3 1 1

1 1 1 1 1 3 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 2 1

1 1 0 1 1 1 1 1

1 1 1 1 0 1 2 1

1 1 1 0 1 1 1 1

0 0 1 1 1 1 1 1

recompute d and d

      
        
       
                  
 
      
      
 

       



 

  (7) 
 

C. Determine the CPD 

After running the CSE algorithm, the delay value of each 
output variable can be determined by running Algorithm 1 
for first m rows of delay matrix. Considering the computation 
in (1), the computing result of each output variable delay 
value is shown as follows: 
 

1 1 0 1 1 3 1 1

1 1 1 1 1 3 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 2 1

1 1 0 1 1 1 1 1

      
        
       
        
        

 

1 1 1 1 1 1 1 4

1 1 1 1 1 1 1 3

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 2

1 1 1 1 1 1 1 0

running Algorithm

       
        
         
        
        


(8) 
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The maximum delay value of computing results in (8) is 4, 
hence the CPD value of circuit structure optimized with the 
CSE algorithm, as shown in Fig.2(b), is 4 XOR gates. From 
Fig.2(b), the path from x0 to y0 and the path from x1 to y0 can 
be determined as critical path.  

The CPD value of circuit structure in Fig.2(a) can be 
determined from initial delay matrix in (3) via running 
Algorithm 1, and the computing result is shown as follows: 
 

0 0 0 0 0

0 0 1 0 0

0 0 1 1 0

0 0 1 1 1

1 1 0 1 1

 
  
  
    
     

 

1 1 1 1 3

1 1 1 1 2

1 1 1 1 1 2

1 1 1 1 1

1 1 1 1 0

running Algorithm

    
     
      
     
     


 (9) 

 
According to (9), the CPD value of circuit structure in 

Fig.2(a) is 3 XOR gates, which is shorter than the one in 
Fig.2(b). This is because the circuit structure of MCM before 
any CSE transformations has the shortest CPD [11]. 

IV.  GLDC-CSE AND ITS APPLICATION  

In this section, we will illustrate our gate-level delay 
computing method by applying it to an existing CSE 
algorithm proposed in [4]. This algorithm is based on an 
iterative pairwise matching heuristic. More details of this 
CSE algorithm can be found in [4]. A new CSE algorithm 
named GLDC-CSE is developed that combines the CSE 
algorithm with the delay computing method proposed in this 
paper.  

In the following, the GLDC-CSE algorithm is 
demonstrated by applying it to binary linear transformations 
for Advanced Encryption Standard (AES) S-box 
implementation with CFA. AES is a symmetric block 
encryption standard selected by NIST to replace the Data 
Encryption Standard (DES) in 2001. AES algorithm 
performs four transformations, namely SubBytes, ShiftRows, 
MixColumns and AddRoundKey through out the encryption 
process. The SubBytes, commonly known as S-box, consists 
of a multiplicative inverse over GF(28) followed by an affine 
transformation. The S-box can be described as: 
 

1Y MX C    (10) 
 
where M is an 8×8 binary constant matrix of affine 
transformation, C is an 8-bit binary constant vector of affine 
transformation, and X and Y represent 8-bit input vector and 
output vector respectively. CFA has been widely utilized in 
designing an optimized combinatorial circuit of AES S-box 
[2], [6]–[7], [11], [13]. CFA can be built iteratively from the 
lower order fields in order to simplify mathematical 
manipulation. By using CFA, the multiplicative inverse over 
GF(28) can be mapped to the subfield (either GF(24) or 

GF(22)), hence an isomorphism function and its inverse are 
required for mapping. The S-box with CFA can be described 
as: 
 

1 1( ( ) )Y M X C      (11) 

 
where β is an 8×8 binary matrix of isomorphism function and 
β–1 is an 8×8 binary matrix of inverse isomorphism function. 
The inverse isomorphism matrix β–1 and affine 
transformation matrix M are both linear transformations, so 
they can be merged into a new matrix L = Mβ–1 to reduce the 
gate count. The new matrix L is named “Inverse 
Isomorphism-Affine Transformation (II-AT) matrix” in the 
following. Both isomorphism matrix and II-AT matrix are 
8×8 binary matrices. Then, CSE algorithm could be 
performed to reduce the common factors in the equations 
effectively.  

Composite field can be constructed by using different 
isomorphism matrices. There are 432 isomorphism matrices 
for mapping 8-bit vector from GF(28) to the subfield [6]. An 
algorithm for isomorphism matrices generation can be found 
in [13]. In the following, Eight isomorphism matrices 
(β0~β7) ), which are generated by the algorithm in [13] in the 
case of {ф=(10)2, λ=(1100)2}, and their corresponding II-AT 
matrices (L0~L7) are taken to test the performance of 
GLDC-CSE algorithm. Fig.3(a) shows the running time of 
each matrix optimized by original CSE algorithm in [4] and 
GLDC-CSE algorithm proposed in this paper. The value in 
Fig.3(a) is an average of the periods of 10 times runing 
repeatedly with Matlab. The GLDC-CSE algorithm combine 
the CSE algorithm in [4] with the delay computing method 
proposed in this paper, so the period of delay computing is 
the difference of running time between original CSE 
algorithm and GLDC-CSE algorithm. The periods of  delay 
computing account for the periods of GLDC-CSE algorithm 
running time is shown in Fig.3(b). Fig.3(b) also shows area 
reduction percentage and ADP reduction percentage of each 
matrix optimized by GLDC-CSE. The performance of 
GLDC-CSE algorithm can be summarized in table I. 

 

 
 

In the determination of the optimal composite field 
construction, both isomorphism matrices and II-AT matrices 
should be considered together. Table II shows the sum of 
optimization results of isomorphism matrices and II-AT 
matrices optimized by GLDC-CSE algorithm. As shown in 
table II, combination of matrices β0+L0 has the minimal total 
area and ADP. Although combination of matrices β7+L7 has 
the largest total area, it has the shortest CPD.  

TABLE I 
SUMMARIES OF GLDC-CSE ALGORITHM PERFORMANCE 

Performance minimal maximum average 
GLDC-CSE Running Time (mS) 1.2605 1.7358 1.5536 
Delay Computing Period (%) 31.40 37.88 34.46 
Area Reduction (%) 27.78 51.85 39.20 
ADP Reduction (%) 12.82 40.91 28.56 
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V. CONCLUSION 

In this work, a novel gate-level delay computing method 
based on delay matrix is proposed. The proposed computing 
method adopts matrix form, so it is more simple and more 
easy to be implemented than restriction graph form presented 
in [11]. Combining our gate-level delay computing with an 
existing CSE algorithm, a GLDC-CSE algorithm is 
developed. A case study in AES S-box implementation with 
CFA shows that the period of delay computing accounts for 
34.46% of GLDC-CSE algorithm running time on average, 
and the gate counts and area-delay-production (ADP) of 
constant matrix multiplications in AES S-box is reduced by 
39.20% and 28.56% respectively on average  by using 
GLDC-CSE algorithm. The GLDC-CSE algorithm also can 
determine the minimal area combination of matrices and the 
shortest critical path delay (CPD) combination of matrices 
respectively. 
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Fig. 3  Perfomance of GLDC-CSE Algorithm. (a) Running time of 
Paar’s algorithm and GLDC-CSE algorithm. (b) Percentage of delay 

computing period, area reduction and ADP reduction. 
 

TABLE II 
OPTIMIZATION RESULTS OF COMBINATIONS OF MATRICES 

 
β0 

+L0 
β1 

+L1 
β2 

+L2 
β3 

+L3 
β4 

+L4 
β5 

+L5 
β6 

+L6 
β7 

+L7 

Area 26 28 28 28 28 29 30 31 

Delay 7 8 7 7 7 7 8 6 

ADP 182 224 196 196 196 203 240 186 
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