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Abstract—Automated grading of fruit is an important in-
dustrial task that is expanding rapidly in its uptake. Machine
learning-based techniques are increasingly being applied to
this domain in order to formulate effective solutions for
complex classification tasks. The inherent variability in the
visual appearance of fruit and its quality-determining features,
contributes to it often being a challenging classification task
with much potential for improving the predictive accuracies
for many fruit varieties. Additionally, the usability of many
sophisticated machine learning algorithms in the form of
tunable parameters and interpretable outputs is low, thus
presenting a real barrier for the uninitiated. We address these
problems by decomposing the overall machine learning task
into subproblems. We propose combining a more sophisticated
boosting algorithm (AdaBoost.ECC) with low interpretability
for the learning of fruit-surface characteristics, whose outputs
can then be combined with rule induction algorithms (RIPPER
and FURIA) that learns the overall fruit grading rules with
outputs of high interpretability for the operators to both
review and revise. Our initial experiments considered four fruit
datasets. We compared the results of our approach with that
from a commercial system using manual calibration of the fruit
grading parameters and found that our strategy can improve
the accuracy over the current industry methods while providing
high usability and interpretability of outputs.

Index Terms—boosting, classification problem decomposition,
rule-based induction, machine learning, fruit sorting.

I. INTRODUCTION

THE combination of computer vision (CV) and machine
learning (ML) solutions to the industrial problem of

automating fresh produce sorting and grading is currently re-
ceiving considerable attention. As witnessed from the surveys
of the relevant literature [1]–[4], this large industrial sector
is now becoming one of the most active application domains
for combined computer vision and ML-based solutions.

Automated inspection is important since it provides a
more objective and thus consistent grading of fresh produce
over manual inspection [1]. Fruit quality, for example, is
commonly determined based on the extracted features repre-
senting the size, shape, color and the presence of blemishes
and foreign materials [1]. The ability of manual inspection to
deliver accurate grading diminishes with the increase in the
number of factors that have to be considered [4], which raises
the need for consistent and objective grading. Automatic
grading is also more efficient since it increases the volume
of produce that can be inspected, thus elevating productivity.
Though the financial benefits of lowering the labor costs are
certainly one driving factor towards automated grading, in
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some cases it is also crucial since certain fruit varieties are
seasonal and grow in isolated regions where it is difficult to
secure the required labor force.

Examples of recent fruit grading research involving ML
and CV include: [5] citrus fruit sorting based on rottenness
caused by fungi by way of hyper-spectral imaging and the use
of neural networks and CART ML algorithms, [6] blueberry
sorting and detection of foreign materials using near infra-
red (NIR) spectral imaging with linear discriminant analysis
(LDA), [7] bruise detection on pears from hyper-spectral
images using the Mahalanobis, Euclidean distance as well
as maximum likelihood classification, [8] apple grading
by classifying blemishes using the k-mean clustering and
quadratic discriminant analysis, [9] mango grading based
on maturity levels using Gaussian mixture models (GMM),
[10] investigations into raisin grading comparing SVMs,
ANN, Bayesian Networks, decision trees and application of
SVMs to automatic grading of Chinese jujube fruit [11].
Notable solutions using hyper-spectral imaging without ML
techniques have been applied to detecting citrus canker
lesions on grapefruit [12] with later modifications in [13]
to accomplish the same task but in real-time using only two-
band spectral imaging and pomegranate aril classification
[14].

Despite the advantages associated with the automated
sorting and grading of fruit using CV and ML techniques,
there are two obstacles preventing a greater proliferation of
this technology in this industry: (1) insufficient accuracy
for certain fruit varieties and (2) the usability of the ML
components in classification. Automated inspection removes
the subjectivity and the inconsistency in grading associated
with manual inspection; nevertheless, this does not always
translate to required accuracy rates in the packing houses for
a number of different fruit varieties [15], [16]. The evidence
for this still being an open problem in a number of areas
is found in the large volume of ongoing research. Naive
CV techniques like segmentation and color thresholding are
sometimes sufficient to accurately determine the quality of
fruit as the recent survey [3] points out. In many cases
though, the critical determinant of fruit quality is the presence
of multiple types of blemishes, fruit features and foreign
materials, which render simplistic approaches ineffective [8]
and require the usage of ML techniques. ML is perfectly
suited to providing solutions for this task; however, given that
the standards of what constitutes a certain type of a blemish
and its degree of severity are non-uniform across different
geographic locations and may even undergo re-adjustments
within the same location from one crop to the next [16],
the one-size-fits-all classifiers trained by ML experts off-site
are not well suited and contribute to low grading accuracies.
In addition, unforeseen environmental conditions produce
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defects like hail or frost damage for which the response in
providing new classifiers must be immediate and therefore
requires on-site re-training of the classifiers. The issue then
becomes, which types of ML algorithms should be employed
by non-ML experts for these types of problems? This ques-
tion has to be carefully considered since using more complex
algorithms are tempting; however, they usually come with
more tunable parameters that need to be set appropriately,
which makes them harder to use for the non-initiated and
posses internals which are oftentimes more opaque [17].

We propose a generalizable ML solution to the challenges
of fruit grading and demonstrate an appropriate strategy
of applying different families of ML techniques to address
the real-world industry requirements. Our solution decom-
poses the classification task into multiple phases in order to
address the problem of maintaining classification accuracy
and adaptability, as well as the usability of ML and the
interpretability of their outputs. We devised a classification
architecture which employs a sophisticated boosting algo-
rithm (AdaBoost.ECC [18]) for learning blemish and surface-
type features at the initial layer. The outputs of this classifier
subsequently act as inputs to the next classification layer,
which are combined with the global fruit surface features like
colour, size and shape. The second layer is represented by
a state-of-the-art rule-induction learning algorithm. Though
rule-based algorithms are often not the most accurate induc-
ers [19], they provide the advantages of high usability and
the interpretability of outputs [20]. For this, we experiment
with both the RIPPER [21] and FURIA [20] algorithms for
generating the final fruit grading classifiers.

The novelty of our contribution lies in the unique com-
bination of different and as yet unexplored ML techniques
for this problem domain. With this we are answering calls
[2] to discover new ways of combining ML techniques for
addressing the classification challenges in this field. We used
a commercial fruit sorting machine to extract images and
features. We demonstrate the effectiveness of our proposed
method by comparing the accuracies achieved by the com-
mercial machine to sort several fruit varieties using optimal
settings derived manually by a domain expert, against the
accuracies of the combination of boosting for surface feature
classification and RIPPER and FURIA for the overall fruit
grading.

To the best of our knowledge, there are only two instances
in literature recording the usage of boosting algorithms in
relation to the domain of fruit grading. [16] used a boosting
algorithm called RealBoost [22] to perform a pixel-wise
classification of potato surfaces in order to detect blemished
regions, whereas [23] experimented using several ML algo-
rithms, of which AdaBoost [22] is one of them to explore the
accuracies of differentiating stems from calyxes on apples.
Although both employed boosting algorithms on problem
domains concerning fresh produce, neither addressed the
overall grading aspect of each individual fruit. To our best
efforts, no instances of research or industrial application of
rule-based induction for the purpose of fruit grading has been
uncovered by the authors.

The remainder of the paper is structured as follows:
Section II describes the rationale behind the strategy of
decomposing a given problem into multiple learning sub-
tasks. Section III provides a brief overview of the proposed

machine learning algorithms for usage on this type of a
problem domain, while Section IV and Section V present
the methodology and the experimental results respectively,
before the concluding remarks in the succeeding section.

II. MACHINE LEARNING PROBLEM DECOMPOSITION

According to [24], decomposition generally describes the
process of breaking down a given task or a system into
smaller units. The idea is not new to machine learning and
can be traced back to Samuel [25] in the 1960s with his
decomposition approach application to the checkers playing
programs. The motivation behind decomposition is to reduce
a complex problem into more manageable sub-tasks, that
can then be combined in order to solve the initial problem.
The definition of a such a goal-subgoal hierarchy can serve
as a powerful and effective approach to reformulating a
classification problem. Although the reduction in processing
complexity might seem as a primary driver for employing
this strategy, research indicates that decomposing a problem
can also improve the classification accuracy of existing
approaches [26]. Additional advantages inherent within the
decomposition strategy are the increase in the comprehen-
sibility of the original problem, the maintenance of simpler
classification models as well as the flexibility that enables
the usage of different types of inducers on each of the sub-
problems [27].

The complexity of a learning task often refers to it
comprising of high dimensionality (features) data. The chal-
lenge of performing machine learning in high dimension-
ality domains is a well understood problem. The principal
difficulty arises in the fact that as the dimensionality (or
the number of features) of a learning problem increase, a
fixed-sized training dataset covers an ever decreasing fraction
of the possible sample input space. With the growth in the
sample dimensionality, the generalizability on such a domain
becomes exponentially more difficult [17]. For example,
even when presented with a trivial problem of learning a
Boolean function B, where B = {0,1} and dimensionality
d = 50, the total number of samples representing the input
space becomes as large as 250. If the problem domain lends
itself, then one possible solution is to explicitly decompose
the learning task into learning sub-task h1 and h2, each
comprising of d1 and d2 dimensions where d1 + d2 = d. In
this case the size of the total input space for learning a given
Boolean function would be considerably reduced to 2d1 +2d2 .

In a domain where it is costly in terms of time resources to
gather large datasets of samples, the importance of lowering
the dimensionality of the learning problem becomes even
more acute. The domain of fruit sorting is one such area,
since each image sample must be carefully inspected and
correctly labeled with the appropriate class. The learning
problem for fruit classification in this case lends itself well
to this form of sub-tasking which can be reformulated into a
hierarchical decomposition, where the outputs of one sub-
problem become the inputs to another. In this instance,
features relevant to blemish classification are extracted and
used only for the learning of the blemish classifiers, whose
output becomes the new input feature for the induction of
the global fruit grading classifier.
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III. PROPOSED TWO-STAGE CLASSIFICATION STRATEGY

We propose decomposing the fruit grading problem into
two classification tasks: (1) the training and classification
of fruit surface features and blemishes, (2) the training
and grading of the overall fruit based on the combina-
tion of the blemish-classification output and the general
fruit color/appearance characteristics. We propose using a
more sophisticated ensemble-based inducer (AdaBoost.ECC
seen in Algorithm 1) with low interpretability for learning
the blemish classifier, while employing less powerful rule-
induction algorithms (RIPPER and FURIA) to generate final
fruit grading classification rules with high interpretability.

Algorithm 1: AdaBoost.ECC
Given: (x1,y1), ...,(xm,ym) where xi ∈ X ,yi ∈ Y to

make uniform over all incorrect labels
Output: Hypothesis

H f inal(x) = argmaxℓ∈Y ∑T
t=1 gt(x)µt(ℓ)

Initialize D̃1(i, ℓ) = Jℓ ̸= yiK/(m(k−1)) where m and k
are the number of samples and class labels respectively
and JπK evaluates to 1 if proposition π holds, otherwise
0.
for t = 1 to T do

Compute coloring µ : Y →{−1,1}
Let Ut = ∑m

i=1 ∑ℓ∈Y D̃t(i, ℓ)Jµt(yi) ̸= µt(ℓ)K
Let Di =

1
Ut

·∑ℓ∈Y D̃t(i, ℓ)Jµt(yi) ̸= µt(ℓ)K
Train weak learner on examples
(x1,µt(y1)), ...,(xm,µt(ym)) weighted according to
Dt
Get weak hypothesis ht : X →{−1,1}
Compute the weight of positive and negative votes
αt and βt respectively

Define: gt(x) =

{
αt if ht(x) = 1
βt if ht(x) =−1

Update D̃t+1(i, ℓ) =
1
Zt
· D̃t(i, ℓ)exp{(gt(xi)µt(ℓ)−gt(xi)µt(yi)) · 1

2}
where Z̃t is the normalization factor so that D̃t+1
will sum to 1.

The combination of ensemble-based machine learning
methods with boosting and weak underlying models, have
recently experienced a widespread use due to their effective-
ness at addressing many challenging classification problems.
Following the success of the binary-class AdaBoost [28]
algorithm, [18] proposed AdaBoost.ECC (error-correcting
codes) in order to overcome the limitations of its predecessor
and to thus extend boosting to multiclass scenarios. Ad-
aBoost.ECC elegantly merges error correcting output coding
(ECOC) principles with boosting. The algorithm repeatedly
calls a weak learner (decision stump) on samples with
variable weights, for a predetermined T rounds. A coloring
function µ is defined which decomposes the multiclass
problem into a binary one by re-labeling sample class-
memberships. After each round, the coloring function µ then
becomes the vehicle for iteratively generating the columns
of the coding matrix which is used by ECOC methods for
the resolution of predictions. An additional distribution D̃
is maintained to maximize the error correcting ability of
each column in the coding matrix. The evaluation of final

classifier H, on a sample x is computed as being the class
label l, which receives the highest weighted vote from all
class labels returned by each weak classifier ht(x).

Rule-based learning is one of the oldest and well studied
paradigms within machine learning [19]. Its distinguishing
feature is its high applicability to domains where the com-
prehensibility of the induced model is of prime importance,
and where manual revision and adaptation of the induced
models is necessary. RIPPER (Repeated Incremental Pruning
to Produce Error Reduction) is a state-of-the-art algorithm
in this genre, and recently FURIA (Fuzzy Unordered Rule
Induction Algorithm) has been proposed as its extension and
an improvement over the original. We propose conducting
two sets of experiments whereby the boosting algorithm
is combined alternatively with RIPPER and FURIA for
generating fruit grading rules.

RIPPER constructs rules in a greedy manner. The rules
consist of conjunctions of predicates and a consequent part
which designates a class to which the covered instances of
that rule are assigned to. RIPPER learns rules one class
label at a time, beginning with the smallest class in terms
of the number of samples. Samples are removed from the
training set incrementally with each subsequent antecedent
that covers them. The training set is divided into a grow-
ing and a pruning set that signify two phases of the rule
induction process. The growing phase specializes the rule by
inducing and appending each new antecedent according to
the information gain criterion. This is then followed by the
pruning phase which removes the antecedents it considers to
have overfitted the data according to its rule-value metric.
Both the growing and the pruning phases are repeated until
all the samples of the given class are covered or until the
complexity of the rules exceeds the total description length
metric. Following this, a sophisticated optimization phase is
executed involving the re-running of the growing and pruning
steps, and replacing existing antecedents with alternative and
newly generated ones.

Whereas RIPPER produces hard and inflexible decision
boundaries between different classes, FURIA proposes intro-
ducing a softer transition between class boundaries through
fuzzy rules. It also departs from its predecessor by inducing
rules for each class using the one-versus-all method which
frees up the classifier from a strict order in which it must
be evaluated. Arguably, this increases the comprehensibility
as well as the knowledge discovery quality of its rules since
they no longer implicitly embody the negated conditions of
the previous rules [20]. This however introduces a problem
during classification of unseen samples, where a sample may
not satisfy any of the generated rules. FURIA addresses this
by devising a rule stretching mechanism that generalizes the
rules further to ensure a maximum coverage.

A more thorough exposition of the RIPPER and FURIA
algorithms can be found in [20], [21] respectively.

IV. METHODOLOGY

We used four datasets in our experiments comprising three
fruit varieties. Two datasets consisted of oranges, and the
remainder, of plums and gala apples. Table I outlines the
details of each of the datasets.

The datasets themselves were obtained from packing
houses from different locations around the world. The equip-
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Fig. 1: Example of the commercial machine used to capture
images and extract features for the training of classifiers.

ment and software used to capture the images and extract
the features into datasets originated from a commercial
fruit sorting equipment, manufactured by Compac Sorting
Limited1. The key components of the equipment associated
with the capture of the images are: (1) the conveyor belt,
upon which reside the individual fruit cup holders which
rotate the fruit on a single axis and making its entire surface
visible, (2) the computer vision cabinet, which resides on top
of the conveyor belt and contains the necessary lighting for
the multiple cameras (Fig. 1). The cameras are capable of
capturing and synchronizing the rotating images from both
the visible and infra-red spectra (Fig. 2a-b).

Each dataset was randomly split into halves representing
the training and test datasets. Following best practices [29],
the splits were stratified in order to ensure an equal propor-
tion of samples from each class in both datasets. For each
fruit variety, the images from the training dataset were used
for calibrating the computer vision components. This entailed
manually selecting pixels representing dominant hues in
order to achieve color segmentation of regions signifying the
quality of a given fruit, as well as the regions that identify
the background (Fig. 2c). The software then classified the
remaining pixels into the selected colors based on similarity
measures. For each fruit variety, key blemish types that
determine the grading quality of each specimen were iden-
tified. Thereupon, within the segmented fruit surface areas,
further regions of interest (ROI) were manually identified
as representing these surface features (Fig. 2d). We term
them generically as blobs, and though they signify defects of
varying type and severity, they can equally represent natural
surface features like stems or calyxes depending on the fruit
variety. These ROI were identified by manually selecting
pixels that were most representative of both the blob features
and normal fruit-surface areas which the software once again
used to categorize the remaining pixels based on similarity
measures. Finally, using the same segmentation technique
from previous steps, we proceeded to segment the blob ROI
themselves into dominant colors which would then serve as
input features for the blob classifiers (Fig. 2e).

The blob feature vectors were then extracted into training
datasets and manually labeled with the correct class mem-

1Compac Sorting is one of the world industry leaders in automated fruit
sorting with its headquarters in Auckland, New Zealand.

Fig. 2: Example of a Gala apple with a blemish, imaged
under the (a) visible and (b) infra-red spectra. Example of
the manual process of selecting dominant fruit colours and
that of the conveyor belt in order to achieve segmentation
(c). Identification of the blemish region within the segmented
image (d) and the manual identification of the dominant
colours representing the blemish region (e).

Fig. 3: Example of blob classification using the trained
AdaBoost.ECC classifier Gala apples with a blemishes. Clas-
sification of (a) a severe blemish type, (b) mild blemish type.

bership. 10-20 blob samples were selected for each blob
class. Using AdaBoost.ECC, we trained blob classifiers for
each fruit variety with the ensemble size set to 150. We
used 5-fold-cross validation to generate blob classifiers on
the training dataset in order to inspect the generalizability
of the problem first. Provided that the selected blob dataset
was of good quality, then the entire blob training set was
used to generate the final classifier. These classifiers were
subsequently applied to both the fruit training and test set
images (Fig. 3) in order to extract blob feature vectors
that would form the training and test sets of the rule-based
classifiers. The blob feature vectors comprised (1) the sum of
pixels representing the classified blob type (seen in Fig. 2d),
(2) the sum of pixels for each of the colors that represent the
particular blob class (seen in Fig. 2e). These feature vectors
were combined with additional features extracted from the
datasets representing global characteristics of each fruit (eg.
surface area covered by each of the selected hues in Fig. 2c).

The second phase involved training the rule-based classi-
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TABLE I: Dataset characteristics

Dataset samples Fruit dataset attributes Blob dataset attributes
Fruit variety Training set Test set Infra-red images Classes Features Classes Features

Gala apples 78 79 yes 5 9 3 31
Plums 73 71 yes 3 8 5 31
Oranges 63 60 no 5 5 3 31
Navel-split oranges 61 62 no 3 5 5 31

fiers on the training sets and testing the generalizability of the
outputted classifiers on to the test datasets. The RIPPER and
FURIA algorithms were used to train these classifiers. For
each algorithm type, five classifiers with different random
number seeds were trained. Average classification accuracy
and geometric mean measures could then be calculated
together with their standard deviations over the five runs.
The accuracy of these classifiers was then compared to the
accuracy attained by manually designed grading configu-
rations by domain experts. The domain experts followed
the same procedure of designing the grading configurations
solely from the data available to them from the training
datasets, whose generalizability was subsequently evaluated
against the test datasets.

We implemented our own version of AdaBoost.ECC in
C++ and used the WEKA [29] machine learning toolkit for
training RIPPER and FURIA classifiers.

V. RESULTS

Given that the four test datasets consisted of a skewed
number of samples for each class, we employed both
the total accuracy and the geometric mean as measures
of generalizability. Presenting only the accuracy has been
shown to be inadequate and often misleading on class-
imbalanced datasets [30], whereas the geometric mean can
be a more meaningful measure of accuracy for biased class-
distributions. [31] demonstrated how the geometric mean of
recall values of each class i of a total of k classes can be
applied to the multiclass scenario by being calculated as:

Geometric mean =

(
k

∏
i=1

Recalli

) 1
k

(1)

which yields a single value from 0 − 1 that presents a
balanced performance of a classifier across all classes.

Table II shows the total accuracy of all the methods on
datasets. On three of the four datasets, the proposed methods
outperformed the manual strategy of calibrating thresholds.
RIPPER outperformed FURIA on two datasets, whereas
FURIA was a clear winner on the Oranges dataset. The
overall accuracy measures are summarized in the form of
mean ranks showing that RIPPER was the best performing
algorithm on these problem sets, while the manual method
was least successful.

The geometric mean measures are listed in Table III.
From this perspective, the picture changes slightly. In the
overall placings, the manual approach moved up to second
place above FURIA. However, the manual approach also
demonstrated an inconsistency in its performance which is
highlighted on the Oranges dataset. On this dataset, the
manual approach failed to correctly classify samples of one
particular class and was thus unable to generate a valid

TABLE II: Accuracy results as a percentage, for the three
methods across all datasets.

Fruit Variety Manual RIPPER FURIA

Gala apples 81 80.5 74.9
±0.7 ±0.6

Plums 52 54.4 53.5
±4 ±3

Oranges 53 67 71
±3 ±2

Navel-split oranges 50 56 55
±2 ±2

Mean ranks 2.5 1.5 2

geometric mean figure. On the other hand, it significantly
outperformed both RIPPER an FURIA on the Navel-split
oranges dataset. The latter two algorithms scored poorly on
this dataset since they both achieved low hit rates for one
class that consequently reduced their overall scores.

TABLE III: Geometric mean results for the three methods
across all datasets.

Fruit Variety Manual RIPPER FURIA

Gala apples 0.58 0.58 0.54
±0.004 ±0.01

Plums 0.35 0.40 0.34
±0.004 ±0.05

Oranges - 0.63 0.65
±0.04 ±0.04

Navel-split oranges 0.64 0.30 0.30
±0.03 ±0.03

Mean ranks 1.9 1.8 2.4

An example of some detailed classification results from
the Oranges dataset is shown in Table IV in the form of
confusion matrices. In Table IVa, the difficulty that the
manual method had in classifying samples of class E can
be seen. All samples of this class were misclassified as
belonging to class A. RIPPER and FURIA on the other hand,
scored highly in terms of accuracy for this class.

Both the accuracy and geometric mean measures across
the four datasets indicate that the proposed decomposition
strategy using the AdaBoost.ECC algorithm for learning
surface features, whose output is combined with the FURIA
and RIPPER algorithms for learning fruit grading rules is
effective at matching and exceeding the performance of
manually calibrated grading thresholds by domain experts.

The following analysis gives a typical example using the
Oranges dataset, of the types of rules that were generated
from all three methods in order to assess their interpretability.
The manual method defined four rules for five classes:
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TABLE IV: Example of the confusion matrices for all algorithms on the Oranges dataset.

(a) Manual.

A B C D E Classified as

9 1 0 0 0 A
4 7 0 1 0 B
1 0 11 0 0 C
1 6 0 5 0 D

10 4 0 0 0 E

(b) RIPPER.

A B C D E Classified as

6 1 0 3 0 A
1 7 0 2 2 B
0 0 11 1 0 C
0 2 0 7 3 D
0 2 0 1 11 E

(c) FURIA.

A B C D E Classified as

9 1 0 0 0 A
2 8 0 0 2 B
0 1 11 0 0 C
1 3 0 4 4 D
0 2 0 1 11 E

IF (CombinedBlack+Dark+LightDefectPixelArea ≤ 20) and (BlackDefectPixelArea ≤ 40)
and (DefectStemPixelArea = 0) and (SevereBlemishPixelArea = 0)
and (MildBlemishPixelArea ≤ 60)
and (CombinedOrange+GreenPixelArea ≤ 65) THEN grade = A

ELSE IF (CombinedBlack+Dark+LightDefectPixelArea ≤ 90)
and (BlackDefectPixelArea ≤ 40)
and (DefectStemPixelArea = 0) and (SevereBlemishPixelArea = 0)
and (MildBlemishPixelArea ≤ 60)
and (CombinedOrange+GreenPixelArea ≤ 65) THEN grade = B

ELSE IF (CombinedBlack+Dark+LightDefectPixelArea ≤ 90)
and (BlackDefectPixelArea ≤ 40)
and (DefectStemPixelArea = 0) and (SevereBlemishPixelArea = 0)
and (MildBlemishPixelArea ≤ 60) THEN grade = C

OTHERWISE grade = D

At classification runtime, the above rules function like RIP-
PER rules. An effective rule for the final class E could
not be induced using the manual method. Though there
are considerable overlaps between the rules for each of the
classes, the entire set of rules comprises 18 antecedents.

Below is the example of rules that were generated by the
RIPPER algorithm:
IF (OrangePixelArea ≥ 27.51) and (MildBlemishPixelArea ≥ 20.92) THEN grade = B
ELSE IF (CombinedOrange+GreenPixelArea) ≥ 69.65) THEN grade = C
ELSE IF (OrangePixelArea ≥ 67.04) THEN grade = A
ELSE IF (OrangePixelArea ≥ 14.57) THEN grade = D
OTHERWISE grade = E

In this example RIPPER induced five rules and seven an-
tecedents. This is considerably less complex, without dupli-
cations and thus more readable than the manually derived
rules. The final example is that of the generation of FURIA
rules. FURIA induces fuzzified rules and therefore relies
on a trapezoidal function that determines the degree of
membership for a given value. We represent this function
and its intervals using three values. The range between the
positive or negative ∞ and its adjacent real number represents
the values that are fully covered. The range between the two
floating point numbers is the fuzzy interval that determines
the degree of membership. In addition, each rule is associated
with a confidence factor (CF). The class with the highest
confidence factor is assigned to a candidate sample. The
FURIA rule set consists of a total of seven rules and 15
antecedents.
CLASS WITH MAX SUPPORT:
(OrangePixelArea in [45.07, 67.04, ∞]) and

(MildBlemishPixelArea in [−∞, 8.54, 22.29]) THEN grade = A (CF = 0.88)
(OrangePixelArea in [26.18, 27.51, ∞]) and

(MildBlemishPixelArea in [8.54, 20.92, ∞]) THEN grade = B (CF = 0.67)
(CombinedOrange+GreenPixelArea in [63.31, 69.65, ∞]) THEN grade = C (CF = 0.88)
(MildBlemishPixelArea in [108.38, 111.64, ∞]) THEN grade = D (CF = 0.55)
(CombinedOrange+GreenPixelArea in [−∞, 46.59, 47.27]) and

(OrangePixelArea in [12.4, 14.57, ∞]) and
(OrangePixelArea in [−∞, 45.94, 50.8]) and
(CombinedOrange+GreenPixelArea in [41.93, 42.79, ∞])
THEN grade = E (CF = 0.82)

(MildBlemishPixelArea in [40.11, 42.58, ∞]) and
(MildBlemishPixelArea in [−∞, 47.89, 63.04]) THEN grade = D (CF = 0.71)

(OrangePixelArea in [−∞, 10.74, 14.57]) and
(CombinedOrange+GreenPixelArea in [−∞, 63.31, 69.97])
THEN grade = E (CF = 0.89)

Though the FURIA rule set gives the initial impression of
being as complex as the manually derived rules, arguably this
is not the case. Both the manually and the RIPPER generated
rules embody within themselves the negated conditions of
the previous rules. This means that in order to understand
a given rule, it must be combined with the preceding rules.

FURIA rule sets on the other are explicit and offer more in
terms of knowledge discovery.

VI. CONCLUSION

We addressed the problem of automated fruit sorting
using machine learning. We demonstrated a novel strategy
which decomposes a classification problem into two phases
for this problem domain. The first phase consists of ap-
plying a multiclass boosting algorithm AdaBoost.ECC to
the subproblem of classifying surface defects. The outputs
of this classifier were then inputted into a rule induction
algorithm that necessarily generates highly interpretable and
human readable rules. We experimented with state-of-the-
art RIPPER and FURIA algorithms. Our initial experiments
into this area indicated that this novel combination of algo-
rithms has shown potential to both match and improve upon
the accuracy of manually expert-calibrated machines. The
generated rules are less complex than the manually derived
rules, and are also more likely to contribute to knowledge
discovery.

Our future research will focus on compiling both greater
sample sizes and numbers of datasets from different varieties
of fruit in order to conduct large-scale experiments that can
yield more robust and definitive conclusions.
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