
Case Study On SYSML and VHDL-AMS
for Designing and Validating Systems

J. Verries and A. Sahraoui

Abstract : An approach combining SysML and VHDL-AMS
is proposed in this paper. The design is modeled with SysML
and then we derive some intuitive rules to obtain the VHDL-
AMS model of the lower level blocks built in SysML. The
work is at the level of the tentative approach that is being
carried out on real industrial application for onboard systems.
The paper goes beyond the models issues and carries out the
simulation procedure that are available on tools to validate the
design for the intended blocks.

Index Terms— systems engineering, Validation, SysMLVHDL-
AMS

I. INTRODUCTION

Model Based System Engineering tends to provides designer
with languages and tools to depict analysis, requirement and
design artefacts, and to relate them by traceability links.
Expected benefit is to improve communication between
stakeholders with removing ambiguity and improve
completeness, better management of system complexity and
earlier integration of V&V activities. On the other side,
powerful modelling language enables simulation at system
level, allowing designers to improve design confidence and
maturity within and across projects at early stage of
development. However, modelling in itself can be a
complex and costly task, thus reducing expected benefits.

The work is carried out in the context of deploying systems
engineering practice for aeronautics equipment subsystems.
The processes have been defined from the requirements
management process , the design process, implementation
and validation/verification through simulation. The project
is under constraints on aeronautics standards. The paper
focuses on methods and tools[1,2].

In this paper, we present how SysML could be used to build
VHDL-AMS model and thus provide an efficient way to
model and simulate systems at architectural level. We start
by short presentation of SysML’s and VHDL-AMS’s
subsets that we focus on, and the rationales for their
integration into a single framework. We propose several
steps that designer has to follow, in order to benefit both
from SysML and VHDL AMS contribution for system
design modelling techniques [3].

J.Verries and A. Sahraoui are with laboratory LAAS-CNRS, 7 avenue du
Colonel Roche, F-31400 Toulouse, France
Univ de Toulouse;UTM; LAAS, F-31100 Toulouse, France
(e-mail :ahraoui@mail.fr). J. Verries is on leave to Altran technologies.

This integration covers a broad range in the system
development, starting from requirement expression,
architecture alternative proposal, and technical performance
assessment. We show how bidirectional mapping can be
established between architectural descriptions in SysML and
structure of VHDL-AMS models, and thus automating
partly the modelling process.

II. SYSML AND VHDL-AMS PRESENTATION

A. SysML general presentation.

SysML (System Modelling Language) is a general purpose,
graphical modelling language for system engineering. It
allows analysis, specification and design of systems. Using
SysML, system designer or design team can graphically
depicts system operational context and use cases, maintain
structured set of requirements, model behaviour, system
logical and physical structure, and realise all association link
between this artefacts to ensure a seamless flow from initial
analysis to detailed design. In particular, SysML can add
great benefit to validation and verification planning and
support, allowing designers to directly trace these activities
against system models and system requirements. Benefits on
design process are an improved communication with a
model-centric approach, improve validation and verification
activities by relating them to requirement engineering and
logical and physical design.

Initially, SysML results of a decision of INCOSE in 2001 to
cast UML for system engineering specific domain. Then,
INCOSE and OMG have jointly decided to create a working
group, to specify requirements for a system modelling
language. This led to define UML for SE RFP [1], a
requirement set that specify need for a system modelling
language.
UML for SE RFP has lead to the definition of a SysML draft
in 2004, by SysML partner, an association of majors
industry actors and tool vendors. Then, a first version of
SysML has been submitted to OMG and adopted in 2005.
Some competing versions was proposed, and a merging of
them was finally adopted by OMG in 2006. OMG SysML
v1.0 [2] is available as an open source available
specification since September 2007.

B. SysML constructs and diagrams

This section presents briefly SysML constructs used in this
paper. First, SysML blocks and block diagrams, that allows
designer to easily depict architecture, from basics concepts
(for example few interconnected block that represents one
efficient solution in a specific context) to a detailed,
component-level implementation.
Blocks are the modular elements of system descriptions.
Each block defines a collection of features to describe a

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

system or part of it. These may include both structural and
behavioural features, such as properties and operations, to
represent the state and modes that the system may exhibit
[4,5].
Blocks provide a general-purpose capability to model
systems as trees of modular components. The specific kinds
of components, the kinds of connections between them, and
the way these elements combine to define the total system
can all be selected according to the goals of a particular
system model. SysML blocks can be used throughout all
phases of system specification and design, and can be
applied to many different kinds of systems. These include
modelling either the logical or physical decomposition of a
system, and the specification of software, hardware, or
human elements. Parts in these systems may interact by
many different means, such as software operations, discrete
state transitions, flows of inputs and outputs, or continuous
interactions. Block can have multiple compartments
allowing to describes its features. For example, structure
compartment show elements that appear in an internal block
diagram, as described bellow.

Block can be interconnected in many ways and appear in
two major diagram types : Definition Diagram, and Internal
Block Diagram of SysML, depicts respectively component
structural hierarchy and interconnections.

Block Definition diagram is based on UML class diagram,
with several restrictions and extensions. The Block
Definition Diagram in SysML defines features of blocks and
relationships between blocks such as associations,
generalizations, and dependencies. It captures the definition
of blocks in terms of properties and operations, and
relationships such as a system hierarchy or a system
classification tree. The Internal Block Diagram captures
the internal structure of a block in terms of properties and
connectors between properties. It depict flows between
system components, that can be logical or physical : service,
data, energy, matter, or combination of them.

Other main construct provided by SysML is Requirement
block. Requirements are modelled as an extension of UML
class. Requirement blocks allow to specify textual
requirements, and identify it with a unique identifier. Others
attributes may be associated to state validation / verification
attributes and method or other information on requirement
life-cycle. Main interest of SysML requirements is that
several relations can be established with others requirement
and SysML modelling artefacts. Requirements can be
related others requirements by refinement relation, thus
enabling to depict requirement flowndown for each design
level. Also, they can be connected to design block by
“satisafaction” link, stating that design block satisfy
requirement.

While SysML can bring benefits to system designer, it has
voids that can be identified by comparing its specification to
the original RFP. Following are some limitations and void
that are addressed in this paper : Although parametric
diagrams allows expression of mathematical relations,
SysML does not provide support for modelling of mixed-
signal system description. Moreover, although simulation
scenarios could be represented as test case that verify

requirements, no mean is explicitly provided to present
simulation context, objectives, scenarios and results.
Lastly, no explicit artefact or language stereotype has been
added to model design alternatives, neither mean to assist
assessment and selection of design alternative.

C. The VHDL-AMS language
VHDL-AMS is a hardware description language. Based on
VHDL language, it has been developed to extend VHDL to
the description and the simulation of analog, digital, and
mixed-signal systems. VHDL AMS has been normalised
(IEEE standard 1076-1993) as an extension of VHDL
language. Thus, VHDL can be considered as a subset of
VHDL-AMS language. The first release of the IEEE 1076.1
standard has been available since 1999. Following section
present briefly the main advantages and characteristic of
VHDL AMS [6,7].

One of the major benefits of VHDL-AMS is its ability to
easily model and simulate systems, that include different
physical domains such as electric, mechanic. System
behaviour can be modelled via acausal equations, and
therefore facilitate reuse of components in different contexts
of use. Also, VHDL AMS allows designer to model system
at different abstraction level, thus improving performance
and simulation, and improving overall cost/benefit ratio of
modelling and simulation activities. Due to this multi-
abstraction capability, VHDL-AMS can be used throughout
all system development life cycle, from architectural
exploration and conceptualisation, down to single
component functional finest, structural modelling.

Continuous and event driven modelling brings many
advantages in system modelling: Many physical systems
have different sets of equations depending on their operating
domain. Using event concepts, development of these models
can be simplified. Conservative physical system, event
driven behaviours, logics and analogic signal conditioning
can also be gathered on same system model. Then, VHDL
AMS can be a powerful tool for system designer.

Other characteristic of VHDL-AMS, inherited from VHDL,
is its capability to define multiple implementations of same
component interface. Indirect component instantiation and
configuration brings genericity support, enabling designer to
implement many design alternatives for same interface,
different abstractions levels or modelling concerns in
complex model structures. In early phase of top down
design process, this capability assist designer in the product
logical and physical decomposition. This decomposition is
done iteratively until definition of elementary components,
witch are described in their functional, behavioural or
physical aspect. Each component is defined by only one
model, and instantiated as many as necessary in the global
model.

III. MODEL SPECIFICATION METHOD

This section describes general model-based system design
process, around architectural alternative assessment.

When developing hybrid systems in terms of mixed
mechanical, electronic equipment, there is a need for a high
level of abstraction when devising architecture. The system

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

view is preferred for its effectiveness in tackling such types
of systems. The choice of SysML is meant to have an
independant method rather than choosing specific
technology method; also VHDL-AMS is a general purpose
notation for hybrid systems even it is known that it was
devised initially for electronics systems.

During physical solution definition, some functional and
performance requirements are identified as key architecture
efficiency indicators. These indicators will be assessed by an
executable model, by translating them into a set of
measurable values on physical model. Two goals must be
satisfied when building such a model :

First, try to completely simulate parameters that have been
identified as key efficiency indicators. This corresponds to a
top-down view of the model specification, starting from
high level, stakeholder needs, and allows to ensure that
purpose of system is done according to functional
specification.

Next, allow identification of unexpected or undesirable
effect that can lead to reject an architecture. This issue is
tightly linked to system internal and external interfaces, and
operating environment. As it is depends on technical
solutions, this corresponds to the bottom-up aspect of model
specification. (For example, one model does not simulate
heat transfer between two part of system, resulting in
unrealistic gas temperature in pneumatic actuator, and
therefore unrealistic operating performance).

Following steps propose a way to specify and build physical
models trying to improve efficiency and benefits of
modelling and simulation tasks.

1. Identify technical effectiveness metrics on Logical
Architecture Solutions. Architecture effectiveness metrics
should be expressed in a solution independent point-of-
view. This effectiveness metrics should be approved by
stakeholders, for example during logical solution review. In
SysML, we specify attributes to component block in order to
specify internal values that have to be simulated in the
dynamic executable model. For example, electrical
consumption, speed profile, mechanical effort). Expected
discrete event properties are specified as sequence or
activity diagrams that will be compared to simulation results
(for example: aural warning triggering, sensor measurement
time).

2. Allocate effectiveness metrics on system components
and interfaces. As alternative architectures are explored,
efficiency metrics have to be translated and allocated on
system parts. Such characteristics are key performance
parameters such as effort/torque, speed, response time,
hydraulic pressure... These are considered key characteristic
in that they are directly traceable against technical efficiency
criteria and stakeholders expectations. This allocation
process can be based on engineering judgement, or based on
trade-off analysis. Exploring design alternative will usually
bring to refine or complete set of efficiency metrics
previously defined. This is not an issue as long as set of
design alternatives refers to the same efficiency metrics
reference. For example, assessing one electro-mechanical

system against a human powered system can bring designers
to asses system energetic autonomy[8].

Specifying simulation sequence and stimulus. In conjunction
with effectiveness metrics allocation, one should define
simulation conditions, stimuli, and measuring means to
ensure that simulation will provide expected benefits. This
step is tightly coupled with architecture definitions and may
require to develop some additional model parts. For example
measuring a numeric response time on a continuous signal
shall require developing a measuring component with
measured signal being compared to thresholds values and
returning required response time value.

4. Derive components internal parameters from key
physical characteristics. This task has a great impact on
model accuracy. Once key characteristics have been
allocated, one should consider component internal
parameters that could impact its key characteristics. This is
actually a bottom-up analysis, in that it highly depends on
intrinsic, physical structure of each component. It is usually
performed by engineering judgment, and requires a careful
analysis of both the component intrinsic properties and its
operating conditions and environment. For example,
consider one component as a mechanical damper used in an
emergency mechanical system. In this example efficiency
metrics naturally brings to allocate a minimum damping
effort to this component. Then, the use of a hydraulic
actuator should bring to add the oil temperature as an
internal parameter to be monitored as it has a great impact
on damping effort which will be produced.

5. Identify additional parameters to raise undesired
effect simulation. Such task should be derived by
engineering analysis such as safety and maintainability
analysis. It should also result from a bottom-up analysis of
previously identified key physical characteristics and
internal parameter.

6. Model dynamic behaviour. In this task, modeller should
ensure that instructions that models dynamic behaviour
covers computation of key, internal parameters, and also
particular parameters. Depending on model abstraction
level, these instructions can be differential or algebraic,
conservative or non-conservative equations, or transfer
functions.

A. FromSysML System structure into VHDL-AMS
model

We present here a method which can be systematically
applied to translate a system structural description in SysML
into a VHDL AMS code structure. Both are composed of
interconnected, “black box” components.

Followings this translation, VHDL AMS components have
to be implemented by DAE or others instructions, thus
constituting the dynamic part of system architecture
modelling.

In this paper, we focus on a general and systematic way of
generating vhdl-ams code, as a set of interconnected entity /

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

architecture design unit, representative of the physical
architecture. This implies at least two major steps:

1/ Instantiating VHDL AMS components according to the
corresponding instantiated block in SysML.

2/ For each structure level, Connecting instance to each
others according to specified port and signal interface in
SysML.

B. Creating Entities and Architectures

We create a stereotype, applicable to block, called “Test
Bench”. This Block is the root for the system and
environment description. This block will own parts that are
the first level of decomposition in the system structure, and
iteratively down to the most detailed level. In this
decomposition, each part must be typed by a block, witch
themselves can contain typed parts, thus generating a tree.
By this mechanism, all model structure can be generated by
a tree traversal method.

Starting from “testbench” block, wich is the root leaf of
structural hierarchy, we can apply following procedure to
generate code structure :

1/ From SysML Block, Generate Corresponding VHDL-
AMS Entity and Architecture :
2/ For all From SysML typed parts within Block :
 2.1/ Generate VHDL-AMS Component Instance
declaration,
 2.2/ Specify used architecture,
 2.3/ Iterate on typing block of each parts

At architectural level, alternatives can be view as different
arrangement of components. In SysML, Two alternatives
will be own different parts in its parts compartment, and will
share common traceability link toward top level
effectiveness metrics or performance parameter. For
example, two architecture alternatives will include
respectively an inductive sensor, and rotary potentiometer.
Both sensors add some weight to mechanical parts, but only
the last will introduce a rotational torque to rotational
movement due to friction of its internal parts.

Such relations can be modelled as an inheritance link
between a functional, implementation-free block witch
represent the common design characteristics with its
effectiveness drivers, and some derived physical alternatives
owning theirs own parts. Logical component will typically
have some satisfaction links toward set of requirements,
providing traceability of requirements onto inherited
architecture alternatives block. Some architectural
alternatives will inherit from multiple functional blocks, as
they are involved in multiple system functions[8,9].

Following is a simplified example, showing two design
alternatives for performing a position measurement. Two
architectures are therefore implemented for the same entity
HPMeasure. Selection of current used architecture
(HPM_arch2) is realised by the component instantiation in
upper level system architecture body (HPM_arch2) is
realised by the component instantiation in upper level
system architecture body

Fig 1 : VHDL-AMS translation of architecture alternative.

C. Interconnecting system components

Last section showed how components can be instantiated
from SysML structural hierarchy, allowing description of
multiple design alternatives [10,11]. Next step is to realise
components interconnection at a given level of structural
hierarchy. For this purpose, SysML flowport and signal
constructs are translated into port and port map in VHDL
AMS instructions.

Let consider a simple example composed of an outer block
called ‘System’ owning two parts called ‘HPMeasure’ et

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

‘SigCond’. First one retrieve a position angle from system
environment and transforms it into a voltage value. Second
parts retrieve this value and apply a simple processing,
providing a binary value as output. This output is then
transmitted to system environment. First, outer flowports,
wich enable communication between system and its
environment are simply reported onto VHDL-AMS entity of
system. Flowports direction define IN or OUT attribute of
associated port declaration.
HPMeasure and SigCond entities are also declared,
including its associated flowport input and output.
Because two components are interconnected in system
architecture, a local signal, called ‘interm’ has to be declared
into system architecture. This local signal is typed according
to port type of the components (which must be equal).
HPMeasure and SigCong are then instantiated in
architecture body of system. Then, it is necessary to map
formal port (declared into HPMeasure and SigCond entities
declaration) onto actual ports that are declared as System
entity declaration and local signal declaration. Figure bellow
presents SysML and VHDL-AMS translation of same
system structure.

Fig 2 : VHDL-AMS translation of SysML Part
interconnection

Therefore, followings steps has been performed, after entity
and architecture declaration, to interconnect components of
a system:

1/ From SysML Top Level System Block to lower level
components, declare port according to flowport direction
and name.
2/ From Flow port and SysML association between
components, at each level, declare intermediary signal,
typed with SysML flow port type.
3/ Instantiate component into top level architecture, (with
optional architecture specification).
4/ Map components formal ports onto actual embedding
block and its intermediary signals.

IV. CURRENT APPLICATION

This modelling approach is currently used in context of
aeronautic equipment development to transport aircraft
passenger doors equipment, for which emergency opening
assistance mean is necessary. This type of system presents
multi domain system design with strong safety and
maintainability requirements. Multiple architecture
alternatives include different command, actuators and
mechanism coupling are currently assessed against safety,
certification and ease-of-use requirements during normal use
and inspection.

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

Fig 3 : SysML Structural description of application

V. PERSPECTIVES

We look forward to generalise such approach by different
case studies; the methodology can be extended to “systems
of systems” as each class in SysML can represent a specific
system; the object oriented design paradigm is well suited
for systems families [11,12,13]. Effectively, Research in this
area would seek to develop and apply notions from such
areas as complex adaptive system and knowledge
management and would seek to develop more of a
methodological basis for system family architecting and
design. Development of a methodological basis for the
design and architecting of system families would do much to
enhance present abilities to design loosely coupled and
virtual organizations and to enable better architectures for
these enterprises that would do much to support
interoperability and integration[14,15]; the issue of
interoperability in simulation is a critical issue in this
context.

VI. CONCLUSION

In this paper we have introduced some rules to obtain
simulable model from high level, object oriented structural
descriptions. Principles described here will be implemented
at tool level, along with current and previous work on
behavioural model transformation from UML/SysML
toward VHDL-AMS. Eventually, this will allow a complete,
requirement-driven modelling and simulation methodology
for system design.

REFERENCES

[1] OMG, UML for System Engineering RFP, - ad/03-03-

41 (28 March, 2003).
http://syseng.omg.org/UML_for_SE_RFP.htm

[2] MOG SysML Specification language, v1.0.
formal/2007-09-01
http://www.omg.org/technology/documents/formal/sys
ml.htm

[3] A.E.K Sahraoui, D. Buede, A. Sage : systems
engineering research, International journal of systems
science and systems engineering. July 2008,
springerlink
:http://www.springerlink.com/content/f6369550838743
65/

[4] Agarwal, R & Tanniru, MR 1990, 'Knowledge
Acquisition Using Structured Interviewing: An
Empirical Investigation', Journal of Management
Information Systems, vol. 7, no. 1, pp. 123-40.

[5] Alderson, A 1991, 'Meta-case Technology', European
Symposium on Software Development Environments
and CASE Technology, Konigswinter, Germany, June
17-19.

[6] Alexander, I 2007, Requirements Engineering Tools and
Vendors, 2007,
http://easyweb.easynet.co.uk/~iany/other/vendors.htm

[7] Alho, K & Sulonen, R 1998, 'Supporting Virtual
Software Projects on the Web', Seventh IEEE
International Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WET ICE
'98), Stanford, USA, June 17-19.

[8] American Society for Quality 2006, Glossary,
<http://www.asq.org/glossary/index.html>.

[9] Andreou, AS 2003, 'Promoting software quality through
a human, social and organisational requirement

[10] Ebel, Nadine, ITIL V3 Basiswissen, Addison-Wesley,
2008

[11] Yin, RK 1994, Case Study Research: Design and
Methods, Second edn, Sage, Thousand Oaks, USA.

[12] Young, E 2004, Artificial Neural Network in PHP,
2005,
<http://coding.mu/archives/2004/03/19/artificial_neural
_network_in_php/>.

[13] Yourdon, E 1989, Modern Structured Analysis,
Prentice Hall, Englewood Cliffs, USA.

[14] Yu, ESK 1997, 'Towards Modeling and Reasoning
Support for [1] Early-Phase Requirements
Engineering', Third IEEE International Symposium on
Requirements Engineering, Washington D.C., USA,
January 5-8.

[15] Zave, P 1997, 'Classification of Research Efforts in
Requirements Engineering', ACM Computing Surveys
(CSUR), vol. 29, no. 4, pp. 315-21.

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

