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Abstract : An approach combining SysML and VHDL-AMS 
is proposed in this paper. The design is modeled with SysML 
and then we derive some intuitive rules to obtain the VHDL-
AMS model of the lower level blocks built in SysML.  The 
work is at the level of the tentative approach that is being 
carried out on real industrial application for onboard systems. 
The paper goes beyond the models issues and carries out the 
simulation procedure that are available on tools to validate the 
design for the intended blocks. 
 
Index Terms— systems engineering, Validation, SysMLVHDL-
AMS 

I. INTRODUCTION 

 
Model Based System Engineering tends to provides designer 
with languages and tools to depict analysis, requirement and 
design artefacts, and to relate them by traceability links. 
Expected benefit is to improve communication between 
stakeholders with removing ambiguity and improve 
completeness, better management of system complexity and 
earlier integration of V&V activities. On the other side, 
powerful modelling language enables simulation at system 
level, allowing designers to improve design confidence and 
maturity within and across projects at early stage of 
development. However, modelling in itself can be a 
complex and costly task, thus reducing expected benefits.  
 
The work is carried out in the context of deploying systems 
engineering practice for aeronautics equipment subsystems. 
The processes have been defined from the requirements 
management process , the design process, implementation 
and validation/verification  through simulation. The project 
is under constraints on aeronautics standards. The paper 
focuses on methods and tools[1,2]. 
 
In this paper, we present how SysML could be used to build  
VHDL-AMS model and thus provide an efficient way to 
model and simulate systems at architectural level. We start 
by short presentation of SysML’s and VHDL-AMS’s 
subsets that we focus on, and the rationales for their 
integration into a single framework. We propose several 
steps that designer has to follow, in order to benefit both 
from SysML and VHDL AMS contribution for system 
design modelling techniques [3].  
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This integration covers a broad range in the system 
development, starting from requirement expression, 
architecture alternative proposal, and technical performance 
assessment. We show how bidirectional mapping can be 
established between architectural descriptions in SysML and 
structure of VHDL-AMS models, and thus automating 
partly the modelling process. 

II. SYSML AND VHDL-AMS PRESENTATION 

 
A. SysML general presentation.  

SysML (System Modelling Language) is a general purpose, 
graphical modelling language for system engineering. It 
allows analysis, specification and design of systems. Using 
SysML, system designer or design team can graphically 
depicts system operational context and use cases, maintain 
structured set of requirements, model behaviour, system 
logical and physical structure, and realise all association link 
between this artefacts to ensure a seamless flow from initial 
analysis to detailed design. In particular, SysML can add 
great benefit to validation and verification planning and 
support, allowing designers to directly trace these activities 
against system models and system requirements. Benefits on 
design process are an improved communication with a 
model-centric approach, improve validation and verification 
activities by relating them to requirement engineering and 
logical and physical design. 
  
Initially, SysML results of a decision of INCOSE in 2001 to 
cast UML for system engineering specific domain. Then, 
INCOSE and OMG have jointly decided to create a working 
group, to specify requirements for a system modelling 
language. This led to define UML for SE RFP [1], a 
requirement set that specify need for a system modelling 
language. 
UML for SE RFP has lead to the definition of a SysML draft 
in 2004, by SysML partner, an association of majors 
industry actors and tool vendors. Then, a first version of 
SysML has been submitted to OMG and adopted in 2005. 
Some competing versions was proposed, and a merging of 
them was finally adopted  by OMG in 2006. OMG SysML 
v1.0 [2] is available as an open source available 
specification since September 2007. 
 

B. SysML constructs and diagrams 
 
This section presents briefly SysML constructs used in this 
paper. First, SysML blocks and block diagrams, that allows 
designer to easily depict architecture, from basics concepts 
(for example few interconnected block that represents one 
efficient solution in a specific context) to a detailed, 
component-level implementation. 
Blocks are the modular elements of system descriptions. 
Each block defines a collection of features to describe a 
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system or part of it. These may include both structural and 
behavioural features, such as properties and operations, to 
represent the state and modes that the system may exhibit 
[4,5]. 
Blocks provide a general-purpose capability to model 
systems as trees of modular components. The specific kinds 
of components, the kinds of connections between them, and 
the way these elements combine to define the total system 
can all be selected according to the goals of a particular 
system model. SysML blocks can be used throughout all 
phases of system specification and design, and can be 
applied to many different kinds of systems. These include 
modelling either the logical or physical decomposition of a 
system, and the specification of software, hardware, or 
human elements. Parts in these systems may interact by 
many different means, such as software operations, discrete 
state transitions, flows of inputs and outputs, or continuous 
interactions. Block can have multiple compartments 
allowing to describes its features. For example, structure 
compartment show elements that appear in an internal block 
diagram, as described bellow.  
 
Block can be interconnected in many ways and appear in 
two major diagram types : Definition Diagram, and Internal 
Block Diagram of SysML, depicts respectively component 
structural hierarchy and interconnections.  
 
Block Definition diagram is based on UML class diagram, 
with several restrictions and extensions. The Block 
Definition Diagram in SysML defines features of blocks and 
relationships between blocks such as associations, 
generalizations, and dependencies. It captures the definition 
of blocks in terms of properties and operations, and 
relationships such as a system hierarchy or a system 
classification tree. The Internal Block Diagram captures 
the internal structure of a block in terms of properties and 
connectors between properties. It depict flows between 
system components, that can be logical or physical : service, 
data, energy, matter, or combination of them.  
 
Other main construct provided by SysML is Requirement 
block. Requirements are modelled as an extension of UML 
class. Requirement blocks allow to specify  textual 
requirements, and identify it with a unique identifier. Others 
attributes may be associated to state validation / verification 
attributes and method or other information on requirement 
life-cycle. Main interest of SysML requirements is that 
several relations can be established with others requirement 
and SysML modelling artefacts. Requirements can be 
related others requirements by refinement relation, thus 
enabling to depict requirement flowndown for each design 
level. Also, they can be connected to design block by 
“satisafaction” link, stating that design block satisfy 
requirement. 
 
While SysML can bring benefits to system designer, it has 
voids that can be identified by comparing its specification to 
the original RFP. Following are some limitations and void 
that are addressed in this paper : Although parametric 
diagrams allows expression of mathematical relations, 
SysML does not provide support for modelling of mixed-
signal system description. Moreover, although simulation 
scenarios could be represented as test case that verify 

requirements, no mean is explicitly provided to present 
simulation context, objectives, scenarios and results.  
Lastly, no explicit artefact or language stereotype has been 
added to model design alternatives, neither mean to assist 
assessment and selection of design alternative.  
 

C. The VHDL-AMS language 
VHDL-AMS is a hardware description language. Based on 
VHDL language, it has been developed to extend VHDL to 
the description and the simulation of analog, digital, and 
mixed-signal systems. VHDL AMS has been normalised 
(IEEE standard 1076-1993) as an extension of VHDL 
language. Thus, VHDL can be considered as a subset of 
VHDL-AMS language. The first release of the IEEE 1076.1 
standard has been available since 1999. Following section 
present briefly the main advantages and characteristic of 
VHDL AMS [6,7]. 
 
One of the major benefits of VHDL-AMS is its ability to 
easily model and simulate systems, that include different 
physical domains such as electric, mechanic. System 
behaviour can be modelled via acausal equations, and 
therefore facilitate reuse of components in different contexts 
of use. Also, VHDL AMS allows designer to model system 
at different abstraction level, thus improving performance 
and simulation, and improving overall cost/benefit ratio of 
modelling and simulation activities. Due to this multi-
abstraction capability, VHDL-AMS can be used throughout 
all system development life cycle, from architectural 
exploration and conceptualisation, down to single 
component functional finest, structural modelling.  
 
Continuous and event driven modelling brings many 
advantages in system modelling: Many physical systems 
have different sets of equations depending on their operating 
domain. Using event concepts, development of these models 
can be simplified. Conservative physical system, event 
driven behaviours, logics and analogic signal conditioning 
can also be gathered on same system model. Then, VHDL 
AMS can be a powerful tool for system designer.  
 
Other characteristic of VHDL-AMS, inherited from VHDL, 
is its capability to define multiple implementations of same 
component interface. Indirect component instantiation and 
configuration brings genericity support, enabling designer to 
implement many design alternatives for same interface, 
different abstractions levels or modelling concerns in 
complex model structures. In early phase of top down 
design process, this capability assist designer in the product 
logical and physical decomposition. This decomposition is 
done iteratively until definition of elementary components, 
witch are described in their functional, behavioural or 
physical aspect. Each component is defined by only one 
model, and instantiated as many as necessary in the global 
model. 

III. MODEL SPECIFICATION METHOD 

 
This section describes general model-based system design  
process, around architectural alternative assessment.  
 
When developing hybrid systems in terms of mixed 
mechanical, electronic equipment, there is a need for a high 
level of abstraction when devising architecture. The system 
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view is preferred  for its effectiveness in tackling such types 
of systems. The choice of SysML is meant to have an 
independant method rather than choosing specific 
technology method; also VHDL-AMS is a general purpose 
notation for hybrid systems even it is known that it was 
devised initially for electronics systems. 
 
During physical solution definition, some functional and 
performance requirements are identified as key architecture 
efficiency indicators. These indicators will be assessed by an 
executable model, by translating them into a set of 
measurable values on physical model. Two goals must be 
satisfied when building such a model :  
 
First, try to completely simulate parameters that have been 
identified as key efficiency indicators. This corresponds to a 
top-down view of the model specification, starting from 
high level, stakeholder needs, and allows to ensure that 
purpose of system is done according to functional 
specification.  
 
Next, allow identification of unexpected or undesirable 
effect that can lead to reject an architecture. This issue is 
tightly linked  to system internal and external interfaces, and 
operating environment. As it is depends on technical 
solutions, this corresponds to the bottom-up aspect of model 
specification.  (For example, one model does not simulate 
heat transfer between two part of system, resulting in 
unrealistic gas temperature in pneumatic actuator, and 
therefore unrealistic operating performance). 
 
Following steps propose a way to specify and build physical 
models trying to improve efficiency and benefits of 
modelling and simulation tasks. 
 
1. Identify technical effectiveness metrics on Logical 
Architecture Solutions. Architecture effectiveness metrics 
should be expressed in a solution independent point-of-
view. This effectiveness metrics should be approved by 
stakeholders, for example during logical solution review. In 
SysML, we specify attributes to component block in order to 
specify internal values that have to be simulated in the 
dynamic executable model. For example, electrical 
consumption, speed profile, mechanical effort). Expected 
discrete event properties are specified as sequence or 
activity diagrams that will be compared to simulation results 
(for example: aural warning triggering, sensor measurement 
time).  
 
2. Allocate effectiveness metrics on system components 
and interfaces. As alternative architectures are explored, 
efficiency metrics have to be translated and allocated on 
system parts. Such characteristics are key performance 
parameters such as effort/torque, speed, response time, 
hydraulic pressure... These are considered key characteristic 
in that they are directly traceable against technical efficiency 
criteria and stakeholders expectations. This allocation 
process can be based on engineering judgement, or based on 
trade-off analysis. Exploring design alternative will usually 
bring to refine or complete set of efficiency metrics 
previously defined. This is not an issue as long as set of 
design alternatives refers to the same efficiency metrics 
reference.  For example, assessing one electro-mechanical 

system against a human powered system can bring designers 
to asses system energetic autonomy[8]. 
 
Specifying simulation sequence and stimulus. In conjunction 
with effectiveness metrics allocation, one should define 
simulation conditions, stimuli, and measuring means to 
ensure that simulation will provide expected benefits. This 
step is tightly coupled with architecture definitions and may 
require to develop some additional model parts. For example 
measuring a numeric response time on a continuous signal 
shall require developing a measuring component with 
measured signal being compared to thresholds values and 
returning required response time value.  
 
4. Derive components internal parameters from key 
physical characteristics. This task has a great impact on 
model accuracy. Once key characteristics have been 
allocated, one should consider component internal 
parameters that could impact its key characteristics. This is 
actually a bottom-up analysis, in that it highly depends on 
intrinsic, physical structure of each component. It is usually 
performed by engineering judgment, and requires a careful 
analysis of both the component intrinsic properties and its 
operating conditions and environment. For example, 
consider one component as a mechanical damper used in an 
emergency mechanical system. In this example efficiency 
metrics naturally brings to allocate a minimum damping 
effort to this component. Then, the use of a hydraulic 
actuator should bring to add the oil temperature as an 
internal parameter to be monitored as it has a great impact 
on damping effort which will be produced.  
 
5. Identify additional parameters to raise undesired 
effect simulation. Such task should be derived by 
engineering analysis such as safety and maintainability 
analysis. It should also result from a bottom-up analysis of 
previously identified key physical characteristics and 
internal parameter.  
 
6. Model dynamic behaviour. In this task, modeller should 
ensure that instructions that models dynamic behaviour 
covers computation of key, internal parameters, and also 
particular parameters. Depending on model abstraction 
level, these instructions can be differential or algebraic, 
conservative or non-conservative equations, or transfer 
functions. 
 
 

A. FromSysML System structure into VHDL-AMS 
model 

 
We present here a method which can be systematically 
applied to translate a system structural description in SysML 
into a VHDL AMS code structure. Both are composed of 
interconnected, “black box” components.  
 
Followings this translation, VHDL AMS components have 
to be implemented by DAE or others instructions, thus 
constituting the dynamic part of system architecture 
modelling.  
 
In this paper, we focus on a general and systematic way of 
generating vhdl-ams code, as a set of interconnected entity / 
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architecture design unit, representative of the physical 
architecture. This implies at least two major steps:  
 
1/ Instantiating VHDL AMS components according to the 
corresponding instantiated block in SysML.  
 
2/ For each structure level, Connecting instance to each 
others according to specified port and signal interface in 
SysML. 
 

B. Creating Entities and Architectures 
 
We create a stereotype, applicable to block, called “Test 
Bench”. This Block is the root for the system and 
environment description. This block will own parts that are 
the first level of decomposition in the system structure, and 
iteratively down to the most detailed level. In this 
decomposition, each part must be typed by a block, witch 
themselves can contain typed parts, thus generating a tree. 
By this mechanism, all model structure can be generated by 
a tree traversal method.  
 
Starting from “testbench” block, wich is the root leaf of 
structural hierarchy, we can apply following procedure to 
generate code structure :  
 
1/ From SysML Block, Generate Corresponding VHDL-
AMS Entity and Architecture :  
2/ For all From SysML typed parts within Block : 
  2.1/ Generate VHDL-AMS Component Instance 
declaration, 
  2.2/ Specify used architecture, 
  2.3/ Iterate on typing block of each parts 
 
At architectural level, alternatives can be view as different 
arrangement of components. In SysML, Two alternatives 
will be own different parts in its parts compartment, and will 
share common traceability link toward top level 
effectiveness metrics or performance parameter. For 
example, two architecture alternatives will include 
respectively an inductive sensor, and rotary potentiometer. 
Both sensors add some weight to mechanical parts, but only 
the last will introduce a rotational torque to rotational 
movement due to friction of its internal parts.  
 
Such relations can be modelled as an inheritance link 
between a functional, implementation-free block witch 
represent the common design characteristics with its 
effectiveness drivers, and some derived physical alternatives 
owning theirs own parts. Logical component will typically 
have some satisfaction links toward set of requirements, 
providing traceability of requirements onto inherited 
architecture alternatives block. Some architectural 
alternatives will inherit from multiple functional blocks, as 
they are involved in multiple system functions[8,9]. 
 
Following is a simplified example, showing two design 
alternatives for performing a position measurement. Two 
architectures are therefore implemented for the same entity 
HPMeasure. Selection of current used architecture 
(HPM_arch2) is realised by the component instantiation in 
upper level system architecture body (HPM_arch2) is 
realised by the component instantiation in upper level 
system architecture body 

 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 
Fig 1 : VHDL-AMS translation of architecture alternative. 

 
C. Interconnecting system components 

 
Last section showed how components can be instantiated 
from SysML structural hierarchy, allowing description of 
multiple design alternatives [10,11]. Next step is to realise 
components interconnection at a given level of structural 
hierarchy. For this purpose, SysML flowport and signal 
constructs are translated into port and port map in VHDL 
AMS instructions.  
 
Let consider a simple example composed of an outer block 
called ‘System’ owning two parts called ‘HPMeasure’ et 
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‘SigCond’. First one retrieve a position angle from system 
environment and transforms it into a voltage value. Second 
parts retrieve this value and apply a simple processing, 
providing a binary value as output. This output is then 
transmitted to system environment. First, outer flowports, 
wich enable communication between system and its 
environment are simply reported onto VHDL-AMS entity of 
system. Flowports direction define IN or OUT attribute of 
associated port declaration.  
HPMeasure and SigCond entities are also declared, 
including its associated flowport input and output.  
Because two components are interconnected in system 
architecture, a local signal, called ‘interm’ has to be declared 
into system architecture. This local signal is typed according 
to port type of the components (which must be equal).  
HPMeasure and SigCong are then instantiated in 
architecture body of system. Then, it is necessary to map 
formal port (declared into HPMeasure and SigCond entities 
declaration) onto actual ports that are declared as System 
entity declaration and local signal declaration. Figure bellow 
presents SysML and VHDL-AMS translation of same 
system structure.  
 
 
 

 
 

Fig 2 : VHDL-AMS translation of SysML Part 
interconnection  
 
Therefore, followings steps has been performed, after entity 
and architecture declaration, to interconnect components of 
a system:  
 

1/ From SysML Top Level System Block to lower level 
components, declare port according to flowport direction 
and name.  
2/ From Flow port and SysML association between 
components, at each level, declare intermediary signal, 
typed with SysML flow port type.  
3/  Instantiate component into top level architecture, (with 
optional architecture specification). 
4/  Map components formal ports onto actual embedding 
block and its intermediary signals.   
 

IV. CURRENT APPLICATION 

 
This modelling approach is currently used in context of 
aeronautic equipment development to transport aircraft 
passenger doors equipment, for which emergency opening 
assistance mean is necessary. This type of system presents 
multi domain system design with strong safety and 
maintainability requirements.  Multiple architecture 
alternatives include different command, actuators and 
mechanism coupling are currently assessed against safety, 
certification and ease-of-use requirements during normal use 
and inspection.  
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Fig 3 : SysML Structural description of application 

V. PERSPECTIVES 

We look forward to generalise such approach by different 
case studies; the methodology can be extended to “systems 
of systems” as each class in SysML can represent a specific 
system; the object oriented design paradigm is well suited 
for systems families [11,12,13]. Effectively, Research in this 
area would seek to develop and apply notions from such 
areas as complex adaptive system and knowledge 
management and would seek to develop more of a 
methodological basis for system family architecting and 
design.  Development of a methodological basis for the 
design and architecting of system families would do much to 
enhance present abilities to design loosely coupled and 
virtual organizations and to enable better architectures for 
these enterprises that would do much to support 
interoperability and integration[14,15]; the issue of 
interoperability in simulation is a critical issue in this 
context. 

VI. CONCLUSION 

In this paper we have introduced some rules to obtain 
simulable model from high level, object oriented structural 
descriptions. Principles described here will be implemented 
at tool level, along with current and previous work on 
behavioural model transformation from UML/SysML 
toward VHDL-AMS. Eventually, this will allow a complete, 
requirement-driven modelling and simulation methodology 
for system design.   
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