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Abstract—The paper is concerned with numerical simulation
of a compressible flow in time-dependent asymmetric 2D and
3D vocal jets. The mathematical model of this process is
described by the compressible Navier-Stokes equations. For
the treatment of the time-dependent domain, the arbitrary
Lagrangian-Eulerian (ALE) method is used. The discontinuous
Galerkin finite element method (DGFEM) is applied to the
space semidiscretization of the governing equations in the ALE
formulation. The time discretization is carried out with the aid
of a linearized semi-implicit backward Euler method with good
stability properties. We present some computational results for
the flow in a channel, representing a model of glottis and a
part of the vocal tract, with a prescribed motion of the channel
walls at the position of vocal folds.

Index Terms—vocal jet, compressible Navier-Stokes equa-
tions, ALE formulation, discontinuous Galerkin method, fluid-
structure interaction.

I. INTRODUCTION

THIS paper is concerned with the numerical simulation
of compressible flow in 2D and 3D channels with

moving walls. The goal is to work out the method allowing
the analysis of flow-induced oscillatory motion of the vocal
folds during human phonation, which leads to a pulsating
jet-like flow penetrating into the cavity downstream of the
glottis.

The knowledge of the glottal flow is important for the
understanding of the processes of the voice production and
also in the development of voice protheses (cf. e.g., [12]).
In [1] we can find an overview of the current state of
mathematical models for the human phonation process. Such
models are valuable tools for providing insight into the basic
mechanisms of phonation and in future could help with
surgical planning, diagnostics and voice rehabilitation. In
current publications various simplified glottal flow models
are used. They are based on the Bernoulli equation (cf.
[13]), 1D models for an incompressible inviscid fluid (cf.
[7]), 2D incompressible Navier-Stokes equations solved by
the finite volume method (cf. [2]) or finite element method
(cf. [15]). Acoustic wave propagation in the vocal tract is
usually modeled separately using linear acoustic perturbation
theory (cf. [14]). The paper [11] is devoted to the 3D finite
element simulation of vibrating human vocal folds.
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Most of models of flow through vocal folds are based on
the incompressible Navier-Stokes equations. Here we shall be
concerned with the model of compressible flow. The system
of the compressible Navier-Stokes equations written in the
ALE (arbitrary Lagrangian-Eulerian) form is discretized in
space by the discontinuous Galerkin (DG) finite element
method using piecewise polynomial approximations without
the requirement of the continuity of the approximate solution
on interfaces between neighboring elements. This method
appears to be robust with respect to the magnitude of the
Mach number and the Reynolds number. See, e.g., [5], [4].

A. ALE Navier-Stokes problem

We are concerned with the numerical solution of com-
pressible flow in a domain Ωt ⊂ IR3 depending on time
t ∈ [0, T ]. Let the boundary of Ωt consist of three different
disjoint parts - ∂Ωt = ΓI ∪ ΓO ∪ ΓWt , where ΓI is the
inlet, ΓO is the outlet and ΓWt is the moving impermeable
boundary of the vocal folds.

The time dependence of the domain is taken into account
with the aid of a one-to-one ALE mapping (cf. [3]) At :
Ω0 −→ Ωt, i.e. At : X 7−→ x = x(X, t) = At(X). We
define the domain velocity z̃(X, t) = ∂At(X)/∂t, z(x, t) =
z̃(A−1(x), t), t ∈ [0, T ], X ∈ Ω0, x ∈ Ωt, and the ALE
derivative of a function f = f(x, t) defined for x ∈ Ωt and
t ∈ (0, T ): DAf(x, t)/Dt = ∂f̃(X, t)/∂t, where f̃(X, t) =
f(At(X), t), X ∈ Ω0.

We write the system describing compressible flow (con-
sisting of the continuity equation, the Navier-Stokes equa-
tions and the energy equation) in the ALE form

DAw

Dt
+

3∑
s=1

∂gs(w)

∂xs
+ w divz =

3∑
s=1

∂Rs(w,∇w)

∂xs
, (1)

where

w = (w1, . . . , w5)T

= (ρ, ρv1, ρv2, ρv3, E)T ∈ IR5,

gi(w) = f i(w)− ziw,

f i(w) = (fi1, · · · , fi5)T

= (ρvi, ρv1vi + δ1i p, ρv2vi + δ2i p,

ρv3vi + δ3i p, (E + p)vi)
T ,

Ri(w,∇w) = (Ri1, . . . , Ri5)T

= (0, τVi1 , τ
V
i2 , τ

V
i3 ,

τVi1v1 + τVi2 v2 + τVi3v3 + k∂θ/∂xi)
T ,

τVij = λ divv δij + 2µdij(v),

dij(v) = (∂vi/∂xj + ∂vj/∂xi) /2.
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The following notation is used: p - pressure (Pa), ρ - fluid
density (kg/m3), v = (v1, v2, v3) - velocity (m/s), E -
total energy (J), θ - absolute temperature (K), γ > 1 -
Poisson adiabatic constant, cv > 0 - specific heat at constant
volume, µ > 0, λ = −2µ/3 - viscosity coefficients, k - heat
conduction. The vector-valued function w is called the state
vector, the functions f i are the inviscid fluxes and Ri are
viscous terms.

System (1) is completed by the thermodynamical relations:

p = (γ − 1)(E − ρ|v|2/2), θ =
(
E/ρ− |v|2/2

) /
cv.

We consider the initial condition w(x, 0) = w0(x), x ∈
Ω0, and the boundary conditions: ρ = ρD, v =
vD,

∑3
i,j=1 τ

V
ij nivj +k ∂θ∂n = 0 on ΓI , v|ΓWt

= zD - ve-
locity of a moving wall, ∂θ/∂n = 0 on ΓWt

,
∑3
i=1 τ

V
ij ni =

0, j = 1, 2, 3, ∂θ/∂n = 0 on ΓO, with given data
w0, ρD, vD, zD.

The whole problem can easily be modified in the 2D case.

B. Discretization

We use the discontinuous Galerkin finite element method
for the space semidiscretization of the Navier-Stokes system
(1). We consider a polygonal approximation Ωht of the
domain Ωt. By Tht we denote a partition of the closure
Ωht into a finite number of tetrahedra (in 3D) or triangles
(in 2D) K with disjoint interiors. By Fht we denote the
system of all faces of all elements K ∈ Tht. Further, we
introduce the set of all interior faces FIht, the set of all
boundary faces FBht and the set of all Dirichlet boundary
faces FDht, on which Dirichlet conditions are prescribed. Each
Γ ∈ Fht is associated with a unit normal vector nΓ to
Γ. For Γ ∈ FBht the normal nΓ has the same orientation
as the outer normal to ∂Ωht. For each Γ ∈ FIht there
exist two neighbouring elements K(L)

Γ ,K
(R)
Γ ∈ Th such that

Γ ⊂ ∂K(R)
Γ ∩ ∂K(L)

Γ . We use the convention that K(R)
Γ lies

in the direction of nΓ and K(L)
Γ lies in the opposite direction

to nΓ. If Γ ∈ FBht, then the element adjacent to Γ will be
denoted by K

(L)
Γ . By d = 2 or 3 we denote the dimension

of the problem. The approximate solution will be sought in
the space of discontinuous piecewise polynomial functions
Sht = [Sht]

d+2, with Sht = {v; v|K ∈ Pr(K) ∀K ∈
Tht}, where r > 0 is an integer and Pr(K) denotes the space
of all polynomials on K of degree ≤ r. A function ϕ ∈ Sht
is, in general, discontinuous on interfaces Γ ∈ FIht. By ϕ

(L)
Γ

and ϕ
(R)
Γ we denote the values of ϕ on Γ considered from

the interior and the exterior of K(L)
Γ , respectively, and set

〈ϕ〉Γ = (ϕ
(L)
Γ + ϕ

(R)
Γ )/2, [ϕ]Γ = ϕ

(L)
Γ − ϕ

(R)
Γ . By d(Γ)

we denote the diameter of Γ.
For the time discretization we construct a partition 0 =

t0 < t1 < t2 . . . of the time interval [0, T ] and define the time
step τk = tk+1 − tk. We use the approximations wh(tn) ≈
wn
h ∈ Shtn , z(tn) ≈ zn, n = 0, 1, . . ., and introduce the

function ŵk
h = wk

h ◦ Atk ◦ A
−1
tk+1

, which is defined in the
domain Ωhtk+1

.
The resulting scheme is the following: For k = 0, 1, . . .,

find wk+1
h ∈ Shtk+1

such that(
wk+1
h − ŵk

h

τk
,ϕh

)
(2)

+b̂h(ŵk
h,w

k+1
h ,ϕh)

+âh(ŵk
h,w

k+1
h ,ϕh)

+Jh(wk+1
h ,ϕh) + dh

(
wk+1
h ,ϕh

)
+β̂h(wk

h,w
k+1
h ,ϕh) + Ĵh(wk

h,w
k+1
h ,ϕh)

= `(wk
B ,ϕ), ∀ϕh ∈ Shtk+1

.

The forms in (2) are defined on the basis of the properties
of the inviscid and viscous terms in system (1). We have

b̂h(ŵk
h,w

k+1
h ,ϕh) =

−
∑

K∈Thtk+1

∫
K

d∑
s=1

(As(ŵ
k
h(x))

−zk+1
s (x))I)wk+1

h (x)) · ∂ϕh(x)

∂xs
dx

+
∑

Γ∈FI
htk+1

∫
Γ

(
P+
g

(〈
ŵk
h

〉
Γ
,nΓ

)
w
k+1(L)
hΓ

+P−g
(〈
ŵk
h

〉
Γ
,nΓ

)
w
k+1(R)
hΓ

)
· [ϕh]Γ dS

+
∑

Γ∈FB
htk+1

∫
Γ

(
P+
g

(〈
ŵk
h

〉
Γ
,nΓ

)
w
k+1(L)
hΓ

+P−g
(〈
ŵk
h

〉
Γ
,nΓ

)
ŵ
k(R)
hΓ

)
·ϕh dS,

âh(ŵk
h,w

k+1
h ,ϕh) =∑

K∈Thtk+1

∫
K

d∑
s=1

Rs(ŵ
k
h,∇wk+1

h ) · ∂ϕh
∂xs

dx

−
∑

Γ∈FI
htk+1

∫
Γ

d∑
s=1

〈
Rs(ŵ

k
h,∇wk+1)

〉
(nΓ)s · [ϕh]Γ dS

−
∑

Γ∈FD
htk+1

∫
Γ

d∑
s=1

Rs(ŵ
k
h,∇wk+1

h )(nΓ)s ·ϕh dS,

Jh(w,ϕh) =
∑

Γ∈FI
ht

∫
Γ

σ[w]Γ · [ϕh]Γ dS

+
∑

Γ∈FD
ht

∫
Γ

σw ·ϕ(L)
hΓ dS,

dh(w,ϕh) =
∑
K∈Tht

∫
K

(w ·ϕh) divz dx,

`h(w,ϕh) =
∑

Γ∈FD
ht

∫
Γ

d∑
s=1

σwB ·ϕ(L)
hΓ dS.

As(w) is the Jacobi matrix of the flux fs(w), P±g (w,n)
denotes the positive and negative parts of the Jacobi matrix
of the flux

∑d
s=1 gs(w)ns (see [3]) and σ|Γ = CWµ/d(Γ),

where CW > 0 is a sufficiently large constant. The boundary
state wB is defined on the basis of extrapolation and the
Dirichlet conditions. The determination of the state ŵ

k(R)Γ

h
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Fig. 1. Vocal chord model in 0 ◦ state.

is based on a linearized initial-boundary value Riemann
problem described in [3].

Resulting system of linear equations was solved by GM-
RES method from PETSC [8] package.

The computation of the ALE mapping and the mesh
motion are based on an artificial stationary elasticity problem
treated similarly as in [6].

C. CFD model of vocal chords

Simplified model of glottis often used in literature and
experiments (see e.g., [16], [11]) is M5 glottal model (Fig.
1) (detailed model description can be found in [10]). A
quadrangular 3D channel of length of 6 cm and width and
depth of 1.2 cm is employed, with glottal folds beginning 0.3
cm downstream to the inlet. This model can be easily adapted
to different glottal angles from diverging (Fig. 2(a), −40 ◦)
to converging (Fig. 2(b), 40 ◦) shape. In computations in [16]
the pulsation of glottal jet was produced by vertical vibration
of vocal chords with fixed glottal divergence angle. In this
work pulsation was produced by divergent-convergent shape
change, angle ranged from −40 ◦ to 40 ◦, vibration frequency
was set to 100 Hz (i.e. time of one cycle is T = 0.01 s).
This motion does not involve absolute closure of vocal folds,
minimal clearance is 0.03 cm. Smaller clearance was not
possible due to mesh distortion. To mimic the effect of the
closure inlet velocity was reduced to 0 for 10% of the cycle
when reaching the clearance minimum i.e. diverging shape
of glottis with angle −40 ◦. This corresponds to time 0.2T-
0.3T. Cases with reduced inlet velocity are denoted as ”RIV”.
Cases with non-zero leakage during the whole phonation
cycle can occur in pathological laryngeal flow (e.g., with
vocal polyp).

Results were computed with Re =
√

∆P/ρhmax/ν =
1225 [16] based on the maximum vocal fold clearance
hmax = 0.1cm and the pressure drop ∆P = 1kPa, ρ and
ν are the density and kinematic viscosity.

Computational meshes consisting of tetrahedral or trian-
gular elements were created in GMSH ( [9]). In the current
study we used 191052 tetrahedral elements in 3D case and
21352 triangular elements in 2D case. Test functions of
quadratic polynomials were used. The time step was set
to 10−7s. Mesh resolution was subject to refinement study
(254032 tetrahedral, 43021 triangular elements), only in the
case with static boundaries and we observed only minor
changes (these results are not presented here). Model valida-
tion will be carried out by the comparison with experiments
that are in preparation in the Institute of Thermomechanics
of the Czech Academy of Sciences in Prague.

D. Results and discussion

The deflection of the glottal jet is usually found with diver-
gent shape (Fig. 2(a)), which is why only the divergent shape
was studied in [16], where authors propose hypothesis that
the dominant effect for the asymmetric glottal jet deflection is
the interaction of the jet with remnant vortices in postglottal
region.

We present results of two 2D and two 3D computations.
We show velocity magnitude at ten different time instants
- 0.002s, 0.004s, 0.006s, 0.008s, 0.01s, 0.012s, 0.014s,
0.016s, 0.018s and 0.02s during first two cycles of move-
ment. In Fig. 3 velocity magnitude contours in the 2D
case without the reduced inlet velocity (RIV) (Fig. 3(a))
and with RIV (Fig. 3(b)) are compared. We can observe
that the largest deflection occurs with the smallest clearance
(divergent shape), where the jet velocity is comparable with
velocity of the postglottal flow and that the deflection is
smaller with convergent shape. Different jet deflection be-
haviour between cases with RIV and without RIV can be the
result of weaker vortices in the postglottal region in the case
with RIV. Y-coordinate of a point with the highest velocity
0.003 cm downstream the glottal folds in six phonation
cycles is presented in Fig. 9. The 2D case without RIV shows
substantially different jet deflection behaviour than the line
representing the 2D case with RIV. Vorticity contours in Figs.
5 show different vortical structures in the case without RIV
(Fig. 5(a)) and RIV (Fig. 5(b)). These findings seem to be
in line with [16].

We furthermore present two 3D cases in Figs. 4, the case
without RIV (Fig. 4(a)) and the case with RIV (Fig. 4(b)).
The vorticity in Figs. 6 (Fig. 6(a) shows the case without RIV
and Fig. 6(b) shows the situation with RIV) displays much
weaker vortices than in the 2D case, which could (according
to [16]) imply smaller asymmetrical jet deflection. However,
as can be inspected in Fig. 9 or Fig. 10, the deflection angles
are not significantly different from 2D cases. The 2D and 3D
cases with RIV show very similar behaviour. The big peaks
on 3D with RIV line occur in the moment of RIV.

The presence of RIV seems to have effect on some vortical
structures in postglottal region as can be seen in Figs. 7 (case
without RIV (Fig. 7(a)), case with RIV (Fig. 7(b))).

When the reduced inlet velocity is used to simulate the
effect of vocal fold closure, we can observe a large vortical
structure (Fig. 8(b)) right next to vocal fold which is not
present in the case of the model with non-zero leakage
(Fig. 8(a)). This flow structure can affect the movement of
vocal folds and may play some importance when examining
difference between normal and pathological phonation. It is
important to stress that the current model is simplified and
that the real vocal folds have different shape and can produce
different flow structures near vocal folds.

E. Conclusion

Results of 2D and 3D computations of the flow in the vocal
chord were presented. Discontinuous Galerkin method was
used for spatial discretization of compressible Navier-Stokes
equations in ALE formulation. We studied effect of 2D/3D
model as well as effect of reduction of inlet velocity on the
deflection of glottal jet. We found out that our results are con-
sistent with the hypothesis, that the jet asymmetric deflection
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(a) Diverging shape of glottis, −40 ◦. (b) Converging shape of glottis, 40 ◦.

Fig. 2. Details of glottis extreme shapes.

Fig. 9. Y-coordinate of a point with the highest velocity 0.003 cm
downstream the glottal folds in six phonation cycles for two 2D and two
3D cases.

Fig. 10. Y-coordinate of a point with the highest velocity 0.003 cm
downstream the glottal folds in six phonation cycles for two 2D and two
3D cases. 3D with RIV line was multiplied by -1 to show the deflection
angles.

is result of interaction of the jet and vortices in the postglottal
region. Even though the flow structure differs significantly
between 2D and 3D flow, the resulting deflection angles are
less affected. We also showed importance of modelling the
closure of vocal folds to resulting flow structures and to the
deflection angles.
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(a) (b)

Fig. 3. Velocity magnitude in different time instants in 2D case, (a) case without reduced inlet velocity, (b) with reduced inlet velocity.

(a) (b)

Fig. 4. Velocity magnitude in different time instants in 3D case, (a) case without reduced inlet velocity, (b) with reduced inlet velocity.

(a) (b)

Fig. 5. Vorcity in 2D case, (a) case without reduced inlet velocity, (b) with reduced inlet velocity.
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(a) (b)

Fig. 6. Vorcity in 3D case, (a) case without reduced inlet velocity, (b) with reduced inlet velocity.

(a) (b)

Fig. 7. Visualization of vortical structures, (a) case without reduced inlet velocity, (b) with reduced inlet velocity.

(a) (b)

Fig. 8. Visualization of vortical structure near vocal fold, (a) case without reduced inlet velocity, (b) with reduced inlet velocity.
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