
Evolutionary Approach for the Strategy-based
Refactoring Selection

Camelia Chis̆aliţă-Creţu,Member, IAENG

Abstract—In order to improve the internal structure of
object-oriented software, refactoring has proved to be a feasible
technique. Scheduling a refactoring process for a complex
software system is a difficult task to do. Refactorings may
be organized and prioritized based on goals established by
the project management leadership, that shapes a refactoring
strategy.

The paper presents a multi-objective approach to the
Strategy-based Refactoring Set Selection Problem (SRSSP) by
treating the cost constraint and the refactoring impact as
objectives of a weighted-sum fitness function.

The first results of the proposed weighted objective genetic
algorithm on a experimental didactic case study are presented
and discussed.

Index Terms—genetic algorithm, multi-objective optimiza-
tion, refactoring, object-oriented programming, software engi-
neering.

I. I NTRODUCTION

SOFTWARE systems continually change as they evolve
to reflect new requirements, but their internal structure

tends to decay. Refactoring is a commonly accepted tech-
nique to improve the structure of object oriented software.
Its aim is to reverse the decaying process of software quality
by applying a series of small and behaviour-preserving trans-
formations, each improving a certain aspect of the system
[11].

Refactorings may be organized and prioritized based on
goals established by the project management leadership.
The SRSSP definition is based on the Refactoring Set Se-
lection Problem (RSSP) [4], [6]. Therefore, the SRSSP is
the refactoring set selection problem that combines multiple
strategy criteria in order to to find the most appropriate set
of refactorings.

The rest of the paper is organized as follows. The moti-
vation for the addressed problem is highlighted in Section
II. Section III presents close related work on refactoring
selection for the SRSSP. Useful formal notations inherited
from RSSP [4], [6], together with the formal definition for
the SRSSP are presented in Section V. Section IV gives
the definition of the Multi-Objective Optimization Problem
(MOOP). The multi-objective optimization formulation for
the SRSSP is stated in Section VI. A short description of the
Local Area Network (LAN) Simulation source code used to
study our approach is provided in Section VII. The proposed
approach and several details related to the genetic operators
of the genetic algorithm are described in Section VIII. The
obtained results for the studied source code are presented and

Manuscript received August 05, 2014; revised August 14, 2014.
C. Chis̆aliţă-Creţu is with the Computer Science Department, Faculty

of Mathematics and Computer Science, Babeş-Bolyai University, Cluj-
Napoca, Romania, 1, M. Kogalniceanu Street, RO-400084, Tel: 40-264-
405.300/5240; email: cretu@cs.ubbcluj.ro.

discussed in Section IX. The paper ends with conclusions and
future work.

II. M OTIVATION

A refactoring management process for a complex software
system has proved to be a difficult task to do [11]. Multiple
refactoring aspects of different parts of a heavy working
system need increased attention when planning the order
to refactor. Moreover, within a development team, each
programmer perceives the refactoring process in his own
manner. A refactoring strategy allows to fit each trans-
formation performed on the software system in a general
refactoring plan, following a criteria set that unifies partic-
ular transformation requests into a homogenous single and
desired development trend.

A tool [17] may be used to identify refactoring opportu-
nities for each established bounded piece of the software
system, i.e, class hierarchies, software components. Each
software programmer involved in the development process
may advance his set of refactorings that improves the internal
structure of the software piece developed by him. Thereafter,
a consistent number of refactorings is handed to the project
management leadership. It has to decide the appropriate
refactoring plan, based on the already known targets. The set
of refactorings is used to select a subset of transformations
suggested by the previously specified criteria.

The project management leadership faces several problems
within the considered context. These problems emphasize
different aspects of a complex refactoring process, as:

• a large number of refactorings advanced;
• different types of dependencies among the affected

software entities, e.g., an inherited method from a base
class is called within another method of a derived class;

• different types of dependencies among refactorings to be
satisfied when combining the transformation sequences,
i.e., applying a suggested refactoring may cancel the ap-
plication of another refactorings that have been already
selected by the developer;

• a specific refactoring priority for each software entity;
• a clear request to include a transformation within the

final refactoring plan.

III. R ELATED WORK

A closely related previous work to refactoring selection
problems is the Next Release Problem (NRP) studied by
several authors [2], [12], where the goal was to find the
most appropriate set of requirements that balance resource
constraints to the customer requests, the problem being
defined as a constrained optimization problem.

Other Feature Subset Selection (FSS) problems in pre-
vious work on Search-Based Software Engineering (SBSE)

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

include the problem of determining good quality predictors
in software project cost estimation, studied by Kirsopp et al.
[16], choosing components to include in different releases of
a system, studied by Harman et al. [13] and Vescan et al.
[20].

Previous work on search-based refactoring problems [14],
[15], [1] in SBSE has been concerned with single objective
formulations of the problem only. Much of the other existing
work on SBSE has tended to consider software engineering
problems as single objective optimization problems too. But
recent trends show that multi-objective approach has been
tackled too, which appears to be the natural extension of the
initial work on SBSE.

Existing SBSE work that does consider multi-objective
formulations of software engineering problems, uses the
weighted approach to combine fitness functions for each
objective into a single objective function using weighting
coefficients to denote the relative importance of each indi-
vidual fitness function. In the search based refactoring field,
Seng et al. [19] and O’Keeffe and O’Cinneide [15] apply
a weighted multi-objective search, in which several metrics
that assess the quality of refactorings are combined into a
single objective function.

More recent work on search based refactoring problems
[3], [4], [5] in SBSE have defined the General Refactor-
ing Selection Problem (GRSP), used to refine the Multi-
Objective Refactoring Set Selection Problem (MORSSP)
[4] and the Multi-Objective Refactoring Sequence Selection
Problem (MORSqSP) [5].

Our approach is similar to those presented in [19], [15].
The research has addressed the heterogeneous objective
functions approach, where multiple objectives are combined
together into a single weighted fitness function. Thus, we
gather up different objectives as the refactoring cost and
refactoring application impact in a single fitness function.

IV. MOOP MODEL
MOOP is defined in [21] as the problem of finding a

decision vector→x= (x1, . . . , xn), which optimizes a vector of
M objective functionsfi(

→
x) where1 ≤ i ≤ M, that are subject

to inequality constraintsgj(
→
x) ≥ 0 , 1 ≤ j ≤ J and equality

constraintshk(
→
x) = 0 , 1 ≤ k ≤ K. A MOOP may be defined

as:
maximize{F (

→
x)} = maximize{f1(

→
x), . . . , fM (

→
x)},

with gj(
→
x) ≥ 0, 1 ≤ j ≤ J and hk(

→
x) = 0, 1 ≤ k ≤ K where→

x is
the vector of decision variables andfi(

→
x) is thei-th objective

function, g(→x) andh(
→
x) are constraint vectors.

There are several ways to deal with a multi-objective
optimization problem. In this paper the weighted sum method
[18] is used.

Let f1, f2,. . . , fM be the addressed objective functions.
This method takes each objective function and multiplies it
by a fraction of one, the ”weighting coefficient” which is
represented bywi, 1 ≤ i ≤ M. The modified functions are
then added together to obtain a single fitness function, which
can easily be solved using any method which can be applied
for single objective optimization. Mathematically, the new
mapping may be written as:

F (
→
x) =

M∑

i=1

wi · fi(
→
x), 0 ≤ wi ≤ 1,

M∑

i=1

wi = 1.

For those cases where the conflicting objectives exist,
they must be converted to meet the optimization problem
requirements. Therefore, for an objectivefi, 0 ≤ i ≤ M ,
with MAX the highest value from the objective space of
the corresponding objective mappingfi that needs to be
converted to a minimized objective, there are two ways to
switch to the optimal objective:

• MAX − fi(
→
x), whenMAX can be computed;

• −fi(
→
x), whenMAX cannot be computed.

V. STRATEGY-BASED REFACTORINGSET SELECTION

PROBLEM

The Strategy-based Refactoring Set Selection Problem
(SRSSP) is mainly based on the Refactoring Set Selection
Problem (RSSP) fully formalized in [3]. SRSSP is a special
case of RSSP where the refactoring selection is enhanced by
certain criteria, e.g., refactoring application priority, refactor-
ing application type: optional or mandatory.

The SRSSP formal definition requires several input data
notations from the RSSP. Subsequently, additional terms and
notations are introduced to completely state the SRSSP.

Input Data
Let SE = {e1, . . . , em} be a set of software entities as it

was defined in [3].
The software entity setSE together with different types of

dependencies among its items form a software system named
SS. The set of software entity dependency typesSED and
the dependency mappinged are described in [3].

A set of relevant chosen refactorings that may be applied
to the software entities ofSE is gathered up throughSR =
{r1, . . . , rt}. Thera mapping sets the applicability for each
refactoring from the chosen set of refactoringsSR on the
set of software entitiesSE as it was defined in [3].

The set of refactoring dependenciesSRD =
{Before, After, AlwaysBefore, AlwaysAfter, Never,

Whenever}, together with the mappingrd that highlights
the dependencies among different refactorings when applied
to the same software entity are stated in [3].

The effort involved by each transformation is converted
to cost, described byrc mapping [3]. Changes made
to each software entityei, i = 1,m, by applying the
refactoringrl, 1 ≤ l ≤ t, are stated by theeffect mapping
defined in [3]. The overall impact of applying a refactoring
rl, 1 ≤ l ≤ t, to each software entityei, i = 1,m, is defined
asres : SR → Z,

res(rl) =
m∑

i=1

wi · effect(rl, ei),

where1 ≤ l ≤ t andwi is the weight of the corresponding
software entityei from SE.
SRe represents thesubset of refactorings that may be

applied to a software entitye, e ∈ SE [6]. Therefore,
SR =

⋃
ei∈SE SRei , i = 1,m.

SEr represents thesubset of software entities to whom a
refactoringr may be applied,r ∈ SR [6]. Therefore,
SE =

⋃
rl∈SR SErl , l = 1, t.

In [8], the refactoring-entity pair notion was introduced, as
it was required for the refactoring sequence selection problem
definition. Therefore, arefactoring-entity pairwas defined as
a tuple r̂l ei = (rl, ei) consisting of a refactoringrl, 1 ≤

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

l ≤ t, applied to a software entityei, 1 ≤ i ≤ m, where
ra(rl, ei) = T .

Let REPSet = {r̂1 e1, r̂2 e2, . . . , r̂p ep}, p ∈ N be the
set of all refactoring-entity pairsbuild over SR and SE,
wherera(rs, es) = T, 1 ≤ s ≤ p.

Refactoring Strategy
The refactoring strategy may be formally described by

one or more functionssfi, i = 1, NC, whereNC is the
total number of criteria integrated with the strategy. In the
following, a sample strategy consisting of two criteria, i.e.,
mappings, is introduced.

The development team may consider relevant that
in a specific context some refactoring applications to
be mandatory, optional or selected from a subset. Let
RType = {Mandatory, Optional, Selected} be the set
of possible refactoring types. The mappingrtype associates
a type to each refactoring fromSR as follows:
rtype : SR → RType,

rtype(r) =

M, if r applicationmandatory
O, if r applicationoptional
S, if r ∈ {r1, . . . , rq}, 0 ≤ q ≤ t

A second criterion considered by the development team
may refer the level of the affected entity when refactoring.
Let RLevel = {Attribute, Method, Class} be the
set of refactoring levels involved in the transformation
process. Therefore, the functionrlevel maps each
refactoring to the entity level that it mainly changes,
as:rlevel : SR → RLevel,

rlevel(r) =

a, if r is applied toattributes
m, if r is applied tomethods
c, if r is applied toclasses

Output Data
The strategy-based refactoring set selection means to

choose a appropriate refactoring subset such that the stated
criteria on refactorings is met, e.g., refactoring application
level and type.

Other specific conditions to be satisfied refers to the
refactoring cost and the refactoring final impact on entities.
Therefore, a multi-objective strategy-based refactoring set
selection problem (MOSRSSP) may be defined.

Multi-objective optimization often means optimizing con-
flicting goals. For the MOSRSSP formulation it is possible
to blend different types of objectives, i.e., some of them to
be maximized and some of them to be minimized.

VI. MOSRSSP FORMULATION

Multi-objective optimization often means compromising
conflicting goals. For our MOSRSSP formulation there are
two objectives taken into consideration in order minimize
required cost for the applied refactorings and to maximize
refactorings impact upon software entities. Current research
treats cost as an objective instead of a constraint. Therefore,
the first objective function minimizes the total cost for the
applied refactorings, as:

minimize
{
f1(

→
r)

}
= minimize

{
t∑

l=1

m∑

i=1

rc(rl, ei)

}
,

where
→
r= (r1, . . . , rt).

The second objective function maximizes the total effect
of applying refactorings upon software entities, considering
the weight of the software entities in the overall system, like:

maximize
{
f2(

→
r)

}
= maximize

{
t∑

l=1

res(rl)

}
,

where
→
r= (r1, . . . , rt).

The goal is to identify those solutions that compromise
the refactorings costs and the overall impact on transformed
entities. In order to convert the first objective function to a
maximization problem for the MOSRSSP, the total cost is
subtracted fromMAX, the biggest possible total cost, as it
is shown below:

maximize
{
f1(

→
r)
}

= maximize

{
MAX −

t∑

l=1

m∑

i=1

rc(rl, ei)

}
,

where
→
r= (r1, . . . , rt). The final fitness function for

MOSRSSP is defined by aggregating the two objectives and
may be written as:

F (
→
r) = α · f1(

→
r) + (1− α) · f2(

→
r) (1)

where0 ≤ α ≤ 1.
Let DS = REPSet be the decision domainfor the

MOSRSSP and
→
x= { ̂r1, e1,

̂r2, e2, . . . , ̂rs, es}, whereeu ∈ SE, ru ∈ SR, 1 ≤ u ≤

s, s ∈ N ,
→
x⊆ DS, a decision variable.

The MOSRSSP is the problem of finding a decision vector
→
x= { ̂r1, e1, ̂r2, e2, . . . , ̂rs, es} such that:

• the following objectives are optimized:

– the overall refactoring cost is minimized (rc) [3];
– the overall refactoring impact on software entities

is maximized (res) [3].

• the following constraints are satisfied:

– software entity dependencies (ed) [3];
– refactoring dependencies (rd) [3].

• the addressed strategy-based criteria are met:

– RMandatory = {r1, . . . , rrm} is the set of
mandatory refactorings, wherer1, . . . , rrm ∈ SR,

0 ≤ rm ≤ t;
– ROptional = {r1, . . . , rro} is the set of manda-

tory refactorings, wherer1, . . . , rro ∈ SR,

0 ≤ ro ≤ t;
– RSelect = {r1, . . . , rrs} is the set of single

selected refactorings, wherer1, . . . , rrs ∈ SR,

0 ≤ rs ≤ t;
– 1 ≤ rm+ ro+ rs ≤ t,

RMandatory
⋂

ROptional
⋂

RSelect = φ;
– conditions on the number of applied refactorings

on attribute, method, and class levels are met.

VII. C ASE STUDY: LAN SIMULATION

The algorithm proposed was applied on a simplified ver-
sion of the Local Area Network (LAN) simulation source
code that was presented in [10]. Figure 1 shows the class
diagram of the studied source code. It contains 5 classes
with 5 attributes and 13 methods, constructors included.

The current version of the source code lacks of hiding
information for attributes since they are directly accessed

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

Fig. 1. Class diagram for LAN Simulation

by clients. The abstraction level and clarity may be in-
creased by creating a new superclass forPrintServer
and FileServer classes, and populate it by moving up
methods in the class hierarchy.

Thus, for the studied problem the software entity
set is defined as:SE = {c1, ..., c5, a1, ..., a5,

m1, ..., m13}. The chosen refactorings that may be ap-
plied are:renameMethod, extractSuperClass, pullUpMethod,
moveMethod, encapsulateField, addParameter, denoted by
the setSR = {r1, . . . , r6} in the following. The depen-
dency relationship between refactorings is defined as follows:
{(r1, r3) = B, (r1, r6) = AA, (r2, r3) = B, (r3, r1) = A, (r6, r1) =

AB, (r3, r2) = A, (r1, r1) = N, (r2, r2) = N, (r3, r3) = N, (r4, r4) =

N, (r5, r5) = N, (r6, r6) = N}.

The values of the final effect were computed for each
refactoring, by using the weight for each existing and possi-
ble affected software entity, as it was defined in Section V.
Therefore, the values of theres function for each refactoring
are:0.4, 0.49, 0.63, 0.56, 0.8, 0.2. The full input data table
is included in [4].

Here, the cost mappingrc is computed as the number
of the needed transformations, so related entities may have
different costs for the same refactoring. Each software entity
has a weight within the entire system, but

∑23
i=1 wi = 1. For

theeffect mapping, values were considered to be numerical
data, denoting the estimated impact of applying a refactoring.
Due to the space limitation, intermediate data for these
mappings was not included.

The refactoring strategy consists of the following refactor-
ing criteria:

• RMandatory = {r2, r5};
• ROptional = {r1, r6};
• RSelect = {r3, r4}, where if r3 is applied to entity

mi, i = 1, 13, r4 will not be selected to by applied to
the same entity;

• 1 ≤ |RMandatory|+ |ROptional|+ |RSelect| ≤ 6,
RMandatory

⋂
ROptional

⋂
RSelect = φ;

• refactorings of all levels have to be selected (attribute,
method, and class).

An acceptable solution denotes lower costs and higher
impact on transformed entities, both objectives being satis-
fied. The entities dependencies and refactoring dependencies
need to be met as well, while the strategy selection criteria
constraints have to be fulfilled.

VIII. P ROPOSEDAPPROACHDESCRIPTION

The MOSRSSP is approached here by exploring the
possible application strategy for the addressed refactorings.
As its multi-objective formulation states it (see Section
VI), two conflicting objectives are studied, i.e., minimizing
the refactoring cost and maximizing the refactoring impact,
together with the constraints to be kept and the selection
strategy criteria to be followed.

There are several ways to handle a multi-objective op-
timization problem. Theweighted sum method[18] was
adopted to solve the MOSRSSP. The overall objective func-
tion to be maximizedF (

→
r), defined by the formula 1, is

shaped to the weighted sum principle with two objectives to
optimize.

Therefore,

maximize
{
F (

→
r)

}
= maximize

{
f1(

→
r), f2(

→
r)

}

is mathematically rewritten to:

maximize
{
F (

→
r)

}
= α · f1(

→
r) + (1− α) · f2(

→
r),

where0 ≤ α ≤ 1 and
→
r is the decision variable, within a

decision space.
An adapted genetic algorithm to the context of the inves-

tigated problem, with weighted sum fitness function, similar
to the one in [5], [7], is proposed here.

In a steady-state evolutionary algorithm a single individ-
ual from the population is changed at a time. The best
chromosome (or a few best chromosomes) is copied to
the population in the next generation. Elitism can very
rapidly increase performance of genetic algorithm, because
it prevents to lose the best found solution to date.

The genetic algorithm approach uses arefactoring-based
solution representation for the strategy-based refactoring set
selection problem, being denoted bySRSSGARef.

The decision vector
→

S= (S1, . . . , St), where
Sl ∈ P(SE), 1 ≤ l ≤ t, determines the entities that may
be transformed using the proposed refactoring setSR. The
item Sl on thel-th position of the solution vector represents
a set of entities that may be refactored by applying thel-th
refactoring fromSR, where anyelu ∈ SErl , elu ∈ Sl,

Sl ∈ P(SE), 1 ≤ u ≤ q, 1 ≤ q ≤ m, 1 ≤ l ≤ t. This means
it is possible to apply more than once the same refactoring
to different software entities, i.e., distinct gene values from
the chromosome may contain the same software entity.

A. Genetic Operators

Crossover and mutation operators are used by this ap-
proach, being described in the following.

Crossover Operator
A simple one point crossover scheme is used. A crossover

point is randomly chosen. All data beyond that point in either
parent string is swapped between the two parents.

For instance, if the two parents are:
parent1 = [ga[1, 7], gb[3, 5, 10], gc[8], gd[2, 3, 6, 9, 12],

ge[11], gf [13, 4]] and
parent2 = [g1[4, 9, 10, 12], g2[7], g3[5, 8, 11], g4[10, 11],

g5[2, 3, 12], g6[5, 9]], for the cutting point 3, the two
resulting offsprings are:

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

offspring1 = [ga[1, 7], gb[3, 5, 10], gc[8], g4[10, 11],
g5[2, 3, 12], g6[5, 9]] and
offspring2 = [g1[4, 9, 10, 12], g2[7], g3[5, 8, 11],

gd[2, 3, 6, 9, 12], ge[11], gf [13, 4]].
Mutation Operator
The mutation operator used here exchanges the value of

a gene with another value from the allowed set. Namely,
mutation of thei-th gene consists of adding or removing a
software entity from the set that denotes thei-th gene.

For example, if the individual to be mutated is
parent = [ga[1, 7], gb[3, 5, 10], gc[8], gd[2, 6, 9, 12],

ge[12], gf [13, 4]] and if the5-th gene is to be mutated, the
obtained offspring is

parent = [ga[1, 7], gb[3, 5, 10], gc[8], gd[2, 6, 9, 12],
ge[10, 12] gf [13, 4]] by adding the10-th software entity to
the 5-th gene.

In order to compare data having different domain values
the normalization is applied firstly. We have used two meth-
ods to normalize the data: decimal scaling for the refactorings
cost and min-max normalization for the value of theres
function.

IX. F IRST PRACTICAL EXPERIMENTS FOR THE

SRSSGARefALGORITHM

The algorithm was run 100 times and the best, worse,
and average fitness values were recorded. The parameters
used by the evolutionary approach were as follows: mutation
probability 0.7 and crossover probability 0.7. Different num-
ber of generations and of individuals were used: number of
generations 10, 50, 500, and 1000 and number of individuals
20, 50, 100, and 200.

A first experiment run for theLAN Simulation Problem
source code proposes equal weights (i.e.,α = 0.5) the
refactoring cost application and the transformation impact
within the aggregated fitness function.

Figure 2 presents the 10 and 1000 generations runs of the
fitness function (best, average, and worse) for 100 chromo-
somes populations, with11 mutated genes, forSRSSGARef
Algorithm.

There is a strong competition among chromosomes in
order to breed the better individuals. In the 100 individuals
populations the competition results in different quality of the
best individuals for various runs, from very weak to very
good solutions.

For the refactoring-based solution representation, the runs
with 10 evolutions have few very weak solutions, better than
0.3, but they are scattered over[0.2, 0.3]. The very weak
solutions for the runs with 1000 evolutions are grouped in the
upper part of[0.2, 0.3], but no weak solution has the fitness
value better than0.3. The same behavior was perceived
among best and average solutions for the 100 chromosomes
populations.

In the context of equal weights for the established objec-
tives, the obtained solutions by the applied algorithm, for
100 individual populations, whenα = 0.5 are:

• after 10 generations:
– bestF itness = 0.4499:

∗ bestChrom = [[16, 11, 23, 22, 21], [5],
[12, 16, 19, 23, 11, 14, 20] ,
[11, 20, 18, 23, 14] ,
[6] , [20, 16, 14, 15, 11, 23]];

(a) TheSRSSGARef Algorithm: Experiment with 10 generations and
100 individuals

(b) The SRSSGARef Algorithm: Experiment with 1000 generations
and 100 individuals

Fig. 2. The fitness function (best, average, and worse) for 100 individuals
populations with 10 and 1000 generations runs, with 11 mutated genes, for
the SRSSGARefAlgorithm, for α = 0.5

• after 1000 generations:
– bestF itness = 0.457:

∗ bestChrom = [[12, 23, 15, 18, 11, 20, 14],
[2, 1, 3, 4] , [13, 16, 18, 23, 14, 15, 11],
[20, 16, 19, 23] , [10], [12, 19, 20, 11, 23, 22]].

The various runs as number of generations, i.e., 10, 50,
500, and 1000 generations, show the improvement of the
best chromosome. For the recorded experiments, the best
individual obtained for theSRSSGARef Algorithmafter 1000
generations of evolution with a 100 chromosomes population,
has the fitness value of0.457. This means in small popula-
tions (with fewer individuals) the reduced diversity among
chromosomes may induce a harsher struggle compared to
large populations (with many chromosomes) where the di-
versity breeds near quality individuals.

As the Figure 3 shows it, after several generations greater
populations produce better individuals (as number and qual-
ity) than smaller ones, due to the large population diversity
itself.

A. SRSSGARef Algorithm: Impact on the LAN Simulation
source code

The best individual obtained when the refactoring cost and
impact on software entities have the same relevance allows
improving the structure of the class hierarchy. The analysis
of the best chromosome partially satisfies the initial strategy
(see Section VII).

The current version of theSRSSGARef Algorithmlessens
criteria constraints of the addressed strategy. Therefore, it

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

Fig. 3. The fitness value for the best chromosomes within populations with
20, 50, 100, and 200 chromosomes and 10, 50, 500, and 1000 generations
evolution, for theSRSSGARefAlgorithm, with α = 0.5

admits as a valid solution chromosomes where the number of
applications for the mandatory refactoringencapsulateField
is at least1. For the single selected refactorings from the set
RSelected, the current version of the algorithm accepts the
solutions that have at least an additional application of the
addressed refactoring, i.e.,pullUpMethodandmoveMethod.

X. CONCLUSIONS ANDFUTURE WORK

Refactoring may be used in complex software management
development processes to achieve several enforced targets.
Multiple refactoring aspects of different parts of a heavy
working system need increased attention when planning the
refactoring order. Refactorings may be organized and priori-
tized based on goals established by the project management
leadership.

The appropriate refactoring selection for various sized
software is a stimulating research problem. Software entity
dependencies and refactoring dependencies are the basic
intriguing elements that drive the research within this do-
main. This paper addresses the strategy-based refactoring set
selection problem.

This paper has advanced the evolutionary-based solution
approach for the MOSRSSP. An adapted genetic algorithm
has been proposed in order to cope with a weighted-sum
objective function for the required solution. Two conflicting
objectives have been addressed, as to minimize therefac-
toring cost and to maximize therefactoring impacton the
affected software entities, following a refactoring application
strategy. The run experiments used a balanced weighted
fitness function between the cost and the impact on the
entities. Further work may be done by investigating the
results where refactoring impact or the refactoring cost has
a greater weight on the fitness function.

A refactoring-based solution representation was used by
the algorithm implementation. The first recorded experiments
have lessened the constraints criteria of the refactoring strat-
egy.

Strengthening the refactoring strategy criteria is another
task that will be approached in the future. The results
achieved here will be compared to the experiments results
obtained from the entity-based solution representation for the
same algorithm.

The study of the weighted-sum fitness function will be
further investigated, by including the strategy-based criteria
in the fitness function.

REFERENCES

[1] M. Bowman, L.C. Briand, and Y. Labiche. Multi-objective genetic
algorithm to support class responsibility assignment. InIn Proceed-
ings of the IEEE International Conference on Software Maintenance
(ICSM1007), pages 124–133, 2007.

[2] A. Bagnall, V. Rayward-Smith, and I. Whittley. The next release
problem.Information and Software Technology, 43(14):883–890, 2001.

[3] M.C. Chis̆aliţă-Creţu, A. Vescan. The Multi-objective Refactoring
Selection Problem, in”Studia Universitatis Babes-Bolyai”, Series
Informatica, Special Issue KEPT-2009: Knowledge Engineering: Prin-
ciples and Techniques, July 2-4, 2009, pp. 249–253.

[4] M.C. Chis̆aliţă-Creţu. A multi-objective approach for entity refactoring
set selection problem, in”Proceedings of the 2nd International Confer-
ence on the Applications of Digital Information and Web Technologies”,
August 4-6, London, UK, 2009, pp. 790–795.

[5] M.C. Chis̆aliţă-Creţu. First results of an evolutionary approach for the
entity refactoring set selection problem, in”Proceedings of the 4th
International Conference Interdisciplinarity in Engineering, Nov. 12-
13, T̂argu Mureş, Romania, 2009, pp. 303–308.

[6] M.C. Chis̆aliţă-Creţu. The Refactoring Plan Configuration. A Formal
Model, in ”Proceedings of the 5th International Conference on Virtual
Learning, Oct. 29-31, T̂argu Mureş, Romania, 2010, pp. 418–424.

[7] M.C. Chis̆aliţă-Creţu. An evolutionary approach for the entity refactor-
ing set selection problem.Journal of Information Technology Review,
ISSN: 0976-2922, accepted paper, 2010.

[8] M.C. Chis̆aliţă-Creţu. The refactoring plan configuration. a formal
model. InThe 5th International Conference on virtual Learning (ICVL
2010), October 29-31, 2010, Târgu Mureş, Rom̂ania, pages 418–424,
2010.

[9] M.C. Chis̆aliţă-Creţu. Refactoring in Object-Oriented Modeling,
Todesco, Cluj-Napoca, Romania, 2011.

[10] S. Demeyer, F. Van Rysselberghe, T. Grba, J. Ratzinger, Marinescu R.,
T. Mens, B. Du Bois, D. Janssens, S. Ducasse, M. Lanza, M. Rieger,
H. Gall, and M. El-ramly. The lan simulation: A refactoring teaching
example. In8th Int. Workshop on Principles of Software Evolution
(IWPSE’05), pages 123–134, 2005.

[11] M. Fowler. Refactoring Improving the Design of Existing Code,
Addison-Wesley, 1999.

[12] D. Greer and G. Ruhe. Software release planning: an evolutionary and
iterative approach.Information and Software Technology, 46(4):243–
253, 2004.

[13] M. Harman, S. Swift, and K. Mahdavi. An empirical study of the
robustness of two module clustering fitness functions. InProceedings of
the Genetic and Evolutionary Computation Conference (GECCO 2005),
Washington DC, USA, pages 1029–1036, 2005.

[14] M. Harman and L. Tratt. Pareto optimal search based refactoring
at the design level. InIn Proceedings of the Genetic and Evolution-
ary Computation Conference (GECCO2007), pages 1106–1113. ACM
Press, 2007.

[15] M. O’Keefe and M. O’Cinneide. Search-based software maintenance.
In In Proceedings of the 10th European Conference on Software
Maintenance and Reengineering (CSMR 2006), pages 249–260, 2006.

[16] C. Kirsopp, M. Shepperd, and J. Hart. Search heuristics, case-based
reasoning and software project effort prediction. InProceedings of
the Genetic and Evolutionary Computation Conference (GECCO 2002,
W. B. Langdon, E. Cant-Paz, eds., Morgan Kaufmann Publishers, San
Francisco, CA, USA, pages 1367–1374, 2002.

[17] T. Mens, G. Taentzer, O., Runge. Analysing refactoring dependencies
using graph transformation, inSoftware and System Modeling, vol. 6
(2007), no. 3, pp. 269–285.

[18] Y. Kim and O.L. deWeck. Adaptive weighted-sum method for bi-
objective optimization: Pareto front generation.Structural and Multi-
disciplinary Optimization, 29(2):149–158, 2005.

[19] O. Seng, J. Stammel, and D. Burkhart. Search-based determination
of refactorings for improving the class structure of object-oriented
systems. InProceedings of the 8th Annual Conference on Genetic
and Evolutionary Computation, pages 1909–1916. ACM Press, Seattle,
Washington, USA, 2006.

[20] A. Vescan and H.F. Pop. The component selection problem as a
constraint optimization problem. InProceedings of the Work In Progress
Session of the 3rd IFIP TC2 Central and East European Conference on
Software Engineering Techniques (Software Engineering Techniques in
Progress), Wroclaw University of Technology, Wroclaw, Poland,, pages
203–211, 2008.

[21] E. Zitzler, M. Laumanss, and L. Thiele. Spea2: Improving the strength
pareto evolutionary algorithm.Computer Engineering and Networks
Laboratory, Technical Report, 103:5–30, 2001.

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

