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Abstract—Bounding Volume Hierarchies (BVHs) and k-d
trees have been used to create interactive ray tracing. Ray
tracing dynamic scenes using nVidia’s R© OptiX

TM
has already

provided thirty to sixty frames per second or better. In this
paper, we implement space partitioning methods, such as grid
method and the proximity clouds (PCs), on multiple GPUs. Our
motivation is to investigate the use of such methods for medical
applications, because there is direct one to one correspondence
between 3D voxels used in space partitioning methods and
3D voxels in the volume data. In the past, proximity Clouds
have worked well on static scenes, but object movement forces
recalculation of the scene and some preprocessing cost. This
paper investigates parallelizing these techniques on the GPU
to determine the feasibility of dynamic scenes using them. Our
scenes are made of spheres instead of volume data because at
this time we do not know of any technique that can generate
dynamically changing volume data. Interestingly, Proximity
Clouds (PCs), which typically has large gains in rendering
times compared to the 3D Grid method, emerges only slightly
better than the 3D Grid method for dynamic scenes because
both the processing and rendering costs are now added for
dynamic scenes with spheres. The 3D grid method, due to its
simpler preprocessing, may be the best choice for ray tracing
the dynamic volume data on multiple GPU.
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I. INTRODUCTION

THE goal of any grid structure is to divide the scene into
voxels. These voxels are populated with the objects in

the scene, and allow the ray to test only objects in the voxel
intersected by the ray. The 3DDDA method [9] removes
many unnecessary collision detection tests in favor of grid
traversal. The Proximity Clouds(PC) method [3] builds from
3DDDA. PCs allow for a ray to skip a larger portion of the
grid by computing how far the ray can safely jump before it
might have a collision.

Cellular automata (CA) [29], [22] could implement multi-
level interactions, and emergence of diseases [26], [2].
Complex Systems science [12] has been applied to model
events occurring in nature. Works by Prigogine [16], in
thermodynamics, and earlier work by Poincare’s on sensi-
tivity of dynamical systems to initial conditions provide the
basis for complex systems research for cellular automata
research. Limitations of simulating organic life by using
computational models have been discussed before, these
include (i) brittleness [18] of the computational medium,
and (ii) the limitations of reductionist approaches to model
organic life, which is well documented in [19]. Because
Cellular Automata uses local interactions, not the reductionist
approaches, it could provide a suitable platform to model
organic behavior such as cancerous growth patterns. Local
interactions, usually implemented for every cell, could create
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subtle interactions mimicking organic behavior. Many exam-
ples, such as flocking, and 3D games have shown remarkable
variety of emergence when a cell’s next state is based on
consulting nearby voxels. For example twenty-seven cells
could be consulted for (3x3x3= 27; 26 immediate vicinity,
and 1 itself) to decide the next state. Different non-linear
and dynamics pattern could emerge using different local
interactions strategies [17].

Volume Data provides one-to-one correspondence for use
by a Cellular Automata. The Visible Human Project sup-
ported (1989-2000) by US National Library of Medicine
(NLM) provides a detailed volume data of human body.
The process created a very detailed database of volume data
1 mm apart for the male cadaver with 1871 slices, which
when stacked create a 3D grid of volume. This created
40 Gigabyte of 3D grid data which might have to be ray
traced, or variation of raytracing called ray-casting could
be used. 3D Morphing techniques [20], and for medical
applications [7], [8] have been implemented using cellular
automata on volume data. However, real-time manipulation
of such large data is not possible with the computer systems
of today, yet GPU computing provides a promising research
direction. The rise of GPU computing has been growing
over the previous few years. GPU computing allows for
parrellization of algorithms when the algorithm allows for
it. The 3DDDA traversal algorithm remains the same when
run on the GPU and the CPU. Proximity Clouds are allowed
a different approach on the GPU. The traditional algorithms
proposed can be mapped on the GPU. The principles of
the algorithm are the same but now are rewritten using a
parallel processing implementation. The benefit is the loop
is simplified allowing the distance calculations to be run
simultaneously while building the Proximity Clouds. These
adjustments make 3DDDA/Proximity Clouds the best choice
on today’s hardware for dynamic scenes.

II. OCT TREES AND 3DDDA
Glassner’s [10] approach to ray tracing was to use oct

tree to subdivide 3D space during preprocessing. During
ray tracing, the rays traverse the leaf nodes if the octtree,
and only check those objects which pass through the leaf
nodes along the path of the ray. Fujimoto, Tanaka, and
Iwata proposed the 3DDDA algorithm [9] which provided an
efficient traversal algorithm for space partitioning techniques.
Instead of using an octtree, the algorithm defines a grid of
voxels. The ray traverses from one voxel to another along the
path of the ray benefitting from the efficient 3DDA algorithm.
This allows for a ray to only perform collision detection on
objects that are in its path rather than every object in the
scene. The benefits of the speedup due to 3DDDA were
also extended based on our earlier work on slicing extent
technique [25], [24], [5]. This work was then extended to
create Directional Safe Zones [23] to improve on proximity
clouds technique.
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Fig. 1. City Block Distance.

The size of the grid does matter as well. There is a tradeoff
between memory and speedup. The smaller the voxels the
fewer the objects a ray will have to test against. If a scene
is represented by four voxels then it is still possible that
lot of unnecessary collision calculations would have to be
computed, but the memory footprint of voxels would be
small. If the grid represents a single 1x1x1 unit in space, then
number of collision would reduce but there would be a larger
memory footprint. At some point, however, reducing the size
of grid, may force the ray to traverse empty voxels which
could be avoided if the voxels were larger. This observation
is the basis for the Proximity Cloud method.

A. Proximity Clouds

In 1994 Cohen and Sheffer[3] proposed another grid
traversal technique to speed up the ray tracing algorithm.
Similar to the 3DDDA method, the scene is divided into
many voxels. Once divided the grid cells determine a safe
distance a ray may skip between voxels. This results in
faster traversal of the voxel grid. When a ray hits a voxel,
it first determines if any objects need to be tested. If the
voxel is empty or the ray did not intersect with any object,
the ray skips ahead by the value the voxel says is safe to
skip. This allows for fewer calculations when traversing the
grid. There are a few ways this can be accomplished. Using
distance transforms, these safe values are calculated during
preprocessing.

A method that determines a safe distance to skip is the
minimum Euclidian distance between a voxel and all of the
non-empty voxels. This would give the most accurate reading
for a safe distance. A more optimized method is the city
block distance method.

The city block distance is calculated by taking the differ-
ence in x, y, and z of the current voxel with a non-empty
voxel and summing it. This is performed for all of the voxels
in the grid. This is not as accurate as the Euclidian distance,
but it lets the program avoid calling the square root function
on each of the cells. In order to compensate for the possibility
of overshooting the target, the ray is normally brought back
a grid cell, which ensures that no objects are missed, and
then allowed to continue. In the worst case for Proximity
Clouds when for the ray moves to the next cell, Proximity
Cloud method become the 3DDDA method. This technique
works great when a scene is divided across large areas, but
for very close groups the cost of building the cloud may not
justify the traditional 3DDDA method.

B. GPU Computing

Graphical Processing Units have become common in most
computers today. They have been around since the 1980s
with the goal of creating a rendering process for the system.
This allows for better processing by freeing up the CPU
from rendering by having dedicated hardware draw to the
screens. GPUs are built with many processing cores that run
in parallel. The trend has been that the GPU manufacturers
are providing APIs for traditional processing on the GPU
rather than just graphics rendering. Object hierarchy methods
such as k-d tress [13] and BVHs [11] are used for these
implementations. But the above mentioned approaches are
based on partitioning the object space and may not be
suitable for ray tracing 3D volume data as volume data does
not have any objects to build the object hierarchies on.

One main advantage to using GPUs to run processing tasks
is to give programmers access to more threading resources.
Modern day CPUs generally have two to four cores on
the standard desktops and up to sixteen cores on server
CPUs. A device running on the GPU has the potential to
have thirty-two threads on a single core. Threading is also
made easier in languages such as CUDA. On the CPU it
is up to the programmer to handle context switches during
execution, but the GPU will begin working as soon as it
is ready. This provides a massive amount of computing
power in the average consumer computer. There are three
main libraries out there that allow processing on the GPU:
Microsoft’s DirectCompute (which is bundled with DirectX
11), OpenCL, and Nvidia’s CUDA library. We have used
CUDA for our implementation.

The disadvantage is the memory constraints. For a GPU
implementation we are limited to the memory free on the
device. This is copied from the host(cpu) memory space,
but this operation can be time consuming. This paper does
not investagate acceleration techniques to buffer memory
between the two, but it is a future topic to invesagate.

C. CUDA

CUDA runs exclusively on NVidia’s GPUs [13], [21]. It
can be used as an extension to C or on its own. CUDA
files traditionally consist of some host functions; functions
run on the CPU and device functions, which run on the
GPU. Communication between the host functions and device
functions takes place through kernel methods. Host functions
do not have the ability to directly call device functions.
This function is accessible from a host and will run in
multiple threads. A kernel function is called from the host
in a different way.

III. IMPLEMENTATION

The first step in ray tracing on the GPU is to set up and run
the traditional ray tracing algorithm. On the GPU the rays
that emanate from the eye are divided into grid segments
and run on concurrent threads as described by threading
in CUDA. This results in a tremendous speedup from the
version on the CPU. The algorithm remains the same for the
kernel drawing the spheres.
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A. 3DDDA

The 3DDDA method on the GPU is similar to the version
on the CPU. A grid is still built in a similar manner. The
GPU implementation has the same algorithm when traversing
the grid. It does fire many concurrent rays similar to the
traditional one. The threads then traverse the global grid.
The pre-processing is done in one kernel, and the traversing
is done in another.

The first step is to determine which voxels are filled and
which are not. The grid is a set size on the GPU since
dynamic allocating and releasing of memory prevents real
time rendering. Each voxel is made up of a structure. Each
voxel contains a boolean to determine if it contains any
spheres, an array of indices for the spheres located in the
voxel, and three integers describing the x, y, and z position.
This helps in the parallelization since the voxel array is
declared as a single dimension array.

Building the grid is done with two separate kernels. The
first kernel is designed to empty the grid. This is needed to
register spheres with the correct grid cell. This is threaded in
the x and y directions. Each thread loops over the z direction
setting each cell to empty and resetting the array value to -
1, which represents the end of the list of spheres contained
in the voxel. This array is static because the GPU prefers
static memory to dynamic. This can become a limitation
of the system; however, when looking at enough spheres to
fill a single voxel other memory issues may be introduced.
In that case a new grid of a different size can be built or
that array can be increased. On certain cards the memory
limitations may be met building the grid and should be taken
into account.

Once the grid is reset, it needs to be populated with the
spheres contained in the spheres array defined using a float3
data type. The float3 data type is defined in CUDA and
contains three floats. The min and max of the sphere is
determined in order to create a bounding box used to fill
the voxels. Spheres also define a material, which determines
their reflectiveness and color. An array on the GPU defines
the spheres that are to be rendered. This global array is
used to populate the voxels in a second kernel. This kernel
is a single dimensional kernel that threads on the number
of spheres. Each sphere fills the cells that are contained
within its bounding box. Once this kernel is finished the
grid traversal can begin.

The final kernel in the process draws the scene. It is broken
up in the same way as traditional ray tracing, but it does not
compute the collision for each sphere, rather traversing the
grid in a device function.

B. GPU Proximity Clouds

Proximity Clouds was built using a variety of distance
computations. All of them require at least an n squared al-
gorithm to compute, usually two pass algorithm as described
in[3] is implemented. These algorithms can be parallelized
to run on the GPU. The algorithm presented in this paper
is as follow. The index represents the voxel that needs
to determine its distance. The thread in the y direction
represents a voxel that is not empty. If a thread receives a
voxel that is empty, the thread returns and asks for the next
voxel. Once all threads in a block are completed a new block

is loaded on the GPU. This builds the clouds in a way that
can be scaled to multiple GPUs and can run on any GPU.
It is possible to run this in a single warp when sufficient
threads are available. This algorithm can take any distance
computation to determine a safe distance to jump.

The speed of this algorithm comes from the parallelization
of the system. The first list is divided up into many different
threads so they can run in sync. The PC generated for the
experiment consisted of a 40x40x40 grid. The list is 64,000
in length and the second list would be of equal size for the
worst case.

IV. RESULTS

The results were run on a Windows 7 64 bit PC with 6GB
of RAM, an Intel i7 2.66 GHz processor, and an NVidia GTX
570 graphics card. The GTX 570 has 480 CUDA cores with
a graphics clock of 732 MHz and a processor clock of 1464
MHz.

A. Clustered Spheres Performance

Fig. 2. Clusted preformance of the grid and cloud

The first result looks at rendering up to 15,000 spheres
in a scene using a 20 by 20 by 20 grid. This grid size was
chosen because larger ones would time out when building as
discussed later. Since the scene has no real gaps it is expected
that the cloud and the grid would perform at the same speed.
The proximity cloud only produced a .3% increase in speed,
but it did speed up traditional ray tracing by 91.8%. One item
to take note of is the bouncing of the line. When testing,
spheres are generated at positions in the scene by looping
in the x and y directions, trying to reduce the difference of
x and y creating a balanced scene. The goal was to create
large and evenly spaced scene. There are cases where more
spheres wind up outside of primary rays causing a faster
result.

B. Clustered Spheres with Large Grid

To better demonstrate the performance of a larger grid,
the same scene as above was generated using a 40x40x40
grid. Far fewer spheres are used due to the timeout that can
occur when building the Proximity Clouds with the addition
of rendering.

Once again there is not a huge distinction between the
grid and the proximity cloud method. This is because there
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Fig. 3. Clustered preformance including non optimized ray tracer

Fig. 4. Clusted preformance of the grid and cloud

are no large empty areas. There is a 6% increase in speed
when looking at proximity clouds over the grid method, and
a 79% increase in speed over traditional ray tracing.

C. Rendering Planes of Spheres

In order to showcase the advantage that has been claimed
for Proximity Clouds, a new scene was generated, where
two planes of spheres are created. One plane is toward the
front of the scene, while the second plane is far at the back.
This allows for a large gap between them demonstrating
how Proximity Clouds increases rendering time. The grid
and Proximity Cloud methods show much faster performance
over non optimized ray tracing. The difference between
proximity clouds and the 3DDDA method is not as large
as expected. This is partially due to the size of the grid. A
40x40x40 grid can only skip the length of the grid in the best
case. This does not allow for huge performance increases
when each thread is traversing the grid simultaneously. The
average increase in speed was only 6.4% when looking at
all points on the graph, but a 94.2% increase from the non-
optimized ray tracer was achieved. As the scene grows and
becomes sparser this should only increase.

D. Proximity Cloud Generation Speed

The next set of data that needs to be looked at is the speed
at which proximity clouds can be generated. This is based
on the size of the proximity cloud, as well as how populated
the scene is. Each test below generates spheres in random
locations and tests the speed at which the Proximity Clouds
can be generated.

Fig. 5. Sparsly populated grid

Fig. 6. 10x10x10 grid generation

When building a 10x10x10 grid, it can be put in a single
warp. Building it only takes 1ms, which is a single loop
through the scene.

Fig. 7. 20x20x20 grid generation

A 20x20x20 cloud is a little bigger, but it experiences a
similar behavior to the 10x10x10 cloud. Once at 350ms it
begins to level out no matter the number of spheres added
because the scene has a sphere in every voxel.

While slower the 30x30x30 grid is still manageable.
Similar to the 20x20x20 grid, the 30x30x30 builds in the
same time scale. This is due to a large number of CUDA
cores working in parallel. The 30x30x30 grid requires the
same number of warps as the 20x20x20, thus completing in
the same amount of time.

The 40x40x40 grid requires multiple loops in order to
build. As shown in the graph, building the grid takes over
1.4 seconds, and when built with other kernels, it has the
potential of running into the kernel timeout. These results
do show that running across multiple cards can increase the
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Fig. 8. 30x30x30 grid generation

Fig. 9. 40x40x40 grid generation

speed of Proximity Clouds so that its closer to the speed it
takes to build the 10x10x10 grid. Still the speed to build the
Proximity Clouds plus the time to render is still faster than
the traditional ray tracer. It is not necessarily faster than the
grid method, but it is only slightly better.

There were no differences when between the rendering
techniques. The image below is an example of a rendering.

Fig. 10. Ray Tracing large number of spheres.

V. OBSERVATIONS

The work presented here shows massive speedups to the
overall rendering of the scene. The baseline between a
traditional ray tracer in C and the code running in CUDA
clearly shows the advantage of using a GPU. This result
shows the amount of parallelization that a ray tracer contains.
By allowing each primary ray its own thread on a GPU,
the system was able to run in fraction of the time. The
GPU version does have limitations compared to its CPU
counterpart. A CPU does theoretically have infinite time to

render the scene. The tests conducted here were required
to finish in five seconds on an NVidia GTX series GPU.
The CPU is also only limited by the system RAM or
4GB on a 64-bit machine, which is generally much larger
than the GPU. The 3DDDA method on the GPU offers
a huge speedup over the traditional method on the GPU.
Scenes containing over ten thousand spheres would render
in seconds with the traditional method, but milliseconds with
the grid. This is due to limiting the number of collision
detection operations on a per thread basis. Memory did limit
the maximum grid size in the experiments. The grid used
was 40x40x40, which resulted in 64,000 voxels. This is due
to a limitation in CUDA only allowing the indexing of 216
continuous array cells. This still greatly increased the speed,
but smaller more accurate grids can also provide much faster
results. The smaller the grid the fewer collisions take place,
making it important to maximize the grid size.

The speedup between the 3DDDA method and the tra-
ditional method was expected. The Proximity Clouds did
not add as drastic of a change. This is due to the size of
the clouds and the way a GPU works. It is possible several
rays finished faster using the GPU method, but they all must
finish for a new warp to start. The proximity clouds may
speed up individual rays but not a cluster of them in a GPU
warp.During rendering the Proximity Clouds were faster than
the 3DDDA method. That speedup was very useful, but
building of the clouds forced the speed to come closer to
the original method. This still was able to render many more
spheres than the original. The clouds were built in one kernel,
and the rendering was done in another. This would allow for
a maximum of 10 seconds of total processing time before
a GPU would time out for the entire computations. Similar
to 3DDDA the rendering is limited to memory before it hits
the timeout.

The speed of the Proximity Clouds method can increase if
multiple GPUs are used to build them or preprocessing time
could be counter separately not in the rendering. It also can
be buffered ahead. While rendering a second GPU can be
used to build the clouds for the next scene.

VI. CONCLUSIONS

Scenes consisted of thousands of spheres with the goal
of running the scene in real time. Proximity Clouds were
achieved by dividing the problem into several kernels and
allowing the GPU to compute each section. Each generated
scene consisted of building a blank voxel grid, filling the grid
with the spheres, computing the Proximity Clouds, rendering,
and updating the positions of the objects. This allowed for a
nice animation when the number of spheres was manageable,
but can quickly become choppy due to the size of the grid.
On average it took 1.44 seconds to generate the clouds. The
3DDDA provided the largest performance gain in terms of
overall speed but was slower when it came to rendering using
Proximity Clouds. This demonstrates that there is still a lot of
use for Proximity Clouds in this area. Building the clouds can
be done at a faster pace when multiple GPUs are used. This
algorithm can be run across multiple GPUs providing real
time rendering, but new ways should be addressed perhaps
increasing the speed across a single GPU. By running it in
parallel, it is possible to build the clouds in instantaneous
time. Our results show that we will need faster GPU and

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I 
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014



better capability to handle large voume data sets to ray
trace voume data sets in real-time, and to implement cellular
automata based algorithms for medical applications. The
speed increase between the clouds and 3DDDA on the GPU
demonstrates that more work should be done to come up
with better traversal methods, and continued parallelization
of both preprocessing and rendering algorithms will only
result in a better speedup.
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