

Abstract— Multi-secret sharing scheme based on cellular

automata have proven to be a secure encrypting algorithm,
although it cannot guarantee data integrity and authenticity of
shares of the participants, allowing a chosen cipher text attack.
In this work, to improve the security of multiple secret sharing
scheme (SSS) against adaptive chosen cipher text attack, we
introduce an authenticated encryption (Encrypt-then-MAC)
based on Keccak function to a cellular automata based SSS.
Taking the advantage that each cell of the cellular automata can
be processed independently, we parallelize the processes of the
SSS through CUDA technology, obtaining considerable reduction
of the temporal complexity. The processing time of the proposed
scheme is evaluated comparing with its sequential version and
the speed-up rate of the parallel algorithm respect to the
sequential one is 34 times in the best case.

Index Terms— Authenticated Encryption, Cryptography,
Cellular Automata, Parallel Processing, Secret Sharing

I. INTRODUCTION

RIVACY becomes an important concern, because
recently we are uploading big amounts of personal data to

the public cloud. Not only in personal devices, such as
cellphones, tablets or personal computers, but also in new
datacenters created by IaaS (infrastructure as a service)
providers, our personal information is uploaded with different
security characteristics and capabilities. The personal
information may be vulnerable to different attacks and leaked
to different entities. The vulnerabilities of these data arise not
only in the infrastructure layer but also in the application
layer. Recent reports indicate an increase of new ways of
capture these personal data in the application layer, in order to
be analyzed for different purposes, from marketing to spying.
These applications could be disguised as games, web pages,
email or even hosting providers.

During several years, new cryptographic algorithms with
different characteristics and capabilities have been developed
and implemented, since new attacks discover vulnerabilities
and deficiencies of the conventional algorithms. In the public
cloud applications, much information is shared among some

A Hernandez-Beccerril, Mariko Nakano-Miyatake, Hector Perez-Meana

and M. P, Ramírez-Tachiquin: Postgraduate Section of Mechanical
Engineering School, Instituto Politecnico Nacional Mexico City, Mexico.

A. Bucio R. : UPIITA-IPN, National Polytechnique Institute, Mexico,
ari.bucio@gmail.com.

authorized persons, in which the concept of secret sharing is
required. The secret sharing schemes (SSS) were proposed
separately by Shamir and Blakley in 1979 [1, 2]. Shamir
introduced the method based on polynomial interpolation
while Blakley proposed an approach to the secret by the
intersections of some high dimensional planes in a high
dimensional space. In the both cases, a numerical key is
shared among some participants such that only subset of the
qualified participants can recover the secret key. Recently the
secret image sharing (SIS) schemes [3-7] are derived from
SSS [1,2], in which secret images are shared instead of a
numerical secret key. The SIS schemes are classifies in two
categories: interpolation function (IF) based SIS, in which
secret images are shared employing Lagrange interpolation
function [3,4], and the cellular automata (CA) based SIS, in
which secret images are shared using a local transition applied
to a set of cells [5,7].

The main advantage of the CA-based method is that
multiple secret images can be encrypted and shared, while the
IF-based method only one secret image can be encrypted. This
advantage of the CA-based method presents a management of
a great amount of secret data, although it also presents a high
computational complexity. Additionally the conventional CA-
based SIS scheme can guarantee neither the integrity nor
authenticity of the encrypted shares. Applying a chosen cipher
text attack, which is widely studied attack in stream and block
ciphers, the decrypted results can be modified.

In this work, we propose a CA-based secret sharing method
with an authenticated encryption scheme (Encrypt-then-MAC)
using a keyed-hash message authentication code based on
Keccak function [16]. In the proposed scheme, any binary
files, including image files can be used as secret data instead
of secret images used in the conventional CA-based SIS [5],
therefore the proposed scheme is a CA-based multiple secrets
sharing scheme (Multi-SSS). In the proposed Multi-SSS, the
integrity and authenticity for each of the encrypted shares is
guaranteed by the Keccak function based MAC. In order to
obtain high speed operations of the SSS, the CUDA
technology is implemented to parallelize local transition
operations of CA although the Keccak hash function is
performed in batch mode. The evaluation of the processing
time of proposed parallel Multi-SSS compared with its
sequential version shows considerably speed-up, which is
more than 34 times in a large number of participants.

The rest of this paper is organized as follows: In Section 2,

A Parallel Authenticated Encryption Sharing
Scheme Based on Cellular Automata

Adrian Hernandez-Becerril, Mariko Nakano-Miyatake, Hector Perez-Meana,
A. Bucio R., Member, IAENG and M. P. Ramirez -Tachiquin, Member, IAENG

P

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

the Linear Memoryless CA algorithm, which is the base of
proposed Multi-SSS. In Section 3, we described the proposed
parallel implementation of proposed Multi-SSS. In Section 4,
the experimental results are presented and finally the
conclusions of this work are given in Section 5.

II. CELLULAR AUTOMATA

The Cellular automata (CA) are mathematical models in
which each cell of CA evolves through a number of discrete
time steps according to a set of rules based on state of the cell
and its neighborhood [5, 10-13]. Two-dimensional CA are
defined by a 4-uplet (C, S, N, f), where C is the cellular space
defined by a finite two-dimensional array of r × c cells, S is
state of each cell, N defines neighborhood and f is local
transition function that indicates evolution manner of each
cell. jia , denotes (i ,j)-th cell in C and its state in time step t

is denoted as)(
,
t
jia . The value of each)(

,
t
jia

belongs to S, where

ܵ ൌ Ժଶ ൌ ሼ0,1ሽ. The local transition function f in each

discrete time step t is applied to each cell)(
,
t
jia , i=1..r, j=1..c of

C using the neighborhood Ni,j of jia , to obtain the state of

time step t+1,)1(
,
t
jia . In the CA, the Moore neighborhoods are

generally employed [5, 6] consisting of a center cell and its
eight nearest cells around the center as shown by

ܰ ൌ ሼܽିଵ,ିଵ, ܽିଵ,, ܽିଵ,ାଵ, ܽ,ିଵ, ܽ, , ܽ,ାଵ,
																ܽାଵ,ିଵ, ܽାଵ,, ܽାଵ,ାଵሽ (1)

At time step ݐ 1, the updated state of cell ܽ is given by

ܽ,
ሺ௧ାଵሻ ൌ ݂൫ ܰ,

ሺ௧ሻ൯ ൌ ݂ሺܽିଵ,ିଵ
ሺ௧ሻ , … , ܽ,

ሺ௧ሻ, … , ܽାଵ,ାଵ
ሺ௧ሻ ሻ (2)

where 1 ݅ ,ݎ 1 ݆ ܿ	and ܰ,
ሺ௧ሻ is the set of states of the

neighbor cells of ܽ, at time ݐ. Since the number of cells on C
is finite, boundary conditions must be considered in order to
assure the well-defined dynamics of the cellular automaton. In
[5], periodic boundary conditions are taken, that is:

݅ ≡ ݆	 ሻ andݎ	݀ሺ݉		ݑ ≡ .ሻܿ	݀ሺ݉		ݒ

The local transition function f defines the property of CA,
if f is lineal, CA becomes linear CA (LCA) and it has inverse
transition function f-1. The local transition function of a LCA
is given by

ܽ,
ሺ௧ାଵሻ ൌ ݂൫ ܰ,

ሺ௧ሻ൯ ൌ ∑ ఈ,ఉܽାఈ,ାఉߣ
ሺ௧ሻ

ఈ,ఉ∈ሼିଵ,,ଵሽ ሺ݉2݀ሻ (3)

where 1 ݅ ,ݎ 1 ݆ ܿ and ߣఈ,ఉ ∈ ሼ0,1ሽ is defined by a

rule number ω , which is an integer selected from]12 ,0[nn ,

where nn is the number of neighbor cells of jia , . Here nn is

equal to 9. The rule number ω is expressed by

߱ ൌ ଵ,ିଵ2଼ିߣ ଵ,2ିߣ ଵ,ଵ2ିߣ ,ିଵ2ହߣ ,2ସߣ
,ଵ2ଷߣ										 ଵ,ିଵ2ଶߣ ଵ,2ଵߣ ଵ,ଵ2 (4)ߣ

If the rule number ω is selected, {-1,0,1} , ,, are

obtained uniquely and the updated state of)1(
,
t
jia is also

uniquely determined. The local transition function of the LCA
with rule number ߱ is denoted as ఠ݂.

The CA is classified into memoryless CA and memory CA
(MCA). In the memoryless CA, the updated state of a cell is
just determined by its neighborhood at only preceding time
step, while in MCA, the state at time ݐ 1 depends on the
state of neighboring cells at time ݐ as well as ݐ െ 1, ݐ െ 2,…,
[5 , 10-13]. In this work, we consider p-th order linear MCA
(LMCA) whose local transition function is given by

					ܽ,
ሺ௧ାଵሻ ൌ ܨ ቀ ܰ,

ሺ௧ሻ, … , ܰ,
ሺ௧ିାଵሻቁ ሺ݉2݀ሻ

																				ൌ ఠ݂భሺ ܰ,
ሺ௧ሻሻ ⋯ ఠ݂ሺ ܰ,

ሺ௧ିାଵሻሻሺ݉݀	2ሻ (5)

where 1 ݅ ,ݎ 1 ݆ ܿ and ߱ଵ,…, ߱ 	∈ ሾ0, 511ሿ. In this
case, in order to start the evolution of the LMCA, initial
configurations ൛ܥሺሻ, … , ሺିଵሻൟܥ are required. The LMCA
defined by (5) is reversible and its reserve transition function
is given by

ܽ,
ሺ௧ାଵሻ ൌ ܩ ቀ ܰ,

ሺ௧ሻ, … , ܰ,
ሺ௧ିାଵሻቁ ሺ݉݀	2ሻ ൌ ఠ݂షభ

ቀ ܰ,
ሺ௧ሻቁ െ

…െ ఠ݂భ
ቀ ܰ,

ሺ௧ିାଶሻቁ ܽ,
ሺ௧ିାଵሻሺ݉݀	2ሻ (6)

where 1 ݅ ,ݎ 1 ݆ ܿ	and ߱ଵ,…, ߱ 	∈ ሾ0,511ሿ.

III. PROPOSED PARALLEL AUTHENTICATED ENCRYPTION SSS

 The proposed Multi-SSS is a (n ,n)-threshold scheme, in
which n participants share n secret files ܵܨଵ,… , ܨܵ among
them and to reveal these n secret files, all participants must
provide their shares. In the scheme a dealer D controls all
processes, managing several secret keys. To perform parallel
implementation of the proposed scheme, each secret file is
represented by means of a byte cuboid ܥ, m=1,…,n, of size
ݔ ൈ ݕ ൈ which stands for the configuration of neighborhood ,	ݖ
of the CA.

The dealer D randomly defines the values of ݔ, and z of	ݕ
the cuboid size, which are stored as secret keys. Additional
some random bytes are added depending in the difference
between ሺ݈ܽ݊݅݃݅ݎ	݈݂݁݅	݁ݖ݅ݏ ሻ݁ݖ݅ݏ	ݎ݄݁݀ܽ݁ and ሺݔ ∗ ݕ ∗
ݖ). Different combination of (x, y, z) gives different
neighborhood configurations and as consequence of this,
different cipher texts CTm, m=1..n, are obtained as a part of
shares of each participant.

The proposed Multi-SSS scheme is divided in the three
phases: Setup phase, Sharing phase and Recovery phase [5].
Each of them is described in detail.

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

A. Setup Phase

The dealer D defines the Linear Memory Cellular Automata
(LMCA) of order n+1 and its initial configuration as follows:
 D receives each ܵܨଵ,… , ܨܵ , and generates a set of n

cuboids based on the ሺݔ, ,ݕ .ሻ valuesݖ
 D generates n random integer numbers ߱ ∈

ሾ0,511ሿ,݉ ൌ 1,… , ݊ for each plane ሺݔ, ሻ in a value z, inݕ
order to generate local transition function ఠ݂	.

 D constructs the local transition function of the LMCA of
the order n+1, which is

 ܽ,
ሺ௧ାଵሻ ൌ ൫ܨ ܰ,

ሺ௧ሻ, … , ܰ,
ሺ௧ିሻ൯ (7)

where

n

m

nt
ji

mt
ji

nt
ji

t
ji aNfNNF

m

1

)(
,

)1(
,

)(
,

)(
, 256) (mod)(),..,((8)

 D defines n components of the initial configuration of
LMCA: ܥሺሻ ൌ ܥ , with ݉ ൌ 1,… , ݊, which are the ݊
cuboids generated from n secret files.

 D generates a random cuboid based on True Random

Number Generators (TRNGs), the security of this
implementation relies in the generation of random
values. In this work we are not using Pseudo-Random
Number Generators (PRNGs) since most of the common
libraries could not be sufficient for cryptography
purposes and this type of random value generators are
not suitable for security algorithms. In this work we use
TRNGs in which the randomness is extracted from
physical phenomena, such as radioactive source decays
or atmospheric noise. These byte files are consumed by
the encryption process to generate array ܵ with the size
ݔ ൈ ݕ ൈ and considers ܵ ,ݔ ൌ ሺሻ, in order to completeܥ
the initial configuration of LMCA of order ݊ 1.

B. Sharing Phase

In this phase the dealer ܦ computes in parallel the LMCA
evolution for ܥ,… , :. These operations are given as followsܥ
 D generates an integer number ݈ ݊ 2 in random

form. This number determines the iteration of evolution.
 D evolves ሺ݈ ݊ െ 1ሻ times the LMCA defined in the

setup phase. Here to realize the evolution in parallel

form, D sends each cell value ܽݖ,
ሺ௧ሻ in an individual

thread in the GPU, having ݔ	 ൈ threads, the maximum ݕ
number of threads depends on the GPU specification. It
is worth noting that each cell value consists of ݖ values is
processed in each ሺݔ, ሻ thread. Through the evolutionݕ
of the LMCA, we get matrices {C(0),C(1),…, C(n),… C(l-

1),C(l),…, C(l+n-1)}. Each configuration ܥሺ௧ሻ, ݐ ݊, of the
evolution has a noise-like appearance.

 D generates the shares ሺ݉, ݖ ∗ ߱, ܥ ܶሻ,݉ ൌ 1,… , ݊ ,
for each participant ଵܲ, … , ܲ. Each share is composed by
three elements: the participant number ݉ , its rule
number ݖ ∗ ߱ and the cipher text ܥ ܶ . The n cipher
texts ܥ ܶ ൌ ,ሺାିଵሻܥ ݉ ൌ 1,… , ݊, are the last ݊
configurations of the evolution of the LMCA.

 The iteration number of the evolution ݈ and the last
component of the initial configuration for the inverse
CA, i.e., ܴ ൌ ሺିଵሻܥ ൌ 	ሚሺାଵሻܥ are public for all
participants.

C. Recovery Phase

In this phase, the dealer D receives the shares from all
participants so that all of them can recover the ݊ secret files.
The operations of this phase are as follows:
 The dealer D will receive the share ሺ݉, ݖ ∗ ߱, ܥ ܶሻ,

1 ݉ ݊ of each participant. Additionally D knows ݈
and ܴ because these parameters are public.

 If all ݊ participants are valid, the values (x, y, z) are
obtained from the private key to construct the
corresponding cuboid for each participant, so (n + 1)
cuboids ܥଵ,… , ܥ of size ሺݔ ൈ ݕ ൈ ሻݖ are created. Here
an incorrect size definition of each ܥ will prevent an
expected decryption result since the algorithm is
sensitive to ሺݔ ൈ ݕ ൈ ሻ variables, different combinationsݖ
of ሺݔ, ,ݕ ሻݖ values provide different plain text
,ଵܨܵ	 … , .ܨܵ

 D reveals the secret files applying inverse LMCA using
the initial configuration of the inverse CA provided by n
participants and public random cuboid. The inverse
evolution of the LMCA is iterated ݈ െ 1 times applying
the local transition function,

ܽ,
ሺ௧ାଵሻ ൌ ൫ܩ ܰ,

ሺ௧ሻ, … , ܰ,
ሺ௧ିሻ൯, which is given by

൫ܩ ܰ,
ሺ௧ሻ, … , ܰ,

ሺ௧ିሻ൯ ൌ െ∑ ఠ݂ሺ

ୀଵ ܰ,

ሺ௧ିାଵሻሻ

																																															ܽ,
ሺ௧ିሻሺ݉݀	256ሻ (9)

To perform the inverse evolution of the LMCA in
parallel form, reducing considerably computational
complexity, D sends each cell value in a separate thread
in the GPU, having ݔ	 ൈ .threads ݕ

 Finally ܦ obtains the ݊ secret files: ܵܨଵ,… , .ܨܵ

The processing times for the sharing and the recovery phases
are the same which consist in obtaining ݈ െ 1 in the evolution
and inverse evolution of the given CA.

D. Authenticated Encryption

 To authenticate cipher text ܥ ଵܶ ܥ… ܶ of each participant
ଵܲ … ܲ and assure its integrity, we use a keyed-hash message

authentication code (HMAC). The HMAC receives
ܥ ଵܶ ܥ… ܶ	 and a secret key ܭଵ ܭ… known only by the
participant and the dealer D. We generate ܥܪ ܶ ൌ
,ܭሺܥܣܯܪ	 ܥ ܶሻ|ܥ ܶ,݉ ൌ 1,… , ݊ using key Km and the
cipher text ܥ ܶ . To validate each participant, the dealer D
computes the MAC on the received ܥ ܶ using the same key
Km and HMAC function, and then compares the results with
the received MAC. If the two values are same, ܥ ܶ has been
correctly received, and the participant ܲ is validated [17].
The length of each key Km is 128 bytes.

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

 HMAC requires a cryptographic hash function, denoted by
H, and a secret key K stored by each participant	ܲ. In this
work, Keccak, which is a family of hash functions based on
the sponge construction, is considered as H. The sponge
function is a generalization of the concept of cryptographic
hash function with infinite output and works as authenticated
encryption as well as pseudo-random generator. Considering
the requirements of the proposed scheme and the desirable
properties of Keccac, we selected the Keccac function as the
hash function H for the HMAC.

 The security of the message authentication mechanism
depends directly on the cryptographic properties of the hash
function: the resistance to collision and the message
authentication property of the compression function

The definition of HMAC is as follows

ሻ݉,ܭሺܥܣܯܪ ൌ ܪ ቀሺ݀ܽ⨂ܭሻቚܪ൫ሺ݀ܽ݅⨂ܭሻห݉൯ቁ

HMAC is divided in two phases: encryption and decryption.

In the HMAC encryption phase, a keyed-hash message
authentication code based on SHA-3 Keccak is used. Once the
cipher texts obtained by CA sharing phase, the dealer D
processes the Keccak based HMAC using cipher text CTm and
cryptographic key Km of each participant Pm to obtain hash
data HCTm, m=1..n. The hash data ܥܪ ଵܶ, … ܥܪ, ܶ , which
are used to verify the integrity and authentication of each
cipher text before the recovery phase of CA, are assigned to
each participant. In this work, the parameters used for Keccak
function are ݎ ൌ 1600, ܾ ൌ 1024, respectively.

 In the HMAC decryption phase, the dealer D receives from
each of the ݊ participants their cipher text and their hash
values ܥܪ ଵܶ, … ܥܪ, ܶ. The dealer D validates each of the
participants with their cryptographic key avoiding any cipher
text chosen attack, ensuring data integrity and authentication
for each participant.

E. Private Keys used in proposed Multi-SSS

In the proposed Multi-SSS, several private keys are managed
to increase the security, which are as follows:

 ݈ : The number of iterations required to evolution and
inverse evolution of the CA, which equivalent to the
encryption and decryption process.

 ሺ߱ଵ,⋯ ,߱ሻ ∗ ݖ : The lambdas used in the local
transition function of CA, which are determined by
integer values ω and z.

 x, y and z: This values define the cuboid to be
processed in parallel implementation of Multi-SSS.

 Cryptographic key for the HMAC of 128 bytes.

IV. RESULTS

The number of processing cores of the GPU is a key factor of
the processing speed in any parallel schemes. In the proposed
scheme, ݖ values in ሺݔ, ,ሻ are processed in a parallel threadݕ
therefore more parallel threads implies less tasks to be
performed with less time steps. In Table I, some new

available GPUs are shown together with their specifications.
In this work we used a GeForce GTX 770M due to its
availability, however some newer GPUs with more processing
cores, such as GeForce GTX 880M, can provide better
performance from speed up points of view.

TABLE I
GPUS SPECIFICATIONS

 GeForce
GTX 770M

GeForce
GTX 870M

GeForce
GTX 780M

GeForce
GTX 880M

Chip GK 106 GK 104 GK 104 GK 104
CUDA
Cores 960 1344 1536

1536

Core clock
base 811 Mhz 941 Mhz 823 Mhz

954 Mhz

Memory
clock 2000 Mhz 2500 Mhz 2500 Mhz

2500 Mhz

Memory 3072 MB 6144 MB 4096 MB
8192 MB

Memory
Interface 192 bit 192 bit 256 bit

256 bit

To evaluate time consuming of the proposed

implementation of the CA-based Multi-SSS scheme in a
parallel and sequential way, we vary the number of
participants n={5,10,15,20,25}, and six different file sizes,
500 KB, 1000 KB, 2500 KB, 5000 KB, 10000 KB and 50000
KB. The total memory size in MB used in the proposed
parallel implementation for different number of participants
and total secret files size is described in Table II, which
indicates the feasibility of proposed system in any GPU,
although large number of participants share large amount of
secret data.

TABLE II

TOTAL MEMORY USED IN EACH ENCRYPTION PROCESS IN MB.
n 500 KB 1 MB 2.5 MB 5MB 10 MB 50 MB

5 2.5 5 12.5 25 50 250

10 5 10 25 50 100 500

15 7.5 15 37.5 75 150 750

20 10 20 50 100 200 1000

25 12.5 25 62.5 125 250 1250

Fig. 1 shows the speed-up ratio between the parallel and
sequential CA encryption implementation. In the actual
available GPU, we achieved more than 34 times speed-up
ratio compared with the conventional sequential
implementation. Time is measured in milliseconds and only
considering the computation of ܥ from ݈ െ 1 to ݈ ݊, no I/O
time is taken into account. To compare the processing time of
the parallel solution with the conventional sequential one in
the encryption and decryption process in a fairly manner, the
same ݈ ൌ ሺ݊ 2ሻ ∗ 2 is used in both cases.
 It is important to note that the same code is used in both,
sequential and parallel CA encryption, leaving the compiler
makes the adjustment to the two different hardware
implementations. The difference of processing time between
encryption and decryption can be negligible since only one
arithmetic operation is different between them.

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

Fig 1. Speed-up Ratio between parallel and sequential implementation for CA
Encryption.

Due to the Keccak hash function is not a natural parallel
algorithm, the HMAC operation cannot be done in parallel,
and instead we perform the Keccak algorithm in batch mode.
As a future work, a parallel Keccak implementation is
considered, decreasing moreover the total processing. So in
this work, we only focused in the parallel Keccak batch mode,
since in practical implementation, the dealer ܦ can derive the
process of ܥ ܶ of each participant ܲ to the GPU. Fig. 2
shows speed-up ratio between GPU and sequential processor
implementation under different number n of participants. It is
worth noting that although the Keccak batch mode is used, we
get more than 18 times of the speed-up ratio compared with
the sequential operation if the number of participants is large,
such as n=500. For a practical point of view for n <500,
Keccak will be executed in sequential mode, CA speed-up
ratio will be considered for algorithm comparisons between
sequential and parallel implementations.

Fig 2. Speed-up Ratio between GPU and sequential processor
implementation, in which HMAC is performed by Keccak batch mode.

As mentioned in Section III, the ݖ array size is generated
randomly to define the cuboid size, all ݖ values will be
processed by a single thread and its performance will depend
on the ݖ array size. In Fig. 3 we show different file sizes with
different ݖ array sizes under the number of participants	݊ ൌ 5,
and from this figure we concluded that bigger ݖ array sizes
have a direct impact in the processing time in the GPU. The 5
times bigger z value provides 1.18 times more processing time
compared with the smaller ݖ array sizes. It is important to note
that the size of the private key will depend on ݖ, the smaller z
provides smaller length of private key.

Fig 3. Time in milliseconds in the Parallel Encryption with different ݖ values.

Fig. 4 shows an operation example of proposed Multi-SSS
scheme using color images as the secret data. In this case, the
number of participants is equal to 3 and they share three secret
color images, as shown in Fig. 4(a), among them. The noise-
like images obtained of LMCA after 10 time steps are shown
in Fig. 4(b) and the recovered images after the inverse
evolution of the LCMA are shown in Fig. 4(c). From the
figure, we can observe that the proposed Multi-SSS performs
correctly with an authentication mechanism of cipher texts
(Fig. 4(b)) in the decryption process before inverse evolution
of CA. The speed-up ratio of the parallel implementation
respect to the sequential version in this particular example is
approximately 22 times.

500 KB 1000 KB 2500 KB 5000 KB 10000 KB 50000 KB
18

20

22

24

26

28

30

32

34

36
Speed-up Ratio CA Encryption

File Size

5 n
10 n
15 n
20 n
25 n

25 n
20 n 15 n

10 n

5 n

100 KB 200 KB 500 KB
6

8

10

12

14

16

18

20

22

File size

Speed-up Ratio Keccak Batch Mode

5 n
10 n
15 n
20 n

5 n

10 n

15 n

20 n

1 MB 5 MB 10 MB 50 MB
0

500

1000

1500

2000

2500

3000

3500

File size

m
ill

is
ec

on
ds

Parallel Encryption with different z values

2 z
4 z
6 z
8 z
10 z

10 z

8 z

6 z

4 z

2 z

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

(a)

(b)

(c)

Fig. 4 (a) Secret images used in experiment, (b) shadows obtained the
evolution of LMCA, (c) recovered secret image after the inverse evolution of

LMCA.

V. CONCLUSIONS

The main purpose of this work was to propose a Multi-SSS
that comply with high computation speed and mechanism of
data integrity and authenticity using a keyed-hash message
authentication code (HMAC) based on Keccak function. These
characteristics are indispensable in new public cloud
applications, in which big amounts of data are transferred and
millions of users are interconnected sharing their information,
which could be sensible data. To reduce high computational
complexity required by the conventional CA-based Multi-SSS
to manage a large amount of data, in proposed scheme, each
secret file is converted in cuboid and operated in parallel using
CUDA technology in GPUs. In the actual available GPU, we
achieved more than 34 times speed-up ratio compared with the
conventional sequential implementation. According to the
hardware evolutions and emerge of new generation GPUs with
higher speeds and higher number of cores, a higher reduction
of temporal complexity of proposed scheme can be expected.

In proposed Multi-SSS, to guarantee data integrity and
authenticity, an authenticated encryption algorithm in an
encrypt-then-mac scheme and a keyed-hash message
authentication code (HMAC) based on Keccak function is
used. It is worth noting that in the speed-up ratio mentioned
above, the whole process of the proposed Multi-SSS is
considered, including HMAC operation, which must operate in
batch mode due to lack of a parallel algorithm of Keccak
function.

This authenticated encryption scheme is practically ideal
for client-server applications in which the information must be
shared with a group of users avoiding the server to recover the
information without the explicit consent of all users.

As a future work, we consider the parallelization of the
Keccak function to perform a complete parallelization of the
Multi-SSS with authenticated encryption scheme, guaranteeing
data integrity and authenticity in public cloud applications.

ACKNOWLEDGMENT

The authors thank CONACYT (Consejo Nacional de
Ciencia y Tecnología/National Council for Science and
Technology) for financial support received during this
research.

REFERENCES

[1] A. Shamir, How to share a secret, Communication ACM 22 (1979) 612-

613.

[2] G. Blakley, Safeguarding cryptographic keys, in: National Conferenceon
AFIPS, US, 1979.

[3] C.C. Lin, W.H. Tsai, Secret image sharing with steganography and
authentication, Journal of Systems and Software 73 (2004) 405-414.

[4] C.C. Chang, Y.P. Hsieh, C.H. Lin, Sharing secrets in stego images with
authentication, Pattern Recognition 41 (2008) 3130-3137.

[5] G. Alvarez, L.H. Encinas, A.M.D. Rey, A multisecret sharing scheme
for color images based on cellular automata, Information Sciences 178
(2008) 4382-4395.

[6] J. Jin, Z.H. Wu, A secret image sharing based on neighborhood
configurations on 2-D cellular automata, Optics & Laser Technology 44
(2012) 538-548.

[7] W.P. Fang, Parallel processing for secret image sharing, International
Symposium on Parallel and Distributed Processing with Applications 1
(2010) 392-396.

[8] W.P. Fang, S.J. Lin, Fast secret image sharing scheme in HPC, in:
International Conference on High-Performance Computing, India, 2009.

[9] M. Garland, Parallel computing with CUDA, in: Parallel AMP
Distributed Processing IPDPS 2010 IEEE International Symposium 1
(2010) 1-2.

[10] N. Packard, S. Wolfram, Two-dimensional cellular automata, Journal of
Statistical Physics 38 (1985) 901-946.

[11] T. Toffoli, N. Margolus, Invertible cellular automata: A review, Physica
D 45 (1990) 229-253.

[12] R.A. Sanz, Reversible cellular automata with memory: two-dimensional
patterns from a single seed, Physica D 175 (2003) 1-30.

[13] E. Fredkin, Digital mechanics, an informal process based on reversible
universal cellular automata, Physica D 45 (1990) 254-270.

[14] G. Roelofs, PNG: The Definitive Guide, O’Reilly & Associates,
Sebastopol, 2003.

[15] Adrian Hernandez-Becerril, Mariko Nakano-Miyatake, Marco Ramirez-
Tachiquin, Hector Perez-Meana, Parallel Implementation of Multiple
Secret Image Sharing Based on Cellular Automata, Journal of
Communication and Computer 10 (2013) 649-660

[16] G. Bertoni, J. Daemen, M. Peeters and G. Van Assche, The Keccak
reference, round 3 submission to NIST SHA-3, 2011

[17] Federal Information Processing Standards Publication, The Keyed-Hash
Message Authentication Code (Hmac),
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

