
 

 

Abstract— The blood-brain barrier (BBB) presents a real 

challenge to the pharmaceutical industry. The BBB is a very 

effective screener of diverse kinds of bacterial infections. 

Unfortunately, this functionality prevents from many drugs to 

penetrate it. In order to improve drug development process an 

assessment model is required. Effective assessment model can 

drastically reduce the development time, by cutting off drugs 

with low success rates. It also saves considerable amount of 

money since clinical trials focus mainly on drugs with higher 

likelihood of permeation.  

This work addresses the challenge by means of artificial 

neural net (ANN) based assessment tool. Neural network based 

approach is well known in the pharmacokinetic domain. In 

comparison with multi-linear regression, ANNs are more 

flexible, robust, and better at prediction. Another addressed 

issue is that drug data often contains correlated or skewed 

information. This can then lead to the construction of poor 

regression models.  

The presented assessment tool is combined of a neural net 

ensemble, a group of trained neural nets that correspond to an 

input value set with a prediction of the barrier permeation. The 

returned output is the median of the ensemble’s members 

output. The input set is composed of drug physicochemical 

properties such: Lipophilicity, Molecular Size (depends on 

Molecular Mass/Weight), Plasma Protein Binding, PSA – Polar 

Surface Area of a molecule, and Vd – Volume of Distribution, 

and Plasma Half Life (t ½).  

Given the relatively small learning data-set, leave one out 

(LOO) which is a special case of k-fold cross validation is 

conducted. Although the training effort for building ANNs is 

much higher, in small data-sets ANNs yield much better model 

fitting and prediction results than the logistic regression. 

 
Index Terms— BBB, Pharmacokinetics, Neural net, Brain to 

plasma ratio. 

 

I. INTRODUCTION 

he blood-brain barrier (BBB) presents a real challenge 

to the pharmaceutical industry. The BBB is very 

effective screener of diverse kinds of bacterial infections. 

Unfortunately, this functionality also prevents many drugs 

from penetrating it. In order to improve drug development 

process an assessment model is required. Effective 

assessment model can drastically reduce development times, 

by cutting off drugs with low success rates. It also saves 

considerable amounts of money since clinical trials focus 
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mainly on drugs which are more likely to succeed on their 

task.   

A. Pharmacology perspective 

The Blood Brain Barrier (BBB) consists of a monolayer 

of brain micro vascular endothelial cells (BMVEC), which 

are joined together by tight junctions and form a cellular 

membrane [1][2]. BMVECs surrounded by a basement 

membrane, together with other components: pericytes, 

astrocytes and microglia, compose a neurovascular unit [2].  

 The BBB has a carrier function which is responsible for 

the transport of nutrients into the brain and removal of 

metabolites from it. While small lipid-soluble molecules 

(e.g. ethanol) diffuse passively through the BBB, other 

essential polar nutrients (glucose, amino acids) require some 

specific transporters. The BBB has also a barrier function 

that restricts the transport of potentially toxic substances 

through the BBB. This is achieved by a para-cellular barrier 

(tight endothelial junctions); trans-cellular barrier 

(endocytosis and trans-cytosis); enzymatic barrier (proteins 

with enzymatic activities) and efflux transporters. The 

specific barrier function of the BBB is important for 

preventing Central Nervous System (CNS) from harmful 

xenobiotics, but at the same time, prevents or limits the 

penetration of many drugs to the CNS [3]. 

The ability of these drugs to penetrate the BBB or be 

transported across the BBB is mainly dependent on their 

physiochemical properties and their affinity to a specific 

transport system [4]. 

 

B. Common Descriptors 

Drug distribution into the CNS depends on the 

physicochemical properties of the compound, including: 

lipophilicity (logP), molecular weight (MW), and PK 

parameters such as: protein binding, volume of distribution 

(Vd), half-life etc. [5].  

• Lipophilicity - Compound lipophilicity plays an 

important role in the absorption, distribution, metabolism, 

and excretion (ADME) of therapeutic drugs. Lipophilicity is 

often expressed as Log P, logarithm of partition coefficient P 

between lipophilic organic phase (1-octanol) and polar 

aqueous phase. While high degree of lipid solubility favors 

crossing the BBB by transmembrane diffusion, it also favors 

uptake by the peripheral tissues, thus it can lower the amount 

of the drug presented to the BBB [6]. In many situations 

lipophilicity is a good predictor of BBB penetration [7]. 

• Molecular weight - The optimal molecular mass for 
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passage into the brain lies in the region of 300 to 400 Da 

[8][9][10] [11]. The best approximation of molecular size 

influence on BBB penetration is that it is inversely related to 

the square route of a molecular weight [12]. 

A limited number of drugs with high lipophilicity and low 

molecular size can penetrate to the brain mainly by passive 

diffusion.  

• Polar Surface Area (PSA) - PSA is defined as the sum 

of polar atoms surface (oxygen, nitrogen and attached 

hydrogen) in a molecule. This parameter has been shown to 

correlate very well with BBB penetration [13][14]. BBB 

permeation decreases 100-fold as the surface area of the 

drug is increased by 2-fold (from 52 angstroms to 105 

angstroms) [8]. 

• Protein binding - The extent of drug distribution into 

tissues, including the CNS, depends on the degree of plasma 

protein binding (albumin, α1-acid glycoprotein, and 

lipoproteins). Only unbound drug is available for passive 

diffusion through the BBB and for pharmacologic effect. 

The penetration rate into the brain is slow for highly protein-

bound drugs [15]. 

• Volume of distribution (Vd) - is a proportionality factor 

that relates to the amount of a drug to its measured 

concentration. The apparent volume of distribution is a 

theoretical volume of fluid into which the total drug 

administered would have to be diluted to produce the 

concentration in plasma. Some drugs distribute mostly into 

fat, others remain in extracellular fluid, while the rest are 

bound extensively to specific tissues. For a drug that is 

highly tissue-bound, very little drug remains in the 

circulation, thus plasma concentration is low and volume of 

distribution is high [16]. 

• Brain/Plasma ratio (Permeation measure) - The most 

common method to study brain penetration in vivo is the 

determination of the brain/plasma ratio in rodents. For that, 

the test compound is dosed and both plasma and brain are 

sampled. The logBB describes the ratio between brain and 

blood (or plasma) concentrations and provides a measure of 

the extent of drug permeation through the BBB 

 

tot.blood
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Another in vivo measurement of CNS permeation is the 

log of the permeability-surface area coefficient (log PS) 

which is considered to be the most appropriate in vivo 

measurement [17][18]. However, this is a resource-intensive 

measure that requires microsurgical expertise. This method’s 

advantage is by eliminating drug’s serum binding. 

Nevertheless, by using log BB together with plasma protein 

binding, one can produce same or even better results. 

 

During drug development, in vitro, ex vivo and in vivo 

models have been developed in order to examine the 

mechanisms by which different drugs penetrate the BBB. 

Tissue distribution studies are commonly conducted by a 

traditional method using radiolabeled compounds. Brain 

tissue is homogenized and precipitated, and the total brain 

concentration of the radioactive compound is determined 

using liquid scintillation counting and related to its 

concentration in plasma. 

An alternative method is quantitative microdialysis, a 

widely used technique that permits quantifications of drug 

transport to the brain. Drug concentrations measured by 

microdialysis are influenced by properties of the probe and 

perfusion solution, by the post-surgery interval in relation to 

surgical trauma, and tissue integrity properties [19]. 

All the mentioned methods for drugs permeation to the 

BBB are labor intensive, demand expensive compounds and 

equipment and use many animals. Rapid screening methods 

can speed up discovery and minimize the number of drug 

candidates for further detailed studies.  

Such computational models which exist since the 1980’s  

are based on drug’s lipophilicity, hydrogen-bond potential, 

pKa/charge and molecular size [20][21][22][23][24]. 

However, in these models, other factors that can determine 

drug’s concentration at the brain capillary surface, are not 

included. Factors such plasma protein binding or volume of 

distribution (Vd), which are present in the presented model 

The rest of the paper is organized as follows: Section II 

introduces known structured and non-structured based 

modeling methods in pharmacokinetics, and present the 

neural-net based model. In Sections III,IV,V  we present 

data pre-processing, training, and testing results, 

respectively. Finally, in Section VI, we introduce the 

architecture for implementation, and show results. 

 

 

II. MODELING TECHNIQUES 

Diverse modeling techniques such multi-linear regression, 

clustering, Neural nets, Bayesian neural nets [25], and 

decision-trees [26] where introduced with regard to 

pharmacokinetics modeling.  

A fashionable classification of BBB permeation as appear 

in some published papers is to classify the BBB permeation 

measure into two classes: “good” (CNSp+), and “bad” 

(CNSp-) [27]. While the measure is indeed qualitative, a 

finer resolution classification may provide better comparable 

order between candidate drugs performance.  

A neural network (ANN) is a mathematical model which 

is based on the biological brain structure. Interconnected 

processing units that form a network.  

A. ANN for Pharmakokinetic Modeling 

 Neural network based approach is well known in the 

pharmacokinetic domain [27]. In comparison with multi-

linear regression, ANNs are more flexible, robust, and better 

at prediction [28]. Furthermore, multi-linear regression is 

more sensitive to the relationship between the number of 

patterns and number of variables, thus it needs to be 

monitored in order to avoid chance effects [29]. Another 

disadvantage is that drug data often contains correlated or 

skewed information. This can then lead to the construction 

of poor regression models [28]. 

A distinguishing feature of neural networks is that 

knowledge is distributed throughout the network itself rather 

than being explicitly written into the program. The network 

then learns through exposure to diverse input set with known 
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output.  

 

 

Fig. 1. Better uniformity in distribution with Log VD 

 

III.  DATA PRE-PROCESSING 

Relevant data of 47 drugs was collected from the 

literature. Only drugs for which all required metrics were 

available, were collected.   

A. Consideration 

Neural network training can be executed in a more 

efficient manner if certain preprocessing steps on the 

network inputs and targets are performed. Prior the network 

design process, the data is collected and prepared. It is 

generally difficult to incorporate prior knowledge into a 

neural network; therefore the network can only be as 

accurate as the data that is used for training it. After the data 

has been collected, there are two crucial steps to be 

performed before training starts: the data is uniformly 

distributed and then normalized. 

B. Data Distribution 

Some properties of the collected drugs have poor 

distribution. ANN prediction results tend to be more 

promising when the data is properly distributed. In order to 

improve the data distribution log operator was applied on 

Vd, Half Life and Brain to Plasma Ratio properties. Vd 

values are presented in Fig. 1. It can be concluded from Fig. 

1 that input data has better distribution using a log operation 

with regard to Vd. 

C. Normalization 

Normalized data has a common base, which means that 

every member is evaluated for each metric with respect to 

other members metric in the group on a scale range of [-1,1]. 

ANN’s perform much better on normalized data sets. The 

normalization step was applied on the input and the target 

vectors of the data set (BBB permeability).  

D. Measures and precision concern 

As mentioned in Section II the permeability measure 

should be qualitative rather than quantitative. This is due to 

the fuzzy nature of measurement and lack of persistence. For 

example, plasma to brain ratio of Clozapine (Clozaril) 

appears as 24 [30], or 4.1 [31], which is a large gap. 

Therefore it was decided that the drugs will be divided into 

four permeability groups in the range 1-4 where 1 is the least 

permeable drug, and 4 is the most.  A deviation value of 1 is 

acceptable, and considered a success. That means that a drug 

that was detected as group 3 and is actually a member of 

group 4, will be considered a positive detection.  

IV. TRAINING 

The chosen ANN topology was a feed-forward back 

propagation network. In such topology, each input measure 

is connected to an input neuron; there may be one or more 

hidden layer neurons, and an output neuron that provides the 

output measure (permeability).  

A. Hidden layer size 

One should take into consideration when comparing 

networks with relatively similar accuracy, that the smaller 

the network, the more general it is in terms of model. When 

the network size increases, it may just encapsulate the 

specific data set instead of the general model. In order to 

determine the proper hidden layer size, an initial training 

 

 

Fig. 2. Validation/training error vs. hidden layer size 

 

phase was conducted on networks with variable hidden layer 

size. As reflected in Fig. 2, it infers that a hidden layer of 2 

to 3 neurons provides best results. Bigger layers maybe 

provide better results with respect to the training error, but 

this result is actually misleading since it is a symptom of 

over-fitting. As shown in Fig. 2, beyond 3 neurons in the 

hidden layer, the validation error actually increases and 

those networks reduce generalization.    

 

B. Early stopping 

In machine learning, early stopping is a known method for 

improving generalization. The data is divided into training-

set and validation-set. 

The training set is used for computing the gradient and 

updating the network weights and biases. The validation set 

is used for monitoring. The error on the validation set is 

monitored during the training process. The validation error 

normally decreases during the initial phase of training, as 

does the training set error. However, when the network 

begins to over-fit the data, the error on the validation set 

typically begins to rise. When the validation error increases 

for a specified number of iterations, or beyond a predefined 

threshold –Alpha, the training is stopped. Early stopping is 
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effectively limiting the used weights in the network and thus 

imposes regularization. 

C. Cross validation 

In small data sets leave-one-out (LOO) cross-validation is 

normally applied. This is a special case of k-fold cross 

validation [27][32]. With a very small sample size (18 

bankrupt and 18 non-bankrupt firms), Fletcher and Goss 

employ an 18-fold cross-validation method for model 

selection. Although the training effort for building ANNs is 

much higher, ANNs yield much better model fitting and 

prediction results than the logistic regression [33]. 

D. Net tournament  

During the cross validation, and for each fold, a 

tournament between 100 networks was conducted. Only the 

winner network with best results during this fold (minimal 

error) was retained, as illustrated in Fig. 3.  

E. ANN ensemble 

Since a network training tournament is performed for each 

fold, the outcome is a group of winning ANN’s, one for each 

sample. Most often one would pick the best performing 

network.  Nevertheless, here we suggest a different 

approach, i.e. a neural net ensemble. A neural net ensemble 

is a group of ANN’s that provides a single output to a given 

input. This output can be the average of the ensemble 

members output, a quorum based result, median, etc. In this 

work we have used the median of ensemble members output 

as the ensemble’s output. 

 

 

Fig. 3. design structure of the learning phase and ensemble generation 

V. TESTING 

• The preprocessed data was repetitively (several 

hundred test cycles), and randomly divided into a Training 

(80%) and Testing (20%) groups 

• The training set was utilized to generate the ANN 

ensemble. 

• Drug data from the test group was presented to the 

ensemble, and its output was compared to the known one- in 

terms of permeation group membership. 

• Results were grouped with accordance to the delta 

between the predicted and actual permeability group (see 

Section III.D)  

 

 The test phase is illustrated in Fig. 4. Fig. 6 provides a 

graphical presentation of the results. The presented results 

are the average of several hundred runs. In addition, diverse 

early stopping settings were investigated it terms of maximal 

number of epochs, and alpha. Most combinations provided 

similar and satisfactory results of 89% success rate. 

Fig. 4. Test phase 

 

VI. ARCHITECTURE 

The first analysis to determine the hidden layer size was 

conducted both on Matlab and the Encog framework.  

Next phases as described in Section V, were implemented 

in C# using the Encog .NET package. Data was saved on a 

server database. The application was designed as a 

client/server application. An illustrative screenshot of the 

training phase is presented in Fig. 5. 

 

VII. CONCLUSION 

In this paper, we propose a new ensemble neural net 

based mechanism as an evaluator for drug-BBB permeation. 

Design time evaluator for drug development – in particular, 

by providing finer permeation classification, with relatively 

high success rates. Due to the small given data set, a leave 

one out cross validation technique was performed.  

Our goal is to develop an approach that allows an 

interactive drug design that is less labor intensive, or 

demand expensive with respect to compounds/equipment, 

thus uses less animals. This can be achieved by using such a 

mechanism for scoring candidates, and performing the more 

expensive pre-clinical stages on the provided best 

candidates. 

 

Our specific contribution in this work is twofold. We have 

incorporated plasma protein binding as a parameter into the 

model, and we also propose the modeling mechanism that 

provides finer permeation resolution while coping with 

relatively smaller data sets. The benefits of this approach 

have been discussed in this work. 

One main avenue for a future research involves larger 

dataset incorporation. We would also like to extend our 

model with metrics such as: Hydrogen-bonding (Hydrogen 

bond acceptor/donor), and drug’s affinity to efflux 

transporters such as P-glycoprotein (P-gp). 
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Fig. 5. Training phase UI 

 

Fig. 6. Permeability group detection precision 
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