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Transreal Limits Expose Category Errors in

IEEE 754 Floating-Point Arithmetic
And in Mathematics

James A.D.W. Anderson and Tiago S. dos Reis

Abstract—The TEEE 754 standard for floating-point arith-
metic is widely used in computing. It is based on real arithmetic
and is made total by adding both a positive and a negative
infinity, a negative zero, and many Not-a-Number (NaN) states.
The IEEE infinities are said to have the behaviour of limits.
Transreal arithmetic is total. It also has a positive and a negative
infinity but no negative zero, and it has a single, unordered
number, nullity.

We elucidate the transreal tangent and extend real limits to
transreal limits. Arguing from this firm foundation, we maintain
that there are three category errors in the IEEE 754 standard.
Firstly the claim that IEEE infinities are limits of real arithmetic
confuses limiting processes with arithmetic., Secondly a defence
of IEEE negative zero confuses the limit of a function with
the value of a function. Thirdly the definition of IEEE NaNs
confuses undefined with unordered. Furthermore we prove that
the tangent function, with the infinities given by geometrical
construction, has a period of an entire rotation, not half a
rotation as is commonly understood. This illustrates a category
error, confusing the limit with the value of a function, in an
important area of applied mathematics — trigonometry. We
briefly consider the wider implications of this category error.

Another paper proposes transreal arithmetic as a basis
for floating-point arithmetic; here we take the profound step
of proposing transreal arithmetic as a replacement for real
arithmetic to remove the possibility of certain category errors
in mathematics, Thus we propose both theoretical and practical
advantages of transmathematics. In particular we argue that
implementing transreal analysis in trans-floating-point arith-
metic would extend the coverage, accuracy and reliability of
almost all computer programs that exploit real analysis -
essentially all programs in science and engineering and many
in finance, medicine and other socially beneficial applications.

Index Terms—transreal arithmetic, transreal analysis, tran-
sreal tangent, negative zero, NaN.

I. INTRODUCTION

ILBERT Ryle introduced the concept of a category

mistake [6], now more popularly called a caregory
error. A category emror is the ascription to a category of a
property it cannot have. In another paper, in this proceedings,
[1], we review the TEEE 754 standard for floating-point
arithmetic and propose a superior, floating-point arithmetic,
based on transreal arithmetic. That paper cites the relevant
literature so we do not rehearse it here. We note only that
the set of transreal numbers is RY = R U {—oc0,c0,®)
where oo — oo = ®. We now move directly to showing that
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the TEEE 754 standard has three category errors. The first
is an erroneous definition which has little consequence —
claiming that real arithmetic contains limiting processes. We
spend little time on this error. The second is a fundamental
mathematical error: mistaking the limit of a function for the
value of a function. The third is an error only if the reader
has shifted to the transmathematical paradigm, where certain
non-finite, mathematical results are wunordered not undefined.

Kahan [4] defends IEEE 754's negative zero in terms
of the limits of functions, making an appeal to the real
tangent. This trigonometric function is geometrically defined
everywhere but it is arithmetically undefined at infinity. In
the next section we describe the transreal tangent, which is
defined everywhere. We then develop transreal limits as a
generalisation of real limits. The main results are: wherever
infinities occur as symbols in extended real limits, they occur
identically in transreal limits but as definite numbers; wher-
ever the transreal number nullity occurs in transreal limits,
the corresponding real limit is undefined. In a carefully
nuanced criticism, we show that the geometrical definition of
the tangent, as the value of a ratio, leads to different results
from the definition of the tangent as the limit of a power
series. This example is central to our criticism of negative
zero in the IEEE 754 standard. We conclude with a statement
of the main original contributions of the paper.

II. TRANSREAL TANGENT
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Fig. 1. Geometrical Construction of the Tangent
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Figure 1 shows the well known geometrical construction
of the tangent, in which a point, p, lies on a circle, with
a unit radius forming the hypotenuse of a right triangle,
whose internal angle is §. When the sides of the triangle are
measured in Cartesian co-ordinates, the tangent is defined as
tanf = y/x. Part of the graph of this function, for real 6,
is shown in Figure 2, where the discs, e, show where the
tangent arrives exactly at a signed infinity and the annuli, o,
show where the tangent asymptotes to a signed infinity, that
is where it approaches the infinity but does not arrive at it.

+27

Fig. 2. Graph of the Transreal Tangent

The reader should examine Figure 2. The abscissa shows
the angle in radians; the ordinate shows the value of the
tangent function. At zero radians the value of the tangent is
tan = y/x = 0/1 = 0. As the angle increases: the value
increases until it passes exactly through positive infinity at
tan(mw/2) = 1/0 = oo; the value then jumps discontinuously
so that it passes through all negative, real numbers, each
of which is finite, until it arrives at tanm = 0/1 = 0; the
value continues to increase, asymptoting to positive infinity
at 3w /(2—e) for small, positive ¢, then jumps discontinuously
to negative infinity at tan(37/2) = —1/0 = —o0; the value
of the tangent then increases to zero at tan27w = 0/1 = 0.
Notice that the graph has a least, that is principal, period
of 27, not m as is commonly understood. The results for
negative angles are similar. For integral k the value of the
tangent is positive infinity at § = 2k7 + 7/2 and negative
infinity at § = 2km — 7/2. The usual graph for the tangent,
computed as the limit of a power series, is similar to Figure
2 but with the difference that the tangent is undefined at
2km + w/2 for all integral k. Thus the finite values of
the geometrical tangent have period 7 but the extended-real
values have period 2.

As we lack a geometrical construction for the non-finite,
transreal angles, we define that the value of the transreal
tangent, at non-finite angles, is the limit of the usual power
series, evaluated in transreal arithmetic, so that tan(—oo0) =
tanoo = tan® = &. This is justified by Observation 15 in
Section III-B Transreal Sequences below.

We then take the arctangent as usual, for finite values of
the tangent, and augment this with arctan(—oc0) = —7/2,
arctanco = 7/2, arctan® = ®.

ISBN: 978-988-19252-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

III. TRANSREAL ANALYSIS

In this section we augment the topology of transreal space,
derived transarithmetically from e-neighbourhoods [2], with
the usual topology of measure theory and integration the-
ory (anticipating the development of transdifferential and
transintegral calculus, which could be presented in a longer
paper). Amongst other results we show that transreal space
is a compact, separable, Hausdorff space. We then develop
transreal sequences and establish the transreal infimum and
supremum. Finally we present fundamental results on the
limits and continuity of transreal functions. Taken together
this implies that transreal analysis contains real analysis.

A. Transreal Topology

Transreal arithmetic implies a topology [2], Figure 3, that
gives a definite, numerical value to the result of dividing any
real number by zero. Infinity, oo, is the unique number that
results when a positive number is divided by zero; negative
infinity, —oo, is the unique number that results when a
negative number is divided by zero; nullity, ®, is the unique
number that results when zero is divided by zero. Nullity is
not ordered, all other transreal numbers are ordered. Infinity
is the largest number and negative infinity is the smallest
number. Any particular real number is finite; co and —oo
are infinite; ® is non-finite. The infinite numbers are also
non-finite. The real numbers, R, together with the infinite
numbers, —oo and oo, make up the extended-real numbers,
R the real numbers, together with the non-finite numbers,
—00,00 and ®, make up the transreal numbers, RT,

Fig. 3. Transreal Number-Line.

We now define a topology for the whole of RT =
R U {—00,00,®} which contains the usual topology on
RP = {—00} URU {oc} that is used in measure theory and
integration theory. Specifically we note that {—oo}, {oco}
and {®} are singleton sets that are not path connected to
any other numbers. This retains compatibility with an older
view of the topology of the transreal numbers, based on
computing e-neighbourhoods using transreal arithmetic [2].
In our new topology we have that {—oco} and {oco} are
closed and not open, while {®} is both closed and open.
We impose neighbourhoods on {—oo} and {oc} so that
the usual topology of measure theory and integration holds,
with the possibility that real and extended-real functions
have limits of —oo and oco. The number ® is then left
as the unique, isolated point, reflecting its status as the
unique, unordered number, ®, in transreal arithmetic. We
then rehearse various theorems of sequences, limits and
continuity, all of which show that wherever —co and oo
occur as limits in transreal analysis they occur identically
in (extended) real-analysis, with the difference that —oo
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and oo are abstract symbols in {extended) real analysis and
are numbers in transreal arithmetic and transreal analysis.
Furthermore 0/0 is undefined in (extended) real analysis but
in transreal arithmetic & = 0/0 is a definite number and, in
transreal analysis, it is the limit, for example, of constant,
transreal functions of the form f(x) = $. Thus real analysis
is extended to transreal analysis and is extended further in
unpublished work that could be presented in a longer version
of this paper.

Definition 1: Let A ¢ RY, We say that  « R is a
transinterior point related to A if and only if one of the
following conditions holds:

1) # € R and there is a positive ¢ € R such that (z —

g,x+e)C A,

2) x = —oo0 and there is b = R such that [—co,b) C A,

3) © = oo and there is o € R such that (a,00] C 4 or

4) z =% and {$} < A.

We denote the set of all transinterior points related to A
as transintA, We say that a set A € RY is transopen if and
only if A = transintA.

Notice that for every A < RY it is the case that
transint4d < A.

Theorem 2: The class of all transopen sets in R is a
topology on RT. That is to say:

1) @ RT are transopen,

2) Any union of transopen sets is a transopen set and

3) A finite intersection of transopen sets is a transopen

set.
Proof:

1) Notice that transintd = @ and BT < transintR” follow

directly from the definition of a transopen set.

2) Let T be any set and A = U A, where A4, is

transopen forallee € . If x € Aatilen x € A, for some
a € I, whence x < transint A,,. We have several cases:
r € R, whence there is a positive = € R such that
(x —s,x+¢8) C Ay C A; or z = —oo, whence there
is b € R such that [—co,b) C Ay C A; or z = oo,
whence there is a € R such that (a,00] © A, C 4, or
z = &, whence {®} ¢ A, T A In every case, = <
transint4, whence A C transintA4.

3) Let Ay, A C RT be transopen sets. If z € A4; N Ay
then ¢ € Ay and ¢ £ Ao, whence x < transintA;
and z € transintd,. If 2 € R then there are positive
£1,80 € R such that (z — sy, + &) C 4; and
(z — co,2 + g2) C As. Taking & = min{ey,e9}, we
have (z — e,z + ) C A1 N As If 2 = —co then
there are by,b2 € R such that [co,by) € 43 and
[—oo,b) € Ap. Taking & = min{by, b2}, we have
[—oo,b) € A1 N As. If & = oo then there are aq, a2 €
R such that (a1,00] < Ay and (ag, 00| < Ay, Taking
a = max{a1, a2 }, we have (aco] C Ay N Az, Finally
if © = ¢ then {$} ¢ Ay and {$} < Az, whence
{®} < Ay N Az, In any case x € transint{4; M As),
whence Ay M Az < transint(4; M As).

|

Reverting now to ordinary terminology, we call a tran-

sopen set an open set, we call a transinterior point an interior
point, and we denote transint4 by int-A.

We recall that a subset of topological space is closed if

and only if its complement is open.
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Example 3: The sets {®}, (—co,z), {r,00), [—o0,z),
(z,00], (—,00) =R, [—o0, 0], [—o0,00), {(—eo,o0] and
(x,y) are open on RY where z,y « R and & < .

Example 4: The sets {—oco}, {co}, {2}, [—00,z], [z, 0],
(—co, 1], [,00), (x,¥], [*,%) and [z, y] are not open on RT
where z,y ¢ B and o < .

Example 5: The sets {®}, {—oo}, {oo} {z}, [—o0, ],
[—co,x], [z,00] and [z,y] are closed on R where z,y < It
and = < y. In fact, RT' \ {®} = [—o0,00], RT\ {—col =
RU(1,e0] U{®}, RT\ {0} = R U [—c0, 1) U {®}, RT Y
{z} = [-c0,2) U (z,00] U {&}, RT \ [~00,00] = {2},
BT\ [ o0, 2] = (z,00]U (B}, BT\ [2,00] = [ 00, 2) U {F}
and RT\ [z,y] = [~ 00, z) U (y, c0] U {®] are open.

Example 6: The sets (—co, x), {z,00), [—co,z), (z,c0],
(—oo,00) = R, [—oo,00), (—oo,m], (—o0, 2], [2,00),
(z,y), (z,y] and [z, %) are not closed on kY where z,y < R
and z < ¥y .

Proposition 7: RT is a Hausdorff! space.

Proof: Let there be distinet z,y « RY. If z or y is &,
say * = &P, then it is enough to take A = {P}, with B
a neighbourhood® of v, such that & ¢ B. If one of them
is equal to —eco and the other is equal oo, say z = —o0
and 3 = oo, it is enough to take a,b € R such that a < b,
A =[—co,a) and B = (b, oo]. If one of them is equal to —co
and the other is a real number, say £ = —co and ¥ € R, it is
encugh to take a positive £ € B, b € R such that b < y — g,
A =[—co,b) and B = (y — 5,y + ¢). If one of them is
equal to oo and the other is a real number, say x = oo and
y < R, it is enough to take a positive € € R, a € R such that
yt+e<ao, A=(a,c0] and B=(y—e,y+e). T2,y e R,
it is enough to take a positive £ € R such that 2¢ < |z — y,
A=(zx—c,z+¢) and B = (y — 2,y + =). In every case,
A is a neighbourhood of z, B is a neighbourhood of 4 and
AnB =40 [

Proposition 8: The topology on R, induced by the topol-
ogy of R7, is the usual topology of R. That is if A ¢ RT
is open on R” then A M R is open (in the usual sense) on
R and if A € R is open (in the usual sense) on K then A4 is
open on BT,

Proof- Let A © RY be an open set on RY, If o &
ANR then z € intd because x € A. This fact, together
with =z € R, implies that there is a positive € € R such that
(x—e,z+¢) C A whence (z—e,z+¢&) C ANR. Thus =
int{A M R), where int(A N R) denotes the interior of 4 MR
in the usual topology on R.

Now let A C R be open (in usual sense) on R. If z € A
then there is a positive ¢ £ R such that {(z — g,z +2) C A
Thus = € intA. |

Corollary 9: If A C RT is closed on R then A N R is
closed (in the usual sense) on R.

Proposition 10: RT is disconnected?.

Proof Tn fact RT = [~oco,00] U {®} and the sets
[—co,00] and {$} are open. |

1A topological space, X, is a Haussdorf space if and only if for any
distinct z,7 € X, there are open sets I, V € X suchthat z e UV, y € V
and 'V = 0. See [5].

2A subset U7, of a topological space, is a neighbourhood of % if and only
if x € I/ and U7 i open.

3A topological space, X, is disconnected if and only if there are non-
empty, open sets U,V C X suchthat VUV =X and Un'V = {. See
[51
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Notice that & is the unique isolated point* of R”.
Proposition 11: RT is a separable® space.
Proof: QU {® is dense in R, [
Proposition 12: RT is compact®.
Proof: Let [ be any set and {A,; o < I} be an open
covering of RY. We have that ®, —co,c0 & U A,,. Thus

there are ay,as,as & I such that ¢ < Am,&—OO € Ay,
and oo € Aa,. So {®} < A,, and there are a,b € R
with & < b such that [—oo,a) C A,, and (o] © Ag,.

U A, whence [a,b] C (U A )

acl ael
R = A nR). So{A,.NR; a < I} is an open coverin,
P 2

acl
of [a,b] on K. As [a,b] is compact on R, there are n & N and

- CJ (A, NR) = (Cj Am> n

i=4

Furthermore [a,d] C

Qg ..., 0 such that [a,b]

R C O A, Thus RT = ([—c0,a)U[a, b] U (b, c0] U{®))

i=4

U Ao, - [

Corollary 13: Let A ¢ RY. It follows that A is compact
if and only if A is closed.

Proof- Let A < RY. If A is compact, since R’ is
Hausdorff space, A4 is closed. See [5], Theorem 26.3. If 4 is
closed, since R” is compact, A is compact. See [5], Theorem
26.2. [ |

B. Transreal Sequences

We use the usval definition for the convergence of a se-
quence in a topological space. That is a sequence, (z,, ney <
RT, converges to € RT if and only if for each neighbour-
hood, V < RT of , there is ny = N such that , € V for
all = ny.

Notice that since RY is a Hausdorff space, the limit of a
sequence, when it exists, is unique.

Observation 14: Let (2, )ncw C R and let I £ E. Notice
that lim z, = L in RT if and only if ILm zn, = L in

P OO
the usual sense in R. Furthermore, (x,).en diverges, in the

usual sense, to negative infinity if and only if lim z, = —0
—00

in RT. Similarly (2, )necn diverges, in the usual sense, to
infinity if and only if lim z, = cc in RT.
n—00

Observation 15: Let (z.)nen < RT. Notice that
hm xy = P if and only if there is k& € M such that z,, = &

for Al > k.
Proposition 16: Every monotone sequence of transreal
numbers is convergent.

4An element, , of a topological space, X, is said to be an isolated point
if and only if there is a neighbourhood I/ C X of z suchthat U NV =0
for all open ¥V C X with V" £ U,

A topological space, X, is said to be separable if and only if it has a
dense, countable subset. A subset D, of a topological space, X, is dense in
X if and only if all element of X are elements or limit points of D). See
[5].

5A topological space, X, is said to be compact if and only if, for all
classes of open subsets of X, {U,; a € I} (where [ is an arbitrary set)
such that X C U Us, there is a finite subset {U,; 1 < k < n} (for

ael

T
some 1 € ) of {{/,, o I} suchthat X C U Us
k=1

. See [5].
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Proof: Suppose (z)new  RY is increasing. The case
for decreasing, transreal (In)neN < RT is similar. If z = @,
for some £ < N, then z,, = &, for all n € N, because
;< ® <x;foralli<kandj >k, whence hm z, =&

If z,, = —oco, for all n & I, then hm a:n——oo If:.cn#@

for all n € M, and zp # —o0, for some k < N, then z,, >
—co for all rn > &, whence there is s = sup{z,; n € N}
and s € RU {ec}. If s = co then, for each o € R, there
is ms € N such that z,, > a. Since z, < z,y1 for all
ne N, z, € {a,c0] for all n > n,, whence nh_}ngoa:ﬂ = oo.
If s € R then (zg.y)new is a monotone, bounded sequence
of real numbers, thus it is convergent. Hence (2,)newm is
convergent, |

Theorem 17: BEvery sequence of transreal numbers has a
convergent subsequence.

Proof Let (zy)new < RY.If {n; 2, # @} is a finite
set then clearly nh_}ngo Ty =P If {n; z, # P} is an infinite
set then denote, by (yz)kew, the subsequence of (2, ), e of
all elements of (zy)new that are distinct from $. Let J =
1y yp > yp, for all me > k). If J is a infinite set, we write
J={ki,ke,. ..}, withky < ko < ---. Since for each 7 € N,
ki = J, we have that yg, > yg, for all ¢ < j. Thus (yg, )sen
is a decreasing subsequence of (x,)nen. If J is finite, let &;
be greater than all of the elements of J. Since k1 & J, there
is ka2 > ki such that yi, > yg,. Since ke > ky, it follows
that ks & J. So there is k3 > ko such that vy, > yz,. By
induction we build an increasing subsequence (v, )sen Of
(Tn)nem. In both cases, in agreement with Proposition 16,

(Y&, Jiew is convergent. ]

Proposition 18: et  x,y € RT  and et

(@) news (W)new < RY such that lim z, = z and
XD

lim ¥, = y. It follows that:
—00

D If z,y € {—o0,00} and x + y = P do not ocecur
simultaneously then nli\ngo (T +Un) =T+
2) If z,y € {0,00,—cc} and zy = & do not occur
simultaneously then nli\ngo (Tntn) = Tys
3) If y # O then nli\rrgo(ygl) =94 1 and
4) If y = 0 and there is & & N such that v, < 0 for
all n > k then lim (g, %) = —(y ). If ¥y = 0 and
there is k € N, gt?c(flo that v, > 0 for all n > k, then
Jim () =y
Theorem 10 (Sandwiches): Let L ¢ R7T and let
(Tr)nen, (M) ne, (#n)ney C RT such that hm T, = L
and hm 2z = L. If there is N € N, such that a:ﬂ < Un < Zn
for all 7 2 N, then lim %, = L.
—00
Proof: Let L € RY, let (zy)nen, (n)nens (2a)nen C
BT and let N € M such that lim z, = I, lim z, = L
and z, < 4, < 2z, for all n > Tfl\?.oo e
If L = &, the result follows immediately from Observation
15.
If I € R, let there be an arbitrary, positive € € R. Since
lim z, = hm zn = L, there are Ny, No & N such that

Tiioos < Ty, for all n > Ny and z, < L 4 & for all n > Na.
Taking N5 = max{N, N1, N2}, we have that L, — £ < z, <
UYn = 2 < L+& for all n > N,

If L = —oo, let there be an arbitrary &  R. Since
nlingo 3y, = L, there is N1 € N such that z, € [—co,b)
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for all = > Nj. Taking No = max{N, N1}, we have that

Yn = zy < b for all n > N3, whence v, € [—co,b) for all
n Z NQ.

If L = oo, the result follows similarly to the previous case.

|

Definition 20: Let {x,)nen € BT\ {®) = R¥. Let v, =
inf{zg, k> n} and let u, = sup{zg, k& > n}. We define
and denote the lower limir and the upper limit of (z,)nen,
respectively, by

liminfz,, ;= lim », and imsupz,, ;= lim =,
n— 00 n—0oo n—roo — OO
Notice that (v, )ncw is increasing and (w,, ), cp 18 decreas-

ing, whence hm v, = sup(vy) and hm Uy = 1nf (un)
nelN

Therefore the notatlons gup 1nf (a:k) and 1nf sup (mk) de-
nchk nEN >y

note, respectively, the lower hmlt and the upper limit.

Proposition 21: Let (x,)nen C RE. Tt follows that there
is a limit lim =, if and only if liminf z,, = limsup z,. In

O —0 n—oo
this case, lm =z, = liminf z, = limsup z,.
—r 00 T—3 00 n—oo

C. Limit and Cortinuity of Transreal Functions

We remember that if X is a topological space then
zp € A C X is a limit point of A if and only if for every
neighbourhood V' of zq it follows that V (4% {ze}) =
The set of all limit points of A is denoted as A’.

We use the usual definition of the limit of functions in a
topological space. That is, if A is a subset of RY, f: A —
RT is a function, xg is a limit point of 4 and I is a transreal
number, we say that lgn f(z) = L if and only if, for each
neighbourhood V' of I, there is a neighbourhood U of zg
such that f{ANUN {zo}) C V.

Observation 22: Notice that given xg, L = R, the tran-
sreal limit Eli\ngo f(x) = L in RT exists if and only if the real

limit 1i_>m F(z) = L exists in the usual sense in R. The same
T—E0

can be said about li}m fz) = —oo, li}m f(z) = oo,
E—rin r—20

i 0= i £(2) = .l 1) -

lim f(z) =L, lim f{z)=—co and lim f(z) =co

300 00 00

Observation 23: Let x5 € RT, notice that li\m flz)y=2
T—x0

if and only if there is a neighbourhood U7 of zg such that
fley=F forall z e U\ {zo}.

Proposition 24: Let ACRT, f: A= RY, 25 e A’ and
L = RY. The following two statements are equivalent:

1) lim flzy=1~L

2) hm Flzy) = L for all (zy)nen C A\ {zo} such that

hm Ty = To.
TL—F OO

Proof et ACRT, f: A —RT, 25 A and L € RT.
Suppose that mli\nwlo flz) = L. Let (zn)nen C A\ {zo} such
that lim =z, = xg. Let V be an arbitrary neighbourhood of
L. Tﬁgl}lo?here is a neighbourhood, 7, of zg such that f{AnN
UN{zo}) C V. Since T}Lngo %, = %o there is an ng; such that

%, € U for all n > ny. Thus f(z,) € flANU {zsh) CV
for all = > nyg.
Now suppose hm f(z) # L. Then there is a neigh-

bourhood, V', of L such that, for each n € [N, there is
z, € A such that 0 < |z, — 2o < — (if ¢ € R) or
n
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Ty, € (—oo,—n) {if zg = —0c0) or &y, € (n,c0) (if g = co),
and f(z,) ¢ V. Hence (2, )nerw € AN\ {z0}, li_}m Ty = T
and li_>m flzn) # L. ]

Proposition 25: Let L,M € RY, 4 ¢ RT, with functions
f,g:A— RT, and x5 € A’ such that li_>m flz) =L and
T 20

lim g{z) = M. Tt follows that:

T—rEQ
1y If LM € {—oo,c0} and L + M = ¢ do not occur
simultaneously then li}m (Ff+g)(z)=L+ M,
T—E0
2 If LM e {0,co,—co} and LM = ¢ do not occur
simultaneously then lim ( Ffai(z) = LM

3) If M #0 then lim () (z) =
r—20 f

4y If M = 0 and there is a nelghbourhood, U, of zg,

such that g(z) < 0 for all z € U\ {zo}, then

1
li\m ) () = —(M™Y). If M = 0 and there is
Ty \ g
a neighbourhood, U, of zq, such that g(z) > 0 for all
) 1 _
z € UY {zg}, then Ili\nrwlo (§> (x)y =M1

We use the usual definition of continuity in a topological
space. That is if A ¢ RY, f: A = R is a function and
g € A, we say that f is continuous in zg if and only if, for
each neighbourhood V' of f(zg), there is a neighbourhood
7 of zg such that f{ANT) C V.

Observation 26: Notice that given zg € R, f is continu-
ous in zq in RY if and only if f is continuous in zq in the
usual sense in R.

Observation 27: Notice that if & € Dm(f) (Dm(f) de-
note the domain of f) then f is continuous in $.

Proposition 28: Let A C RT, f: A— RT and 2o € A.
The following two statements are equivalent:

—and

1) f is continuous in zq,
2) li_}m Flzn) = flzo) for all (zp)pew < A and
N—r00

lim z,, = xg-
T— 00

Proposition 29: Let A CRY; fg: A >R andzg € A
such that f and g are continuous in zg. It follows:

1y If flzg), g(zg) € {—o0,c0} and (f + g)(ze) = & do
not occur simultaneously then f + g is continuous in
o5

2y If f(zq),9(xg) € {0,00,—co} and (fg)(zg) = ¢ do
not occur simultaneously then fg is continuous in zg;

3) If g(zg) £ O then — is continuous in xo and

4) If g(zg) = 0 and tﬁere is a neighbourhood, 7, of =y,
such that g(x) > 0 for all z € U, then E is continuous
in xg. g

Notice that if g(zg) = 0 and there is no neighbourhoad,

7, of zp, such that g(z) > 0 for all x £ U, then 51; is not

contitmous in xq.

Proposition 30: Let A, B Cc RT, f: A — R¥ and g :
B — RT such that f{A4) C B. If # is continuous in z¢ and
g is continuous in f(zg) then g f is continuous in zg.

Proposition 31: Let A be an open set such that A ¢ RT
and let f: A — RT. It follows that f is continuous in A if
and only if f~1(B) is open, for all open B C RT.

ISBN: 978-988-19252-0-6 WCECS 2014

ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)



IV. CATEGORY ERRORS

The TEEE 754 standard [3] (page 34, section 6.1) says,
“The behaviour of infinity in floating-point arithmetic is de-
rived from the limiting case of real arithmetic with operands
of arbitrarily large magnitude, when such a limit exists.
Infinities shall be inferpreted in the affine sense, that is:
—oo < {everyfinitenumber} < oo This is erronecus.
There are no limiting cases in real arithmetic; to think
otherwise is a category error which confuses real arithmetic
with real analysis. It is also back to front. Transreal arithmetic
is total and can be used to derive limits, as above. Crucially
these limits are a superset of real limits so transreal arith-
metic cannot be derived from real limits. Also the property
—o0 < r < oo, for all real r, is a theorem of transreal
arithmetic not an axiom (See citations in [1]) so it need not
be stated. Attempting to derive a total arithmetic from real
analysis is unlikely to succeed and in the case of IEEE 754
floating point arithmetic it fails, as shown in [1] and next.

Kahan defends IEEE 754’s negative zero in a paper which
deals with the solution of complex functions defined as the
limits of power series. Within that setting, Kahan’s treatment
is valid but problems arise when he considers the calculation
of (real) functions that have an alternative, geometrical
definition as the value, not the limit, of some expression.
Commenting on the APL language standard that specifies an
unsigned zero, he says [4] (page 186), “... like zero, 1/0 has
no sign and therefore arctan(1,/0) has to be either undefined
or else chosen arbitrarily from {+m/2}” But, as shown in
section II, above, transreal arithmetic has an unsigned zero
but 1/0 is positive (since 0 is not negative it cannot toggle the
sign of 1) and arctan = /2 is uniquely determined in the
principal range, all other positive infinities of tanf occurring
at # = 2kr + 7/2 for all integers k. Kahan maintains the
thesis that negative zero, produced by underflow from a
negative number, preserves information about the limit of
a Tunction and that this leads to the correct calculation of
the function’s value. But this is contradicted by the geo-
metrical construction of the tangent. Suppose we calculate
tanf = 1/(—e) for some small, positive e that underflows to
IEEE 754’s negative zero then tanf = —1/0 = —oo. This
is correct at @ = 2kr — /2 and is wrong at @ = 2kn + /2
for all integers k. The limit at & = 2k7 £+ «/2 indicates
only the infinite magnitude of the tangent at the given angle
and gives no information about its sign, despite the fact that
both the magnitude and sign of the value of the function are
completely determined for all integral k. Believing that the
value of a function can always be computed from its limit is
a category error. Conversely believing that where the limit
is not uniquely defined the value of the function must be
undefined or arbitrary is also a category error. The limit and
value of a function are in fundamentally different categories
of mathematical object — they exist, or else do not exist,
entirely independently of each other.

Kahan defines many complex functions in terms of princi-
pal functions involving the complex logarithm. We conjecture
that real and complex trigonometric identities allow the
geometrical specification of functions, such as the tangent, to
spread to all trigonometrical functions so that their behaviour
is completely determined. This is a matter for future research.

We have already criticised the IEEE 754 NaNs [1] but
we take up this issue again. The tangent is defined, geo-
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metrically, for all right triangles with a unit hypotenuse. It
is mapped to other strictly positive hypotenuses by dilatation
but what of zero, infinite and nullity hypotenuses? A triangle
with hypotenuse zero or nullity has all sides, respectively,
zero or nullity, whence all geometrically defined trigono-
metric ratios are nullity. When the hypotenuse is infinity,
at least one other side is infinity and the remaining side may
be finite or infinity. The trigonometric ratios are then one of
zero, nullity, positive or negative infinty as the case may be.
In every case the geometrically defined trigonometric ratios
have a completely determined transreal value. In particular
0/0 = P is an unordered number not an undefined NaN. This
matter is taken further in the development of transcomplex
numbers in polar form where angle and radius are first-
class citizens from which non-bijective Cartesian tangents
and other non-bijective functions may arise [1].

We have shown in [1] that trans-floating-peoint arithmetic
is more accurate than IEEE 754 arithmetic. Here we have
introduced transreal analysis with a wider coverage than real
analysis and have shown how to perform calculations more
reliably than with IEEE 754’s negative zero. We expect many
computer applications to benefit from transmathematics.

V. CONCLUSION

We add the usual topology of measure theory and inte-
gration theory to the space of transreal numbers and prove
that this space is a compact, separable, Hausdorff space.
Using these results we extend the limit and continuity of real
functions to transreal functions. Separately we show that the
usual geometrical construction of the tangent is defined for
infinite values of the function when it is calculated using
transreal arithmetic. We introduce the transreal tangent and
transreal arctangent as total functions of transreal numbers.
We show that while the finite values of the transreal tangent
have a primitive period of w, the function has a primitive
period of 27 when the infinite values are considered because
the transreal tangent alternately asymptotes to and arrives
at an infinity on alternate periods of w. We use this result
to show that TEEE 754’s negalive zero computes the wrong
result for alternate periods of the transreal tangent and
diagnose this fault to a category error where the limit of
a function is confused with the value of a function. We
propose that all trigonometric functions, including complex
trigonometric functions, could be totalised by forcing their
power series definitions to be faithful to the boundary
conditions demanded by geometrical constructions, such as
the geometrical construction of the tangent. We believe that
adopting transreal arithmetic, in place of real arithmetic,
would increase the coherence of mathematics and would
bring both theoretical and practical advantages to computing.
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