
 

 

Abstract— When a representation of real numbers, such as 

decimal expansions, allows us to use the diagonalization 

argument to prove that the set of real numbers is uncountable, 

can't we similarly apply the diagonalization argument to 

rational numbers in the same representation? Doesn't the 

diagonalization argument similarly prove that the set of 

rational numbers is uncountable too? This doubt concerning 

the diagonalization argument often arises in discrete 

mathematics and theory of computation classes. We consider 

two answers: one based on the familiar decimal expansions and 

the other based on continued fractions. The continued fraction-

based answer circumvents a difficulty that is associated with 

the decimal expansion-based answer. A brief introduction to 

continued fractions is included and some related algorithms 

are presented in Java code. 

 
Index Terms—diagonalization, continued fraction, decimal 

expansion, countable  

 

I. INTRODUCTION 

N discrete mathematics and theory of computation classes, 

the set of real numbers, henceforth denoted by R, is 

commonly shown to be uncountable by a contradiction 

proof using the diagonalization argument. For the purpose of 

contradiction, such a proof assumes that R is countable and 

thus there is a one-to-one correspondence between the set of 

natural numbers and R. The assumption is then contradicted 

by showing the existence of a real number that is not 

included in the assumed one-to-one correspondence. More 

specifically, by the assumption that R is countable, all of the 

real numbers in R can be enumerated in a countably infinite 

sequence L, 

L= r1, r2, r3, … 

 

where each ri is a real number in R. Let each real number ri 

be represented by its decimal expansion and let dij denote 

the digit in the jth decimal place of the decimal expansion of 

ri. That is, each real number ri in the sequence L is 

represented by the following expression: 

 

wi.di1 di2 di3 …  

 

where wi is the integer portion of ri, and di1 di2 di3… is an 

infinite sequence of digits that represents the fractional part 

of ri and possibly includes trailing 0's.  The fractional parts 

of all of the real numbers r1, r2, r3, … in the sequence L, that 

is, the digits dij for all i ≥ 1 and for all j ≥ 1, form a matrix as 
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shown below in Fig. 1. 

 

r1 = w1.d11 d12 d13 d14 d15 d16 . . . 

r2 = w2.d21 d22 d23 d24 d25 d26 . . . 

r3 = w3.d31 d32 d33 d34 d35 d36 . . . 

r4 = w4.d41 d42 d43 d44 d45 d46 . . . 

r5 = w5.d51 d52 d53 d54 d55 d56 . . . 

r6 = w6.d61 d62 d63 d64 d65 d66 . . . 

. . . 

. . . 

. . . 

 

Fig. 1 Matrix and Diagonal 

 

 

The diagonal of the matrix is the sequence of digits dkk for 

all k=1,2,3,…, as shown in bold face in Fig. 1. From the 

diagonal,  a new number  

 

r0 = w0.d01 d02 d03 … 
 

can be derived such that for all k=1, 2, 3 …, d0k differs from 

dkk and is neither 0 nor 9. In other words,  the new number  

r0 differs from the real number r1 in the 1
st
 decimal place, 

from r2 in the 2
nd

 decimal place and, in general, from each 

real number rk in the k
th

 decimal place. Although a real 

number can have an alternative representation in decimal 

form, for example 5.26999999… is the alternative decimal 

representation of 5.27000000… and vice versa, r0 cannot be 

the alternative representation of any real number since the 

digits d01 d02 d03 …  can neither be 0 nor 9.  Therefore, the 

new number r0 cannot be equal to any real number in the 

sequence L. The existence of r0  contradicts the assumption 

that the sequence L includes all real numbers in R. Hence, R 

is not countable. This argument is based on the existence of 

the new number r0, which is derived from the diagonal of 

the matrix in Fig. 1, hence the name diagonalization 

argument. 

When such a proof  is discussed in discrete mathematics 

or theory of computation classes, the following doubt often 

arises. When a representation of real numbers allows us to 

use the diagonalization argument to prove that the set of real 

numbers is uncountable, can't we apply the argument 

similarly to rational numbers in the same representation? 

Doesn't the diagonalization argument similarly prove that 

the set of rational numbers is uncountable too? For example, 

when rational numbers are represented by their decimal 

expansions, can't we similarly apply the diagonalization 

argument to their decimal expansions and prove that the set 

of rational numbers is uncountable, as we do in the case of 

real numbers?  
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The next section discusses an answer that is based on the 

familiar decimal expansions, and section III provides an 

unconventional answer based on continued fractions. 

Section III also includes a brief introduction to continued 

fractions and presents some related algorithms in Java code.  

The diagonalization argument is well known and is often 

discussed in textbooks, e.g., in [3,4]. The ideas used in the 

decimal expansion-based answer, to be presented in the next 

section, are also widely known, e.g. [2]. Continued fractions 

are a well studied subject and have been used to enumerate 

rational numbers, e.g., [1]. A salient feature of this article is 

our use of continued fractions in diagonalization to 

circumvent a difficulty that is associated with the 

conventional decimal expansion-based answer. This 

difficulty will be discussed in detail in the next section.  

II. AN ANSWER BASED ON DECIMAL EXPANSIONS 

Suppose that we wish to use the diagonalization argument 

to prove that the set of rational numbers, henceforth denoted 

by Q, is uncountable. For the purpose of contradiction, 

assume that Q is countable and let LQ = f1, f2, f3… be an 

enumeration of Q. Let each rational number fi in LQ be 

represented by its decimal expansion wi.di1 di2 di3 …, with 

trailing 0's if fi has a finite decimal expansion. The digits dij 

for all i ≥ 1 and for all j ≥ 1 then form a matrix similar to 

that shown in Fig. 1. A new number f0 can then be derived 

from the diagonal of this matrix, such that f0 differs from 

every rational number in the enumeration LQ. Does  the 

existence of f0 not contradict the assumption that Q is 

countable, as the existence of r0 does in the previous proof 

that R is uncountable? Relying on our prior knowledge that 

Q is countable, the answer is obvious: no, because f0 cannot 

be rational. Based on the knowledge that Q is countable, the 

argument that f0 cannot be rational is straightforward: since 

Q is countable, LQ includes all rational numbers and thus f0 

cannot be rational because if it is, it must be  included in LQ 

and since f0 differs from every number in LQ, f0 must differ 

from itself! This argument, however, begs the question that 

we wish to decide by using the diagonalization argument: 

whether Q is countable, i.e., whether LQ includes all of the 

rational numbers. The following argument, which appears to 

be widely known, does not rely on the knowledge that Q is 

countable.  

It is well known that the decimal expansion of any 

rational number, after a number of decimal places, infinitely 

repeats some finite sequence of digits. For example, 1/2 is 

0.5 0 0 0… and so on, 1/6 is 0.1 6 6 6… and so on, and 

169/550 is 0.23 45 45 45… and so on. Such a decimal 

expansion is said to be periodic or recurring.  The repeated 

sequence  in a periodic decimal expansion is known as its 

period, such as the sequence 6 in 0.1 6 6 6… and the 

sequence 45 in 0.23 45 45 45… . The number of digits in a 

period is its period length. For example, the period length of 

0.1 6 6 6… is 1 and that of 0.23 45 45 45… is 2.  For the 

new number f0 to be rational, it must have a finite period 

length. Since every rational number has a finite period 

length, it is natural  to ask whether f0 can have a finite 

period length that is the least common multiple of the period 

lengths of the rational numbers in the enumeration LQ. 

However, there is not an upper bound on the period lengths 

of rational numbers, and hence there is not an upper bound 

on the least common multiple of the period lengths of the 

rational numbers in the enumeration LQ.  

The decimal expansion-based argument presented above, 

though intuitive, does not actually provide a proof that f0 

cannot have a finite period length. Without such a proof, and 

given the flexibility that is permitted in choosing the 

individual digits for the new number f0, it is natural to  

wonder whether it is possible to choose the digits for f0 in 

such a manner as to derive a periodic decimal expansion for 

f0.  

The next section presents an answer that is based on 

continued fractions. This answer circumvents the difficulty 

in justifying that the new number f0 must be irrational, 

without begging the question. 

 

III. AN  UNCONVENTIONAL ANSWER 

This section presents a continued fraction-based answer. 

Since this answer uses continued fractions, a brief 

introduction to continued fractions is given in section III.A, 

and the answer itself is provided in section III.B. 

A. Continued Fractions 

Any positive real number, rational or irrational, can be 

represented in the following staircase notation (Fig. 2), 

where a is a nonnegative integer and b,c,d,e,f … are positive 

integers. This representation of a real number is known as a 

continued fraction.  

 

 

 

  
 

  
 

  
 

  
 

  
 

    

 

 

Fig. 2 Staircase Notation 

 

 

For ease of presentation, henceforth a list representation 

will be used instead of the staircase notation. In the list 

representation, the above continued fraction is written as  

 

[a; b, c, d, e, f···] 

 

Hence, as a continued fraction, any nonnegative real number 

can be represented by a sequence of nonnegative integers. 

For example, 6/7 is [0; 1, 6] as a continued fraction and  

0.857142 857142… in decimal form; and the square root of 

2 (an irrational number) is [1;2,2,2,2,2…] as a continued 

fraction and 1.414213562373095… in decimal form.  It is 

interesting to note the regularity that is present in the 

continued fraction [1;2,2,2,2,2…] and the lack of regularity 

in the decimal expansion 1.414213562373095… of the same 

number. 

Algorithms for converting a rational number or an 

irrational number to an equivalent continued fraction are 

well known and are presented below as static methods in 

Java. 
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public static String cf(int num, int den) 
  { String result=""; 

    int temp; 

 

    do { 

        result=result+num / den + " "; 

        temp=num % den; 

        num=den; 

        den=temp; 

  } while(den != 0); 

    return result; 

  }  //end cf 

 

The method cf in the above Java code implements an 

algorithm to convert a positive rational number to an 

equivalent continued fraction. Given two positive integers as 

the numerator (num) and the denominator (den) of a 

fraction representing a rational number, the method returns 

the equivalent continued fraction in the list representation - 

as a string consisting of a list of space-separated integers. 

For example, cf(6,7) returns the string "0 1 6". The 

algorithm is similar to the Euclidean algorithm for finding 

the greatest common divisor and terminates similarly. In 

other words, every rational number can be represented by a 

finite list of integers as a continued fraction. 
 

public static String cfIr(double x) 

  { String result=""; 

    double temp=x; 

 

    do { 

        result=result + (int) temp+" "; 

        temp=1.0/(temp - (int) temp);     

} while (Math.abs(x-eval(   

         new Scanner(result)))>EPS);  

 

    return result; 

   } //end cfIr 

 

The method cfIr in the above Java code implements a 

similar algorithm to convert a positive irrational number 

(approximated as a double value in the above Java code) 

to its equivalent continued fraction. Given an irrational 

number, the method returns an (approximate) continued 

fraction as a list. For example, the method call 

cfIR(MATH.sqrt(2)) (to find the continued fraction of 

the square root of 2) returns the list "1 2 2 2 2…". In 

the above code, the method call eval(new 

Scanner(result)) returns the value of the continued 

fraction represented by the  string parameter result, and 

EPS is a constant, usually a very small value, that specifies 

the accuracy of the resultant continued fraction, as described 

below. Every irrational number, when represented as a 

continued fraction, is an infinite sequence of integers. Of 

course, the method cfIr can only return a finite sequence 

that approximates a given irrational number (which is also 

approximated as a double in the above Java code). The 

constant EPS specifies how closely the returned continued 

fraction should approximate the given irrational number – a 

small EPS leads to a close approximation and a long list 

representing the continued fraction. The Java code for the 

method eval is not included here as the code is not 

essential to an understanding of the algorithms presented 

above. 

B. An Answer Based on Continued Fractions 

We now provide a continued fraction-based answer to the 

doubt described in section 1: when a representation of real 

numbers allows us to use the diagonalization argument to 

prove that the set of real numbers is uncountable, can we not 

apply the argument similarly to rational numbers in the same 

representation? Doesn't the diagonalization argument 

similarly prove that the set of rational numbers is 

uncountable too? Indeed, the continued fraction 

representation allows us to use the diagonalization argument 

to prove that the set of irrational numbers, and hence the set 

of real numbers, is uncountable, as outlined below. For the 

purpose of contradiction, let us assume that the set of 

positive irrational numbers can be enumerated in some 

sequence r1, r2, r3… with each irrational number ri 

represented as a continued fraction by an infinite list [ai0; ai1, 

ai2, ai3, …], where aik for each k ≥ 0 is the k
th

 integer in the 

list representation of the irrational number ri. The integers aik 

for all i ≥ 1 and for all k ≥ 1  then form a matrix of integers, 

similar to that shown in Fig. 1, with the sequence a11, a22, 

a33…, that is, the sequence akk for all k ≥ 1,  as the diagonal 

of this matrix. A new irrational number r0 = [a00; a01, a02, 

a03…], where  a00 is any non-negative integer, can be 

derived from the diagonal of this matrix such that for all k ≥ 

1, a0k differs from akk and is not 0. That is, r0 differs from 

every irrational number in the enumeration r1, r2, r3… . This 

contradicts the assumption that the set of irrational numbers 

can be enumerated in a sequence. Therefore, the set of 

irrational numbers, and hence the set of real numbers, is 

uncountable.  

Similar to the proof in section I, this diagonalization proof 

depends on the existence of a new number r0 = [ai0; a01, a02, 

a03, …] that is derived from the diagonal a11, a22, a33 …  such 

that a01 differs from a11, a02 from a22, a03 from a33, and so on. 

While such a diagonal exists in any countably infinite 

sequence of irrational numbers represented as continued 

fractions, such a diagonal does not exist in any enumeration 

of rational numbers represented as continued fractions: 

when a rational number appears as the k
th

 element in the 

enumeration but has fewer than k integers representing its 

fractional part, the k
th

 position of the diagonal will not have 

a value, and this occurs infinitely many times in the 

diagonal. Hence, the diagonal as a sequence of integers that 

the diagonalization argument depends on does not exist in 

any enumeration of rational numbers represented as 

continued fractions. Thus, with the continued fraction 

representation, the diagonalization argument is not 

appropriate for rational numbers as it is for irrational 

numbers.  

IV. SUMMARY 

Two answers to a doubt concerning diagonalization have 

been discussed: one based on the familiar decimal 

expansions and the other based on continued fractions. The 

ideas used in the first answer are well known. A salient 

feature of this article is our use of continued fractions in 

diagonalization to avoid a difficulty associated with the 

decimal expansion-based answer. When both rational and 
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real numbers are represented as decimal expansions, 

diagonalization can be applied to both rational and real 

numbers – however, diagonalization proves that real 

numbers are uncountable but does not prove the same for 

rational numbers – this is what often raises doubt. In 

contrast, with the continued fraction representation, the 

diagonalization argument is not appropriate for rational 

numbers as it is for irrational numbers. 
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