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Abstract—In several problems of portfolio selection the
reward-risk ratio criterion is optimized to search for a risky
portfolio offering the maximum increase of the mean return,
compared to the risk-free investment opportunities. We analyze
such a model with the CVaR type risk measure. Exactly the
deviation type of risk measure must be used, i.e. the so-called
conditional drawdown measure. We analyze both the theoretical
properties (SSD consistency) and the computational complexity
(LP models).

Index Terms—portfolio optimization, reward-risk ratio,
conditional-value-at-risk, linear programming, stochastic dom-
inance.

I. INTRODUCTION

PORTFOLIO selection problems are usually tackled with
the mean-risk models that characterize the uncertain

returns by two scalar characteristics: the mean, which is
the expected return, and the risk - a scalar measure of
the variability of returns. In the original Markowitz model
the risk is measured by the standard deviation or variance.
Several other risk measures have been later considered
thus creating the entire family of mean-risk (Markowitz-
type) models. While the original Markowitz model forms
a quadratic programming problem [1], many attempts have
been made to linearize the portfolio optimization procedure
(c.f., [2], [3] and references therein). The LP solvability is
very important for applications to real-life financial decisions
where the constructed portfolios have to meet numerous side
constraints (including the minimum transaction lots, trans-
action costs and mutual funds characteristics). In order to
guarantee that the portfolio takes advantage of diversification,
no risk measure can be a linear function of the portfolio
weights. Nevertheless, a risk measure can be LP computable
in the case of discrete random variables, i.e., in the case of
returns defined by their realizations under specified scenarios.

The simplest LP computable risk measures are disper-
sion measures similar to the variance. The mean absolute
deviation was very early considered in portfolio analysis
[4] while [5] presented and analyzed the complete portfolio
optimization model (the so-called MAD model). Yitzhaki [6]
introduced the mean-risk model using Gini’s mean (absolute)
difference as the risk measure. Both the mean absolute de-
viation and the Gini’s mean difference turn out to be special
aggregation techniques of the multiple criteria LP model [7]
based on the pointwise comparison of the absolute Lorenz
curves. The latter leads the quantile shortfall risk measures
which are more commonly used and accepted. Recently, the
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second order quantile risk measures have been introduced in
different ways by many authors [8], [9], [10]. The measure,
now commonly called the Conditional Value at Risk (CVaR)
(after [10] or Tail VaR, represents the mean shortfall at a
specified confidence level. It leads to LP solvable portfolio
optimization models in the case of discrete random variables
represented by their realizations under specified scenarios.
The CVaR has been shown by [11] to satisfy the requirements
of the so-called coherent risk measures [8] and is consistent
with the second degree stochastic dominance as shown by
[12]. Several empirical analyses [13], [14], [15] confirm its
applicability to various financial optimization problems.

In this paper we analyze the reward-risk ratio criterion
is optimized to search for a risky portfolio offering the
maximum increase of the mean return, compared to the risk-
free investment opportunities. We analyze such a model with
the CVaR type risk measure. Exactly the deviation type of
risk measure must be used, i.e. the so-called conditional
drawdown measure. Both the theoretical properties and the
computational complexity are analyzed. In Section III we
show that under natural restriction on the target value the
CVaR reward-risk ratio optimization is SSD consistent. Fur-
ther in Section IV we show that while carefully transforming
the CVaR risk-reward ratio optimization to an LP model and
taking advantages of the LP duality we are able to get a
model formulation providing high computational efficiency.

II. PORTFOLIO OPTIMIZATION AND CVAR MEASURES

WE consider a situation where an investor intends to
optimally select a portfolio of assets and hold it

until the end of a defined investment horizon. Let J =
{1, 2, . . . , n} denote a set of assets available for the invest-
ment. For each asset j ∈ J , its rate of return is represented by
a random variable (r.v.) Rj with a given mean µj = E{Rj}.
Furthermore, let x = (xj)j=1,...,n denote a vector of decision
variables xj representing the shares (weights) that define a
portfolio of assets. To represent a portfolio, these weights
must satisfy a set of constraints. The basic set of constraints
includes the requirement that the weights must sum to one,
i.e.,

∑n
j=1 xj = 1, and that short sales are not allowed,

i.e., xj ≥ 0 for j = 1, . . . , n. An investor usually needs
to consider some other requirements expressed as a set of
additional side constraints. Most of them can be expressed
as linear equations and inequalities. We will assume that the
basic set of feasible portfolios Q, i.e. the set of solutions that
do not violate the basic set of constraints mentioned above,
is a general LP feasible set given in a canonical form as a
system of linear equations with nonnegative variables.

Each portfolio x defines a corresponding r.v. Rx =∑n
j=1Rjxj that represents the portfolio rate of return. The

mean rate of return for portfolio x is given as µ(Rx) =
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E{Rx} =
∑n
j=1 µjxj . We consider T scenarios, each one

with probability pt, where t = 1, . . . , T . We assume that,
for each r.v. Rj , its realization rjt under scenario t is known
and that, for each asset j, j = 1, . . . , n, its mean rate of
return is computed as µj =

∑T
t=1 rjtpt. The realization of

the portfolio rate of return Rx under scenario t is given by
yt =

∑n
j=1 rjtxj .

The portfolio optimization problem considered in this pa-
per follows the original Markowitz’ formulation and is based
on a single period model of investment. At the beginning of a
period, an investor allocates the capital among various assets,
thus assigning a nonnegative weight (share of the capital)
to each asset. Let J = {1, 2, . . . , n} denote a set of assets
considered for an investment. For each asset j ∈ J , its rate
of return is represented by a random variable Rj with a
given mean µj = E{Rj}. Further, let x = (xj)j=1,2,...,n

denote a vector of decision variables xj expressing the
weights defining a portfolio. The weights must satisfy a set
of constraints to represent a portfolio. The simplest way of
defining a feasible set Q is by a requirement that the weights
must sum to one and they are nonnegative (short sales are
not allowed), i.e.

Q = {x :
n∑
j=1

xj = 1, xj ≥ 0 for j = 1, . . . , n} (1)

Hereafter, we perform detailed analysis for the set Q given
with constraints (1). Nevertheless, the presented results can
easily be adapted to a general LP feasible set given as a
system of linear equations and inequalities.

Each portfolio x defines a corresponding random variable
Rx =

∑n
j=1Rjxj that represents the portfolio rate of

return while the expected value can be computed as µ(x) =∑n
j=1 µjxj . We consider T scenarios with probabilities pt

(where t = 1, . . . , T ). We assume that for each random
variable Rj its realization rjt under the scenario t is known.
Typically, the realizations are derived from historical data
treating T historical periods as equally probable scenarios
(pt = 1/T ). Although the models we analyze do not take
advantages of this simplification. The realizations of the
portfolio return Rx are given as yt =

∑n
j=1 rjtxj .

The portfolio optimization problem is modeled as a mean-
risk bicriteria optimization problem where the mean µ(x) is
maximized and the risk measure %(x) is minimized. In the
original Markowitz model, the standard deviation was used
as the risk measure. Several other risk measures have been
later considered thus creating the entire family of mean-risk
models (c.f., [15], [16]). These risk measures, similar to the
standard deviation, are law-invariant (are not affected by any
shift of the outcome scale) and are risk relevant (equal to 0 in
the case of a risk-free portfolio while taking positive values
for any risky portfolio). Unfortunately, such risk measures
are not consistent with the stochastic dominance order [17]
or other axiomatic models of risk-averse preferences [18] and
coherent risk measurement [8].

In stochastic dominance, uncertain returns (modeled as
random variables) are compared by pointwise comparison
of some performance functions constructed from their dis-
tribution functions. The first performance function F

(1)
x is

defined as the right-continuous cumulative distribution func-
tion: F (1)

x (η) = Fx(η) = P{Rx ≤ η} and it defines the

first degree stochastic dominance (FSD). The second function
is derived from the first as F (2)

x (η) =
∫ η
−∞ Fx(ξ) dξ and

it defines the second degree stochastic dominance (SSD).
We say that portfolio x′ dominates x′′ under the SSD
(Rx′ �

SSD
Rx′′ ), if F (2)

x′ (η) ≤ F (2)
x′′ (η) for all η, with at least

one strict inequality. A feasible portfolio x0 ∈ Q is called
SSD efficient if there is no x ∈ Q such that Rx �SSD

Rx0 .
Stochastic dominance relates the notion of risk to a possible
failure of achieving some targets. As shown by [19], function
F

(2)
x , used to define the SSD relation, can also be presented

as follows: F (2)
x (η) = E{max{η − Rx, 0}} and thereby its

values are LP computable for returns represented by their
realizations yt.

An alternative characterization of the SSD relation can be
achieved with the so-called Absolute Lorenz Curves (ALC)
[9] which represent the second quantile functions defined as
F

(−2)
x (0) = 0 and

F (−2)
x (p) =

∫ p

0

F (−1)
x (α)dα for 0 < p ≤ 1, (2)

where F
(−1)
x (p) = inf {η : Fx(η) ≥ p} is the left-

continuous inverse of the cumulative distribution function
Fx. The pointwise comparison of ALCs is equivalent to the
SSD relation [12] in the sense that Rx′ �

SSD
Rx′′ if and

only if F (−2)
x′ (β) ≥ F (−2)

x′′ (β) for all 0 < β ≤ 1. Moreover,

F
(−2)
x (β) = max

η∈R

[
βη − F (2)

x (η)
]

= max
η∈R

[βη − E{max{η −Rx, 0}}]
(3)

where η is a real variable taking the value of β-quantile
Qβ(x) at the optimum. For a discrete r.v. represented by its
realizations yt problem (3) becomes an LP.

For any real tolerance level 0 < β ≤ 1, the normalized
value of the ALC defined as

Mβ(x) = F (−2)
x (β)/β (4)

is called the Conditional Value-at-Risk (CVaR) or Tail VaR or
Average VaR. The CVaR measure is an increasing function
of the tolerance level β, with M1(x) = µ(x). For any
0 < β < 1, the CVaR measure is SSD consistent [12] and
coherent [11]. Opposite to deviation type risk measures, for
coherent measures larger values are preferred and therefore
the measures are sometimes called safety measures [15].
Due to (3), for a discrete random variable represented by its
realizations yt the CVaR measures are LP computable. It is
important to notice that although the quantile risk measures
(VaR and CVaR) were introduced in banking as extreme risk
measures for very small tolerance levels (like β = 0.05), for
the portfolio optimization good results have been provided
by rather larger tolerance levels [15].

For β approaching 0, the CVaR measure tends to the
Minimax measure

M(x) = min
t=1,...,T

yt (5)

introduced to portfolio optimization by Young [20]. Note that
the maximum (downside) semideviation

∆(x) = µ(x)−M(x) = max
t=1,...,T

(µ(x)− yt) (6)

and the conditional β-deviation

∆β(x) = µ(x)−Mβ(x) for 0 < β ≤ 1, (7)
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respectively, represent the corresponding deviation risk mea-
sures. They may be interpreted as the drawdown measures
[21]. For β = 0.5 the measure ∆0.5(x) represents the mean
absolute deviation from the median [16].

The commonly accepted approach to implementation of
the Markowitz-type mean-risk model (with deviation type
risk measures) is based on the use of a specified lower bound
µ0 on expected returns while optimizing the risk measure.
This bounding approach provides a clear understanding of
investor preferences and a clear definition of optimal port-
folio to be sought. For deviation type risk measures % the
approach results in the following minimum risk problem:

min{%(x) : µ(x) ≥ µ0, x ∈ Q} (8)

While using the coherent and SSD consistent risk measures
µ% one may focus on the measure maximization without
additional constraints

max{µ%(x) : x ∈ Q} (9)

or still consider some preferential constraints on the mean
expectation

max{µ%(x) : µ(x) ≥ µ0, x ∈ Q}. (10)

In the case of CVaR measure both models can be effectively
solved for large numbers of scenarios while taking advan-
tages of appropriate dual formulations [22].

III. REWARD-RISK RATIO OPTIMIZATION

AN alternative specific approach to portfolio optimization
looks for a risky portfolio offering the maximum in-

crease of the mean return, compared to the risk-free target τ .
Namely, given the risk-free rate of return τ , a risky portfolio
x that maximizes the ratio (µ(x)− τ)/%(x) is sought. This
leads us to the following ratio optimization problem:

max

{
µ(x)− τ
%(x)

: x ∈ Q
}
. (11)

The approach is well appealing with respect to the prefer-
ences modeling and applied to standard portfolio selection
or (extended) index tracking problems (with a benchmark as
the target). We illustrate ratio optimization (11) in Fig. 1.
For the LP computable risk measures the reward-risk ratio
optimization problem can be converted into an LP form [16].

When the risk-free return r0 is used instead of the target τ
than the ratio optimization (11) corresponds to the classical
Tobin’s model [23] of the modern portfolio theory (MPT)
where the capital market line (CML) is the line is drawn from
the risk-free rate at the intercept that passes tangent to the
mean-risk efficient frontier. Any point on this line provides
the maximum return for each level of risk. The tangency
(tangent, super-efficient) portfolio is the portfolio of risky
assets on the efficient frontier at the point where the CML
is tangent to the efficiency frontier. It is a risky portfolio
offering the maximum increase of the mean return while
comparing to the risk-free investment opportunities. Namely
having given the risk-free rate of return r0 one seeks a risky
portfolio x that maximizes the ratio (µ(x)− r0)/%(x).

Instead of the reward-risk ratio maximization one may
consider an equivalent model of the risk-reward ratio mini-
mization (see Fig. 2):

min

{
%(x)

µ(x)− τ
: x ∈ Q

}
. (12)

6
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Fig. 2. Risk-reward ratio optimization

Actually, this is a classical model for the tangency portfolio
as considered by Markowitz [1] and used in statistics books
[24].

Both the ratio optimization models (11) and (12) are theo-
retically equivalent. However the risk-reward ratio optimiza-
tion (12) enables easy control of the denominator positivity
by simple inequality µ(x) ≥ τ + ε added to the problem
constraints. The model may also be additionally regularized
for the case of multiple risk-free solutions. Regularization
(%(x) + ε)/(µ(x)− τ) guarantees that the risk-free portfolio
with the highest mean return will be selected then.

Theorem 1: If risk measure %(x) is mean-complementary
SSD consistent, i.e.

Rx′ �
SSD

Rx′′ ⇒ µ(x′)− %(x′) ≥ µ(x′′)− %(x′′)

then the reward-risk ratio optimization (11) or equivalently
(12) is SSD consistent provided that µ(x) > τ > µ(x) −
%(x).

Proof: Note that

−1 +
%(x)

µ(x)− τ
=
τ − (µ(x)− %(x))

µ(x)− τ
.

If Rx′ �
SSD

Rx′′ , then µ(x′)− %(x′) ≥ µ(x′′)− %(x′′) and
µ(x′) ≥ µ(x′′). Hence,

τ − (µ(x′)− %(x′))

µ(x′)− τ
≥ τ − (µ(x′′)− %(x′′))

µ(x′′)− τ
provided that both numerators and denominators remains
positive.

The reward-risk ratio is well defined for the deviation type
risk measures. Therefore while dealing with the CVaR risk
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model we must replace this performance measure (coherent
risk measure) with its complementary deviation represen-
tation. The deviation type risk measure complementary to
the CV aRβ representing the tail mean within the β-quantile
takes the form of ∆β(x) = µ(x)−CV aRβ(x) (conditional
semideviation or drawdown measure) thus leading to the ratio
optimization [16]:

µ(x)− τ
∆β(x)

→ max (13)

Taking advantages of possible inverse formulation of the
risk-reward ratio optimization (12) as ratio

∆β(x)

µ(x)− τ
→ min (14)

we get a model well defined for µ(x) > τ and SSD
consistent for τ − Mβ(x) ≥ 0. Thus, this CVaR ratio
optimization is consistent with the SSD rules (similar to the
standard CVaR optimization [12]), despite that the ratio does
not represent a coherent risk measure [8].

Theorem 2: For any target level τ such that there exists
portfolio x ∈ Q satisfying requirements τ ≥ Mβ(x) and
µ(x)−τ ≥ ε > 0, except for portfolios with identical values
of the corresponding CVaR risk-reward ratio, every optimal
solution of the problem

min

{
∆β(x)

µ(x)− τ
: x ∈ Q, τ ≥Mβ(x), µ(x)− τ ≥ ε

}
(15)

is an SSD efficient portfolio.
Proof: Let x0 be an optimal portfolio for ratio opti-

mization (15). If there exists portfolio x ∈ Q satisfying
requirements τ ≥ Mβ(x) and µ(x) − τ ≥ ε such that
Rx �SSD

Rx0 , then following Theorem 1

∆β(x)

µ(x)− τ
≤ ∆β(x0)

µ(x0)− τ
.

Hence, due to optimality of x0

∆β(x)

µ(x)− τ
=

∆β(x0)

µ(x0)− τ
.

which completes the proof.

IV. COMPUTATIONAL LP MODELS

IN this section we will show that while transforming the
CVaR risk-reward ratio optimization (14) to an LP model,

we can take advantages of the LP duality to get a model
formulation providing higher computational efficiency. In the
introduced model, similar to the direct CVaR optimization
[25], the number of structural constraints is proportional
to the number of instruments while only the number of
variables is proportional to the number of scenarios, thus
not affecting so seriously the simplex method efficiency. The
model can effectively be solved with general LP solvers even
for very large numbers of scenarios (like the case of fifty
thousand scenarios and one hundred instruments solved less
than a minute). On the other hand such efficiency cannot be
achieved with model (13).

Let us consider portfolio optimization problem with asset
returns given by discrete random variables with realization
rjt thus leading to LP models for coherent risk measures
we consider. Let us focus first on measures maximization

without additional (preferential) constraints thus considering
the optimization models of type (9).

Following (3) and (4), the CVaR portfolio optimization
model can be formulated as the following LP problem:

max y − 1

β

T∑
t=1

ptdt

s.t.
n∑
j=1

xj = 1, xj ≥ 0 j = 1, . . . , n

dt ≥ y −
n∑
j=1

rjtxj , dt ≥ 0 t = 1, . . . , T

(16)

where y is unbounded variable. Except from the core port-
folio constraints (1), model (16) contains T nonnegative
variables dt plus single η variable and T corresponding
linear inequalities. Hence, its dimensionality is proportional
to the number of scenarios T . Exactly, the LP model contains
T +n+ 1 variables and T + 1 constraints. It does not cause
any computational difficulties for a few hundreds scenarios
as in several computational analysis based on historical data
[26]. However, in the case of more advanced simulation
models employed for scenario generation one may get several
thousands scenarios. This may lead to the LP model (16) with
huge number of variables and constraints thus decreasing the
computational efficiency of the model. As shown in [25], the
computational efficiency can easily be achieved by taking
advantages of the LP dual to model (16). The LP dual model
takes the form:

min q

s.t. q −
T∑
t=1

rjtut ≥ 0 j = 1, . . . , n

T∑
t=1

ut = 1

0 ≤ ut ≤
pt
β

t = 1, . . . , T

(17)

containing T variables ut, but the T constraints correspond-
ing to variables dt from (16) take the form of simple upper
bounds (SUB) on ut thus not affecting the problem complex-
ity. Actually, the number of constraints in (17) is proportional
to the total of portfolio size n, thus it is independent from
the number of scenarios. Exactly, there are T + 1 variables
and n+ 1 constraints. This guarantees a high computational
efficiency of the dual model even for very large number of
scenarios.

For an LP computable risk measure %(x), the ratio
optimization problem (11) can be converted into an LP
form by the following transformation: introduce variables
v = µ(x)/%(x) and v0 = 1/%(x), then replace the original
decision variables xj with x̃j = xj/%(x), getting the linear
criterion max v − τv0 and an LP feasible set. Once the
transformed problem is solved the values of the portfolio
variables xj can be found by dividing x̃j by v0 while
%(x) = 1/v0 and µ(x) = v/v0.

In the CVaR model, risk measure %(x) = ∆β(x) is
not directly represented. We can introduce, however, the
equation:

z − y +
1

β

T∑
t=1

ptdt = z0
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allowing us to represent ∆β(x) with variable z0. Hence, the
ratio model takes the form:

max
z − τ
z0

s.t.

z − y +
1

β

T∑
t=1

ptdt = z0

dt + yt ≥ y, dt ≥ 0 t = 1, . . . , T
n∑
j=1

µjxj = z

n∑
j=1

rjtxj = yt t = 1, . . . , T

n∑
j=1

xj = 1, xj ≥ 0 j = 1, . . . , n

(18)

Introducing variables v = z/z0 and v0 = 1/z0 we get
linear criterion v − τv0 of the corresponding ratio model.
Further, we divide all the constraints by z0 and make the
substitutions: d̃t = dt/z0, ỹt = yt/z0 for t = 1, . . . , T , as
well as x̃j = xj/z0, for j = 1, . . . , n and ỹ = y/z0. Finally,
we get the following LP formulation:

max v − τv0
s.t.

v − ỹ +
1

β

T∑
t=1

ptd̃t = 1

d̃t + ỹt ≥ ỹ, d̃t ≥ 0 t = 1, . . . , T
n∑
j=1

µj x̃j = v

n∑
j=1

rjtx̃j = ỹt t = 1, . . . , T

n∑
j=1

x̃j = v0, x̃j ≥ 0 j = 1, . . . , n

(19)

After eliminating defined by equations variables v, v0 and
yt, one gets the most compact formulation:

max
n∑
j=1

µj x̃j − τ
n∑
j=1

x̃j

s.t. −ỹ +

n∑
j=1

µj x̃j +
1

β

T∑
t=1

ptd̃t = 1

ỹ −
n∑
j=1

rjtx̃j − d̃t ≤ 0 t = 1, . . . , T

d̃t ≥ 0 t = 1, . . . , T
x̃j ≥ 0 j = 1, . . . , n

(20)

that contains T +n+1 variables and T +1 constraints. Even
taking advantages of the LP dual formulation

min q

s.t. −q +
T∑
t=1

ut = 0

µjq −
T∑
t=1

rjtut ≥ µj − τ j = 1, . . . , n

pt
β
q − ut ≥ 0 t = 1, . . . , T

ut ≥ 0 t = 1, . . . , T

(21)

one cannot get any model that contains less than T + n+ 1
constraints and T + 1 variables.

The complexity can be reduced however while using the
risk-reward ratio optimization (12). The corresponding CVaR
model takes the following form:

min

z − y +
1

β

T∑
t=1

ptdt

z − τ

s.t. dt ≥ y −
n∑
j=1

rjtxj , dt ≥ 0 t = 1, . . . , T

z =
n∑
j=1

µjxj ,
n∑
j=1

xj = 1

xj ≥ 0, j = 1, . . . , n

(22)

It can be linearized by substitutions: d̃t = dt/(z − τ),
ỹ = y/(z − τ), x̃j = xj/(z − τ), v = z/(z − τ) and
v0 = 1/(z − τ) leading to the following LP formulation:

min v − ỹ +
1

β

T∑
t=1

ptd̃t

s.t. d̃t ≥ ỹ −
n∑
j=1

rjtx̃j , d̃t ≥ 0 t = 1, . . . , T

v − v0τ = 1

v =

n∑
j=1

µj x̃j ,

n∑
j=1

x̃j = v0

x̃j ≥ 0 j = 1, . . . , n

(23)

After eliminating defined by equations variables v and v0,
one gets the most compact formulation:

min
n∑
j=1

µj x̃j − ỹ +
1

β

T∑
t=1

ptd̃t

s.t. d̃t ≥ ỹ −
n∑
j=1

rjtx̃j , d̃t ≥ 0 t = 1, . . . , T

n∑
j=1

(µj − τ)x̃j = 1, x̃j ≥ 0 j = 1, . . . , n

(24)

The original values of xj can be then recovered dividing x̃j
by v0.

Taking the LP dual to model (24) ones get the model:

max q

s.t.
T∑
t=1

ut = 1

T∑
t=1

rjtut + (µj − τ)q ≤ µj j = 1, . . . , n

0 ≤ ut ≤
pt
β

t = 1, . . . , T

(25)

containing T variables ut, but the T constraints correspond-
ing to variables dt from (24) take the form of simple
upper bounds (SUB) on ut thus not affecting the problem
complexity. Thus similar to the standard CVaR optimization
(17), the number of constraints in (25) is proportional to
the total of portfolio size n, thus it is independent from
the number of scenarios. Exactly, there are T + 1 variables
and n+ 1 constraints. This guarantees a high computational
efficiency of the dual model even for very large number of
scenarios.
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Similarly to experiments with CVaR computational models
efficiency [25], we have run computational tests on large
scale instances developed by Lim et al. [27]. They were
originally generated from a multivariate normal distribution
for 50, 100 or 200 assets with the number of scenarios
50,000. All computations were performed on a PC with the
Intel Core i7 2.66GHz processor and 6GB RAM employing
the simplex code of the CPLEX 12.5 package. An attempt
to solve the CVaR reward-risk ratio model in its primal
(20) or dual (21) forms with β = 0.05 resulted in similar
high computations times of 620, 1487, 5102 seconds and
of 656, 1544, 5347 seconds on average, for problems with
50, 100 and 200 assets, respectively. For the CVaR risk-
reward ratio model in its primal form (24) the computation
time were remarkably higher than those for the reward-risk
ratio, resulting in 864, 1749, 5273 seconds on average. On
the other hand, solving the dual models (25) directly by
the primal method (standard CPLEX settings) resulted in
dramatically shorter computation times 5.8, 14.2 and 39.9
CPU seconds, respectively. Thus, similar to the standard
CVaR optimization [25], the dual model for the CVaR risk-
reward ratio optimization allows one to solve effectively large
scale problems. Moreover, the computation times remain
very low for various tolerance levels β as shown in Table I.

TABLE I
COMPUTATIONAL TIMES (IN SECONDS) FOR THE DUAL LP MODEL (25)
OF THE CVAR RISK-REWARD RATIO OPTIMIZATION (AVERAGES OF 10

INSTANCES WITH 50,000 SCENARIOS)

n β = 0.05 β = 0.1 β = 0.2 β = 0.3 β = 0.4

50 5.8 7.5 9.2 9.5 10.9
100 14.2 18.3 23.1 24.2 26.1
200 39.9 53.1 66.8 76.1 77.3

V. CONCLUSION

WE have presented the reward-risk ratio optimization
model for the CVaR risk measure and analyzed its

properties. Taking advantages of possible inverse formulation
of the risk-reward ratio optimization (14) we get a model well
defined and SSD consistent under natural restriction on the
target value selection. Thus, this CVaR ratio optimization is
consistent with the SSD rules (similar to the standard CVaR
optimization [12]), despite that the ratio does not represent
a coherent risk measure [8].

We show that while transforming the CVaR risk-reward
ratio optimization (14) to an LP model, we can take ad-
vantages of the LP duality to get a model formulation
providing higher computational efficiency. In the introduced
dual model, similar to the direct CVaR optimization [25],
the number of structural constraints is proportional to the
number of assets while only the number of variables is
proportional to the number of scenarios, thus not affecting
so seriously the simplex method efficiency. The model can
effectively be solved with general LP solvers even for very
large numbers of scenarios. Actually, the dual CVaR ratio
portfolio optimization problems of fifty thousand scenarios
and two hundred instruments can be solved with the general
purpose LP solvers in less than a minute. On the other hand,
such efficiency cannot be achieved with model the standard
CVaR reward-risk ratio model (13).
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