

Abstract—Those who cannot learn history are doomed to

repeat it. The Climate Data Analysis Tool (CDAT) has had
many names since its creation in 1989, but its purpose has
remained the same; to provide capabilities needed for
validating, comparing and diagnosing climate model behavior
[1]. CDAT has grown from a small visualization package to a
complex piece of desktop software with many components,
including VCS, VTK, VisIt and many others. CDAT’s primary
users are climate scientists, and as CDAT expands to run in the
browser, the user experience needs to be just like the versions
our users have loved and used over the last twenty-seven years.

Index Terms—UV-CDAT, CDAT, vCDAT, CDATWeb

I. INTRODUCTION
HE Program for Climate Model Diagnosis and
Intercomparison (PCMDI) was established in 1989 at

the Lawrence Livermore National Laboratory (LLNL) with
the principal mission to develop improved methods and
tools for diagnosis, validation and intercomparison of global
climate models. [2]

The massive amounts of data produced by decadal
simulations with climate models makes it imperative that a
utility exists for easily visualizing the data with a number of
different techniques. It is virtually impossible to gain insight
into these models’ behavior without graphic representations
of the data, and no single display technique is best for

Manuscript received July 1, 2016; revised July 30, 2016. This work was

funded by the UV-CDAT project at Lawrence Livermore National
Laboratory as a process for merging the CDATGUI and CDATWeb teams.

M. B. Harris is a Computer Scientist, Mathematical Programmer in the
AIMS (Analytics and Informatics Management Systems) team at Lawrence
Livermore National Laboratory, Livermore, CA 94550 USA (phone: 925-
423-8978 email: harris112@llnl.gov).

S. B. Fries is a Computer Scientist, Mathematical Programmer in the
AIMS team at Lawrence Livermore National Laboratory, Livermore, CA
94550 USA (phone: 925-422-5859 email: fries2@llnl.gov).

D. N. Williams is a Principal Investigator and the Team Leader of the
AIMS team at Lawrence Livermore National Laboratory, Livermore, CA
94550 USA (phone: 925-423-0145 email: williams13@llnl.gov).

S. A. Baldwin is a Computer Scientist, Mathematical Programmer in the
AIMS team at Lawrence Livermore National Laboratory, Livermore, CA
94550 USA (phone: 925-423-8954 email: baldwin32@llnl.gov).

J. W. Crean is a Computer Science Intern in the AIMS team at Lawrence
Livermore National Laboratory, Livermore, CA 94550 USA (email:
creanjames@gmail.com).

B. J. Sampson is a Computer Science Intern in the AIMS team at
Lawrence Livermore National Laboratory, Livermore, CA 94550 USA
(email: sampson.bryce@yahoo.com).

E. M. J. Brown is a Computer Science Intern in the AIMS team at
Lawrence Livermore National Laboratory, Livermore, CA 94550 USA
(email: ebrown37@mail.csuchico.edu).

A. M. P. Pawlica is a Computer Science Intern in the AIMS team at
Lawrence Livermore National Laboratory, Livermore, CA 94550 USA
(email: anna.maulle@gmail.com).

recognizing or for explaining all features of their behavior.
In comparing decadal simulations from tens of models, it is
important to have a functionality to perform computations
on the data, and, since most of these models use different
grids, to also have the ability to perform grid
transformations. These additional capabilities not only make
it easier and quicker to browse through terabytes of data in
the comparison of models, but it also removes the need for
intermediate data files [1][2].

Visual displays are used not only for browsing data, but
also for documenting a simulation and presenting results, so
it is necessary that the visualization software allow as much
user control over the display as is feasible, and provide a
method for producing hardcopy visuals without exhaustive
human interaction [1].

The design of this software was driven by the need to
provide a platform upon which an ever-growing selection of
methods for displaying one-, two- and three-dimensional
data could be incrementally developed with extensive user
control over all elements the process. This software provides
the user with the capability either interactively or from a
script. It provides scripting functionality for saving the
instantaneous state-of-the-system for late recovery, and the
ability to save a continuous script of an interactive session
that can be edited (or not) and re-ran [1].

The CDAT software is a suite of tools for storing,
diagnosing and visualizing climate data. It may also be
useful for general scientific computations and graphics [3].

II. PAST
1989: PCMDI software developers started working on a

diagnosis and visualization tool called MapView for use on
their machines, which were equipped with Apollo 20MHz
processors and 2MB of RAM [4]. This first-generation
version of CDAT was a command line tool written in C [5],
Fortran [6], and the Graphical Kernel System (GKS) [7]. It
was able to produce one- and two- dimensional graphics.

1992: MapView was given a graphical user interface
(GUI) [8] and renamed to Visualization Command Systems
(VCS). VCS was upgraded from GKS to XGKS [9] for the
windowing system support. The new GUI was written in C
and SunView [10]. VCS helped expand the number of users
by providing both command-line and GUI usage.

1994: Visualization Command Systems (VCS) was
renamed to Visualization Control Systems (VCS) and given
upgrades in programming languages. VCS started migrating
to Python [11] and the windowing system migrated to Motif
[12]. These changes were vital to insuring the software
would remain extensible and maintainable in a time of rapid
changes in the programming community.

The Legend of CDAT: A Link to the Past
Matthew B. Harris, Sam B. Fries, Dean N. Williams, Sterling A. Baldwin, James W. Crean, Bryce J.

Sampson, Edward M. Brown, Anna Paula M. Pawlicka,

T

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

1996: VCS became the Climate Data Analysis Tools
(CDAT). The major change was introducing the concept of
several packages; all of the previous work became the VCS
package, and the CDMS [13] and NumPy [14] packages
were added to CDAT. The GUI was re-written in Tcl/TK
[15]. Users at this time had started talking about other types
of software and to ensure continued usage of CDAT, the
concept of plug-and-play was developed, which allowed for
other packages to be added to CDAT.

1998: The GUI became its own package, vCDAT, which
was added to CDAT. This change brought the addition of
the PMW [16] to Tck/TK for the GUI. This meant hardcore
users would not have to install the GUI, making set up
easier. It also gave users the freedom to install only the
packages they wanted or needed, giving the system more
flexibility.

2004: CDAT’s windowing system was replaced by Cairo
[17]. Two new packages were added: CDUtil [18] and
GenUtil [19]. These additions not only kept current users
happy, but again helped to increase the number of users.

2009: CDAT again made a core language addition of the
Visualization Tool Kit (VTK) [19]. With the addition of
VTK, CDAT was able to offer its users interactive three-
dimensional plots of their data, another impressive feature
for the user base.

2011: The beginning of a new era. CDAT up to this point
had its six core packages (vCDAT, VCS, CDMS NumPy
CDUtil, and GenUtil); with the addition of eight new
packages (matplotlib [21], VISUS [22], ESG [23], R [24],
VTK [19], VisTrails [25], VisIt [26], SciPy [27], and
CMOR [28]), the Ultrascale Visualization Climate Data
Analysis Tools (UV-CDAT) [20] was released. Our users
now had a wide selection of tools at their disposal, available
not only from the command line but also from the new GUI,
which was completely rewritten in Qt [29].

2013: With large growth in climate data, ESG was forced
to expand to the Earth System Grid Federation because
storing all the data in one location was no longer feasible.
UV-CDAT had a package update (ESG to ESGF). The
development of UV-CDATLive was started. Unlike UV-
CDAT (the stand-alone version), UV-CDAT Live did not
require any software installation. By using UV-CDAT Live,
scientists could begin their data analysis by simply opening
a web browser [30].

2014: UV-CDAT added two more packages: UVCMetrics
and PMP. These two packages gave UV-CDAT the ability
to run and display model diagnostic from standard
diagnostic libraries of that time.

2015: After a year of hibernation UV-CDATLive
transitioned to CDATWeb, further hardening the
client/server architecture and capturing the capabilities of
the desktop software UV-CDAT.

III. PRESENT
UV-CDAT is an integrated framework that provides an

end-to-end solution for management, analysis, and
visualization of “ultrascale” datasets. Figure 1 shows
version 2.4 of the desktop GUI. The project is distributed as
a bundle of Python packages, which can be installed into
any standard environment. This means that the usage of UV-

CDAT is not limited to desktop computers, but extends to
web servers, supercomputers, and more.

UV-CDAT has recently been integrated as part of the
ESGF Compute Working Team backend [32]. UV-CDAT
provides re-gridding, re-projection, and aggregation tools
directly installed as a component of the ESGF data node.
This eliminates or substantially decreases data movement by
reducing the size of the data before transferring it to the
scientist for further analysis. This allows for larger and more
complex datasets to become more accessible, enabling in-
depth and complicated analysis. This integration of UV-
CDAT provides a turnkey application for building complex
data analysis and visualization workflows. These workflows
can use various predefined components for transformation
and analysis of data, gathering data from external sources,
and visualizing the results of computations. Provenance data
is captured throughout the process, ensuring reproducibility.

UV-CDAT is preparing for a large 3.0 release. Two big
features of this release were to be a new redesigned
refreshed GUI with CDATGUI and a CDATWeb with
minimum viable functionality.

CDATGUI was designed to address some of the
limitations of the current VisTrails-based UV-CDAT GUI.
Maintaining the current GUI is difficult, due to the
extremely high level of abstraction that the VisTrails
framework operates at. Numerous bugs occurred at the
interoperation layer between VisTrails and the various
CDAT libraries. The complexity of the interoperation also
made it difficult to fully expose the flexibility of the CDAT
libraries, and as new features were added to CDAT, they
were not exposed within the GUI due to these challenges.
CDATGUI sought to remedy these issues by providing a
minimal amount of abstraction between the user and the
CDAT libraries. It was built from the ground-up with a
focus on user experience, and a testing infrastructure to
ensure that new development wouldn’t break existing
features. It also included a new provenance tracking engine
that allowed for project persistence in the form of python
scripts. An example of the CDATGUI is shown in figure 2.

CDATWeb is a browser-based version of UV-CDAT,
which leverages all of the existing libraries. It uses the
“VTK-Web” infrastructure to directly display visualizations
rendered on a server using UV-CDAT’s VTK-based
implementation of VCS. Visualizations are parameterized in
the browser, and those parameters are sent to the server, via
a remote procedure call over a WebSocket, which builds the
visualization, renders it to a PNG file, and sends the image
back over the socket. Data for the visualization can be
obtained using either ESGF [23] (which is directly streamed
via OpenDAP), or read off of a filesystem co-located with
the visualization server. An example of CDATweb is shown
in figure 3.

CDATWeb is currently a Django [33] application, using
Autobahn [34] to make the connection to the visualization
server where UV-CDAT is deployed.

IV. FUTURE
The volume of output being generated by each run of

climate models is in the petabytes, and growing [35]. The
infrastructure to store this data already exists, and UV-

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

CDAT is already in use to provide client-consumable
reductions of the data [32]. UV-CDAT needs to scale to
provide access to that data in a simple fashion for climate
scientists, and give all of the analysis tools that they need to
actually do their jobs. To do so, we need to evolve UV-
CDAT into the software we need tomorrow, rather than just
handling what we need today. So, rather than developing
multiple user interfaces to the same library, and splitting our
development team as well as our user base, we’ve decided to
combine CDATGUI and CDATWeb into a single project.
This new project will be called “vCDAT 7.0”, hearkening
back to the original CDAT GUI (the version number is
roughly accurate, if UV-CDAT is considered “CDAT 6.0”).

The initial goals of vCDAT are fairly modest; we want to
build the minimum viable user interface, with as little new
work on the CDAT libraries as possible. It will leverage all
of the existing tooling, for data management, visualization,
and analysis. The only “new” feature will be that it opens
inside a browser, rather than in a standard window. A small
RESTful web server will provide access to the existing
CDAT functionality (statistics functions, metadata reading,
visualization parameters…), and the VTK-web
infrastructure will be utilized to display the visualizations.
We’ll run a web server locally on the user’s computer, and
the entire experience will be seamless.

Once we have a working local experience, it’ll be time to
work on getting it running remotely. At this point, we’ll be
able to leverage the ESGF Compute Working Team’s efforts
and integrate with their services. We’ll also be able to install
the server in data centers adjacent to the ESGF data nodes,
leveraging the high throughput internal network of those
data centers to transfer high resolution model output to the
vCDAT server for processing and visualization. Downscaled
data will be able to be sent directly to the user’s machine to
be rendered client side, and we will also be able to do
server-side rendering on high resolution data.

To make the transition from server-side rendering to
client-side as painless as possible, the UV-CDAT team has
architected a JavaScript framework that will allow
visualization methods to be switched from server-side to
client one at a time. As we do so, we can use whatever the
most appropriate rendering technique for the client is
(Canvas, WebGL, SVG, etc.), using whichever JavaScript
framework makes the task easiest.

V. CONCLUSION
CDAT has a long history of providing the tools that

climate scientists need to perform their jobs. Looking back
at the last 27 years of climate science, we can easily see
trends of data becoming bigger and more complex, and our
software growing to meet the challenges of the day. Right
now, our users have UV-CDAT installed on a wide variety
of platforms, from desktop, to server, to supercomputer, and
we support their usage in each of those locations. Looking
forward, we can see that to remain on the cutting edge of
climate research, we have to get ahead of the curve and start
providing the tools that tomorrow’s scientists will need,
today. vCDAT is our plan to do just that.

Fig. 1. Example of the UV-CDAT v2.4 released GUI.

Fig. 2. Example of the unreleased CDATGUI.

Fig. 3. Example of the CDATWeb’s alpha released GUI.

ACKNOWLEDGMENT
We would like to thank each member of our team for all

their hard work and dedication to the project and its goals:
Dean Williams, Charles Doutriaux, James McEnerney,
Aashish Chaudhary, Jonathan Beezley, Dan Lipsa and every
member of the CDAT project.

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under Contract DEAC52-07NA27344.

LLNL-CONF-696844

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

REFERENCES
[1] Williams, Dean N., and Robert L. Mobley. The PCMDI Visualization

and Computation System (VCS): A Workbench for Climate Data
Display and Analysis. Rep. no. UCRL-ID-116890. Springfield:
National Technical Information Service, 1994. Print.

[2] Williams, Dean N. The PCMDI Software System: Status and Future
Plans. Rep. 1997. Print.

[3] Visualization Control System: Python Command Line and
Application Programming Interface. Livermore: Regents of the U of
California, 2000. Print.

[4] Network World 3.34 (1986). Books.google.com. Web. 28 June 2016.
[5] "C." ISO/IEC. Web. 28 June 2016. <http://www.open-

std.org/jtc1/sc22/wg14/>.
[6] "All Things Fortran." The FORTRAN Company. Web. 28 June 2016.

<http://www.fortran.com/>.
[7] Duce, DA, and FRA Hop Good. "The Graphical Kernel System

(GKS)." Computer-Aided Design 19.8 (1987): 364-409. Dl.acm.org.
Web. 28 June 2016.

[8] Tuck, Mike. The Real History of the GUI. 2001. Web. 28 June 2016.
[9] "XGKS: Graphical Kernel System for the X Window System."

XGKS. Web. 28 June 2016. <http://xgks.sourceforge.net/>.
[10] Salus, Peter H. A Quarter Century of UNIX. Reading, MA: Addison-

Wesley Pub. 1994. Print.
[11] "Welcome to Python.org." Python.org. Web. 28 June 2016.

<https://www.python.org/>.
[12] Brain, Marshall. Motif Programming: The Essentials-- and More.

Burlington, MA: Digital, 1992. ISBN: 1555580890. Print.
[13] "CDMS Manual Table of Contents." CDMS Table of Contents. Web.

28 June 2016. <http://uv-
cdat.llnl.gov/documentation/cdms/cdms.html>.

[14] "NumPy." NumPy — Numpy. Web. 28 June 2016.
<http://www.numpy.org/>.

[15] "Tcl Developer Site." Tcl Developer Site. Web. 28 June 2016.
<http://tcl.tk/>.

[16] "Pmw 1.3." Pmw Megawidgets 1.3. Web. 28 June 2016.
<http://pmw.sourceforge.net/doc/index.html>.

[17] "CDAT Utilities." UV-CDAT Utilities Chapter 1. Web. 28 June 2016.
<http://uvcdat.llnl.gov/documentation/utilities/utilities-1.html>.

[18] "General Utilities." UV-CDAT Utilities Chapter 2. Web. 28 June
2016. <http://uvcdat.llnl.gov/documentation/utilities/utilities-2.html>.

[19] "VTK-Enabled Applications." VTK. Web. 28 June 2016.
<http://www.vtk.org/>.

[20] "Ultrascale Visualization." UV-CDAT. Web. 28 June 2016.
<http://uvcdat.llnl.gov/index.html>.

[21] "Introduction." Matplotlib: Python Plotting — Matplotlib 1.5.1
Documentation. Web. 28 June 2016. <http://matplotlib.org/>.

[22] "ViSUS." ViSUS. Web. 28 June 2016. <http://atlantis.sci.utah.edu/>.
[23] "Earth System Grid Federation." ESGF Home Page. Web. 28 June

2016. <http://esgf.llnl.gov/>.
[24] "The R Project for Statistical Computing." R. Web. 28 June 2016.

<https://www.r-project.org>.
[25] "VisTrails." VisTrails. Web. 28 June 2016.

<http://www.vistrails.org/index.php/Main_Page>.
[26] "VisIt." VisIt. Web. 28 June 2016.

<https://wci.llnl.gov/simulation/computer-codes/visit>.
[27] "SciPy." SciPy.org. Web. 28 June 2016. <http://www.scipy.org/>.
[28] "Climate Model Output Rewriter." CMOR. Web. 28 June 2016.

<http://pcmdi.github.io/cmor-site/>.
[29] "Qt." Qt. Web. 28 June 2016. <http://www.qt.io/>.
[30] Williams, Dean N. Department of Energy's Biological and

Environmental Research Ultra-scale Visualization Climate Data
Analysis Tools (UV-CDAT) Three-year Comprehensive Report. Rep.
2013. Print.

[31] "American Meteorological Society." Metrics for the Diurnal Cycle of
Precipitation: Toward Routine Benchmarks for Climate Models:
Journal of Climate: Vol 29, No 12. Web. 28 June 2016.
<http://journals.ametsoc.org/doi/10.1175/JCLI-D-15-0664.1>.

[32] Harris, Matthew B. CDATWeb. Dec. 2015. Poster. ESGF Face-to-
Face Conference, Monterey CA.

[33] "Django." The Web Framework for Perfectionists with Deadlines.
Web. 28 June 2016. <https://www.djangoproject.com/>.

[34] "Autobahn JS." Autobahn JS Documentation. Web. 28 June 2016.
<http://autobahn.ws/js/>.

[35] Bernholdt, David, S. Bharathi, D. Brown, K. Chanchio, M. Chen, A.
Chervenak, L. Cinquini, B. Drach, I. Foster, P. Fox, J. Garcia, C.
Kesselman, R. Markel, D. Middleton, V. Nefedova, L. Pouchard, A.
Shoshani, A. Sim, G. Strand, and D. N. Williams. "The Earth System
Grid: Supporting the Next Generation of Climate Modeling
Research". Proceedings of the IEEE, 93 (3), p 485-495, 2005.

[36] Matthew Harris, “Webengine”, Proceedings of the World Congress
on Engineering and Computer Science 2014, Vol. I, WCESC 2014,
22-24 October, 2014, San Francisco, USA, pp. 131-135,
http://www.iaeng.org/publication/WCECS2014/ ISBN: 978-988-
19253-6-7

[37] Matthew B. Harris, Samuel B. Fries, Sterling A. Baldwin, and
Dakotah S. M. Webb, "Nerd Herding: Practical Project Management
in the Field" Proceedings of The World Congress on Engineering and
Computer Science 2015, Vol. I, WCECS 2015, 21-23 October, 2015,
San Francisco, USA, pp123-126,
http://www.iaeng.org/publication/WCECS2015/ ISBN: 978-988-
19253-6-7

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

