

Abstract—Testing represents a crucial phase in the

development of a software system, often requiring considerable
effort and resources. Our purpose is to offer a novel approach
for generating test cases, based on requirements specification.
We make use of scenarios used in the requirements
specification phase, taking into consideration the various
relationships that can exist between scenarios.

Index Terms—software development, requirements
specification, testing

I. INTRODUCTION

The software development process is a lengthy and
intricate process, covering several different phases. Whereas
many different software processes have been defined over
the years, four fundamental activities can be commonly
defined for most processes: specification, design &
implementation, validation and evolution [1]. The purpose
of software validation is to show that a system “conforms to
its specification and that it meets the expectations of the
system customer” [1]. The main validation technique is
represented by program testing, which is a very time
consuming activity. Testing plays a vital role in deciding the
delivery of the product, as well as ensuring the quality of the
product [2].

Despite the fact that testing can only pinpoint the
presence of errors, not their absence, as Djikstra famously
stated more than four decades ago [3], testing has a crucial
role in the software development process. In order to be able
to perform this task, the tester needs to generate test cases,
ideally making sure that all requirements have been
individually checked [4].

Through various kinds of research, many different ways
of dealing with test generation have been proposed over the
years, like path-oriented [5], goal-oriented [6] or intelligent
approaches [7]. A different kind of classification refers to
three types of testing: code-based, specification-based and
model based. While the most common one may be the code-
based (with testing performed at the coding stage), model-
based testing (often taking place at the design phase) is also
gaining increasing popularity. We are mostly concerned
with generating test cases based on specifications and this
paper presents our approach. As stated by Shanti et. al in
[8], generating test cases from specifications presents “the
added advantage of allowing test cases to be available early

Manuscript received July 23, 2016; revised August 10, 2016.
Simona Vasilache is with the University of Tsukuba, Graduate School of

Systems and Information Engineering (e-mail: simona@cs.tsukuba.ac.jp)

in the software development cycle, thereby making test
planning more effective”.

The remainder of our paper is organized as follows.
Section 2 presents an overview of our proposed approach.
Section 3 focuses on sequence diagrams and dependency
diagrams as they are used for requirements analysis,
whereas section 4 discusses the normalization process. In
section 5 we explain the process of generating primary and
secondary test cases. Section 6 contains related work;
concluding remarks and possible future research directions
are presented in section 7.

II. OVERVIEW OF PROPOSED APPROACH

We propose a method of generating test cases based on

requirements specifications. According to Ian Sommerville,
use-case based testing represents an effective system testing
approach, because it focuses on interactions [1].

We start from sequence diagrams, as representation of
scenarios, derived from use cases. After expressing each
diagram using a scenario matrix, we propose the process of
normalizing the sequence diagrams. Next, we use
dependency diagrams (previously introduced in [10]), to
show relationships between scenarios, along with
dependency formulas. Finally, the test case generation takes
place: using path traversal through sequence diagrams,
“primary” test cases will be generated. Similarly,
“secondary” test cases will be generated by traversing paths
through dependency diagrams.

We develop high-level test cases, not (low-level) unit
testing; we are mostly concerned with generating tests from
requirements. We focus on functional requirements and
through testing we make sure that all functional
requirements are fulfilled. An overview of our proposed
approach is illustrated in Fig. 1.

III. SEQUENCE DIAGRAMS AND DEPENDENCY DIAGRAMS IN

REQUIREMENTS SPECIFICATIONS

A. Sequence diagrams

The first major step in developing an application is
finding out what the system should do, reflecting the needs
of the end user (the “customer”) for the system that serves a
certain purpose [1]. The process of finding out, analyzing
and documenting these needs is called requirements
engineering [1].

Specification-Based Test Case Generation
Using Dependency Diagrams

Simona Vasilache, Member, IAENG

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

Fig. 1 Overview of proposed approach

The requirements of a software system are usually

classified into two main categories: functional requirements
and non-functional requirements. Functional requirements
state explicitly what the system should do, the kind of
services it should provide, how it should react to certain
inputs, how it should behave in given situations and
sometimes even what the system should not do [1]. Non-
functional requirements refer to constraints which usually
apply to the whole system, like time or organizational
constraints, security, performance, efficiency etc. While it
is not always easy to separate the two types of requirements,
we are mostly concerned with the functional requirements.
Requirements specifications is “the process of writing down
the user and system requirements in a requirements
document” [1]. Requirements elicitation and analysis
involves software engineers working together with the
system end user. Natural language is often used to elicit
requirements, usually supplemented by numerous types of
notations. Use cases are widely used for particularly
capturing functional requirements. They describe who does
what with the system, for what purpose, without dealing
with system internals. A complete set of use cases specifies
all the different ways to use the system, and therefore
defines all that is required of the system, from a high-level
view.

One scenario represents an instance of a use case, and
shows a single path through the use case. Thus, one may
construct a scenario for the main flow through the use case,
and other scenarios for each possible variation of flow
through the use case. Several different scenarios are
possible for a single use case. The Unified Modeling

Language (UML) provides a graphical means of
representing scenarios using sequence diagrams [11]. One
sequence diagram typically represents a single use case
scenario or flow of events. Sequence diagrams are often
used for both analysis and design purposes, as they show the
interactions between objects in the sequential order that
those interactions occur.

Throughout our paper we will consider the example of a
simple Automated Teller Machine (ATM) system. Let us
start by focusing on the following scenario: the user
approaches an ATM machine and is shown the main
display; (s)he inserts an ATM card into the ATM machine;
after the card has been authenticated with the bank, the main
options menu is displayed. Fig. 2 illustrates the
corresponding sequence diagram for the above scenario.

As we defined in [12], a sequence diagram is a structure
(O, M, <), where:

- O is the set of all objects appearing in the sequence
diagram;

- M is the set of all messages exchanged between objects;
- < shows a partial ordering of the messages.
M is the set of messages, and each message is a tuple

(Mijk, N, W [,G]), where:
- Mijk is the kth message originating in object i and going

to object j;
- N is the name attached to the message;
- W is the type of message; W∈{0, 1, 2} (0: simple

message, 1: synchronous message, 2: asynchronous
message);

- G is the guard attached to the message

Fig. 2 Simple sequence diagram for an ATM

For a given scenario, a scenario matrix is an ordered list

of all message tuples (Mijk, N, W [,G]) belonging to the
scenario. Fig. 3 shows the scenario matrix corresponding to
the sequence diagram in Fig. 2.

Fig. 3 Scenario matrix for an ATM

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

B. Dependency diagrams

Whereas one scenario represents a single “story” of the
use of a system, numerous scenarios are needed for the
complete description of the requirements specification of the
system. When capturing the requirements, all the possible
scenarios must be included.

As observed and developed in [10], these scenarios are not
independent of each other, but several relationships and
dependencies interconnect them. For instance, in the ATM
system example, if we consider one scenario for creating a
card with a bank, and another scenario for using the card for
ATM operations, one of the system requirements is that the
scenario of creating the card must precede the one of
performing ATM operations. This illustrates a simple
relationship of one scenario succeeding another
(“succession”, as defined in [10]).

We have previously introduced dependency diagrams in
order to represent the relationships between scenarios; our
work in [10] details the notation used, as well as the types of
relationships that can exist between various scenarios.

After eliciting all scenarios illustrating the requirements
(represented as sequence diagrams), we need to clearly
define the relationship between them. These relationships
will be illustrated through a series of dependency diagrams,
along with a dependency formula for each of them.

In the following, we will illustrate some possible

relationships applicable to the ATM system. Let us consider
3 different scenarios as follows: one for withdrawing cash
(named Scenario_withdraw), one for depositing cash
(named Scenario_deposit) and one for performing a cash
transfer into a different account (named Scenario_transfer).
At a given time, as the user approaches the ATM, either one
of these scenarios is possible. (For instance, the user cannot
withdraw cash and deposit cash at the same time.) We say
that these three scenarios are related through a “disjunction”
relationship [10].

The dependency formula for this simple example looks
like in the following:

(Scenario_withdraw ∨ Scenario_deposit ∨ Scenario_transfer)

IV. NORMALIZATION

If we analyze the above example, we can make some

important observations. Before proceeding, let us express
the scenario matrices for each of the three scenarios
mentioned in the previous section (we will simplify the
notation and call them Sc1, Sc2 and Sc3); they are
represented in Fig. 4a, 4b and 4c, respectively.

Fig. 4a Scenario matrix for withdrawal

Sc1 is the scenario for withdrawing cash; Sc2 is the

scenario for depositing cash, while Sc3 is the scenario for
transferring cash. We can observe that the three scenario
matrices have a number of common messages. They
represent the part where the main screen is displayed, the
user inserts the card and this card is successfully verified
with the bank.

Fig. 4b Scenario matrix for deposit

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

Fig. 4c Scenario matrix for transfer

In particular, if we intend to use these scenario matrices

further, for representing various relationships, it is
redundant to express the set of 9 consecutive identical
messages for each scenario. In order to be able to express
the relationships between various scenarios/sequence
diagrams in an unambiguous manner, we believe it is
essential to maintain the property of having distinct,
individual sequence diagrams. We believe it is important to
remove the overlapping, so that we obtain disjoint sequence
diagrams, i.e. individual, distinct sequence diagrams. We
call this process normalization of scenarios.

 Through the process of normalization, we can isolate the
identical messages and create a new scenario made up of
these messages; this is the scenario that corresponds to the
sequence of messages exchanged between the involved
objects at the start of the transaction (whichever that is,
among the three possible transactions).

The scenario matrix for our new scenario is in actual fact
the scenario matrix appearing in Fig. 3 (Sc0).

Through the process of normalization, in our simple ATM
example, we obtained four distinct, disjoint scenarios.

The relationships between them can be described using
natural language as follows. First, the initial scenario takes
place, in which the user approaches the ATM, inserts his
card and the card is validated by the bank. This scenario is
followed by one of the following three scenarios: scenario
of withdrawing cash, scenario of depositing cash or scenario
of transferring cash. The first scenario precedes any of the
other three; only one of the other three scenarios can take
place at a given time.

We can represent the new dependency formula as follows:

Sc0 ; (Sc1 ∨ Sc2 ∨ Sc3) ,
where Sc0 is the initial scenario and Sc1, Sc2 and Sc3

represent the withdraw, deposit and transfer scenarios,
respectively (succession is denoted by “;”, whereas
disjunction is denoted by “∨”).

To further our example, we can imagine two more
scenarios: one in which the user changes his/her password
and one of videotaping. We assume that the system is
created in such a way that whenever a password is being
changed, the operation is being videotaped. This creates a
“conjunction” type of relationship between the two
scenarios (denoted using “∧”), which can be expressed as
follows:

Sc4 ∧ Sc5 ,
where Sc4 represents the change password scenario and Sc5
represents the videotaping scenario.

V. PRIMARY AND SECONDARY TEST CASE GENERATION

After the process of representing the requirements as

scenarios, along with expressing the relationship between
these scenarios, is completed, we can proceed to generating
test cases.

When it comes to test case generation, we follow two
different directions. First, we generate so-called “primary”
test cases, from the individual scenarios. We achieve this by
traversing paths through each sequence diagram. The
scenario matrices are used as basis to generate the testing
paths. This is a straightforward process: one primary test
case will be generated for each sequence diagram. (The
description of the algorithm for defining the path is
currently at the stage of work in progress.)

Ensuring the correctness according to the primary test
cases relieves some of the burden of the tester for larger
system testing. This is equivalent to starting with small
steps, testing “primary” behaviour first, and only afterwards
addressing more complex behaviour.

After primary tests are generated, we advance towards
generating the secondary tests. They are generated not from
the initial (“primary”) requirements specifications,
represented as scenarios, but from the enhanced
requirements specifications that we proposed, which reflect
the relationships between scenarios (thus the use of
“secondary”). The secondary tests are generated by
traversing paths in the dependency diagrams, with the
information in the scenario matrices.

In our ATM example, primary testing includes four
different test cases. The first one corresponds to making
sure that the requirement illustrated in Sc0, i.e. checking the
card with the bank as the initial step in any ATM
transaction, is fulfilled. In the other tests we check whether
the withdrawal transaction works according to the
requirements expressed in Sc1; we do the same for Sc2 and
Sc3, in order to test the functionalities of depositing cash
and transferring cash.

In most specification-based testing approaches, these are
the only tests that we could generate: 4 scenarios give birth
to 4 test cases. Using our approach, in the event that these
four different tests are successful, we can advance to
secondary testing, thus generating additional test cases.
Each existing dependency diagram gives birth to a
secondary test case. In this activity, the tester can verify that
a more complex requirement is fulfilled without defect:
approaching the ATM machine and performing any of the

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

three transactions (withdrawal, deposit or transfer)
successfully. The fact that each individual (“primary”, as we
named it) scenario is error free is not a guarantee that, when
combined with another scenario, the system will be error
free, as well. While we cannot perform an exhaustive
testing, we can bring the developer one step closer to
identifying as many errors as possible in the program, by
testing increasingly complex behaviour.

Our future work will describe in detail both processes:
that of primary test case generation, as well as that of
secondary test case generation.

VI. RELATED WORK

There is a wide variety of research dealing with test case

generation, either specification-based or model-based.
Pahwa and Solanki offer a review of UML based test case
generation methods [13]. Among the methods included in
their work, the research of M. Sarma et al. is presented [14].
The authors offer an approach of generating test cases from
UML design diagrams. They propose use case diagram
graphs and sequence diagram graphs, integrated to form a
System Testing Graph; this graph is traversed to generate
test cases.

Shanti and Kumar propose test case generation by means
of UML sequence diagrams using genetic algorithms,
offering the best test case path [9]. Liu and Huang propose a
process and a set of rules for conflict analysis in class
diagrams, which can reinforce requirements analysis tasks
[15]. In [16], a framework for the automated generation of
use case diagrams is proposed. By developing use case
diagrams and activity diagrams, functional test cases are
generated. Olajubu et.al [17] present work on automating
the generation of test cases from software requirement
models. They represent requirements using a modeling
notation and automatically generate test cases using model
to text transformation techniques.

The work presented in [20] offers an overview of
research in automatic test case generation, considering 5
techniques: symbolic execution and program structural
coverage testing, model-based test case generation,
combinatorial testing, adaptive random testing and search-
based testing.

While many research papers propose test case generation
from specifications, including from sequence
diagrams/scenarios, the novelty brought by our work is that
scenarios as representation of requirements are not
considered in isolation, but in relation to other scenarios.
This is where our newly introduced dependency diagrams
come into place, by reflecting these relationships.

VII. CONCLUSIONS AND FUTURE WORK

Our paper proposed a method of generating test cases
from information contained in scenarios as representation of
requirements, along with information included in
dependency diagrams, which show relationships between
various scenarios. Through our approach we allowed the

creation of more complex test cases, ensuring that a larger
proportion of requirements are actually tested.

We are in the process of defining a formal description for
generating primary test cases from the scenario matrices, as
well as secondary test cases from the dependency diagrams.
Furthermore, as future work, we intend to integrate our
approach in a full system and provide a framework that
allows semi-automatic test case generation.

REFERENCES
[1] Ian Sommerville, "Software Engineering", Pearson, 10th edition, 2015.
[2] Priya, S. Shanmuga, and PD Sheba Kezia Malarchelvi. "Test Path

Generation Using Uml Sequence Diagram", International Journal of
Advanced Research in Computer Science and Software Engineering
Vol. 3, No. 4, 2013.

[3] E. W. Dijkstra, “Notes on structured programming”, T.H. – Report
70-WSK-03, 1970.

[4] G. J. Myers, "The Art of Software Testing", Wiley & Sons, 2004.
[5] J. Zhang, X. Chen, X. Wang, “Path-oriented test data generation using

symbolic execution and constraint solving techniques”, Proceedings
of the Second International Conference on Software Engineering and
Formal Methods, SEFM, 2004.

[6] B. Korel, “Dynamic method for software test data generation”,
Software Testing, Verification and Reliability, Vol. 2, Issue.4,
1992, pp. 203–213

[7] K.-H.Chang, J. H. Cross II, W. H. Carlisle, D. B. Brown, "A
framework for intelligent test data generation", Journal of Intelligent
and Robotic Systems, April 1992, Volume 5, Issue 2, pp 147-165.

[8] Shanthi A. V. K and Mohan Kumar G., “Automated Test Cases
Generation from UML Sequence Diagram”, 2012 International
Conference on Software and Computer Applications (ICSCA 2012),
IPCSIT vol. 41 (2012).

[9] Tripathy, A. and Mitra A., "Test case generation using activity
diagram and sequence diagram." In Proceedings of International
Conference on Advances in Computing, Springer India, pp. 121-129,
2013.

[10] S. Vasilache, "Dynamic Modeling in the Design Phase Using
Dependency Diagrams", PhD Thesis, University of Tsukuba, 2007.

[11] Unified Modeling Language™ (UML®), Retrieved from
http://www.omg.org/spec/UML/.

[12] S. Vasilache and J. Tanaka, "Support in the Software Development
Process Using Dependency Diagrams", International Journal of
Computer & Information Science, Vol.11, No.2, pp. 11-26, 2010.

[13] Pahwa N., Solanki K., “UML based Test Case Generation Methods: A
Review”, International Journal of Computer Applications, Vol. 95,
No.20, June 2014.

[14] Sarma, M. and Mall, R., “Automatic test case generation from UML
models”, 10th International Conference on Information Technology,
pp. 196-201, 2007.

[15] Liu C.L., Huang H.H., “Ontology-Based Requirement Conflicts
Analysis in Class Diagrams”, Proceedings of the World Congress on
Engineering, Vol.1, 2015.

[16] Singh, A. and Sharma, E.S., “Functional Test Cases Generation Based
on Automated Generated Use Case Diagram”, International Journal of
Innovative Research in Advanced Engineering (IJIRAE), Issue 8, Vol.
2, 2015.

[17] Olajubu, O., Ajit, S., Johnson, M., Turner, S., Thomson, S. and
Edwards, M., “Automated test case generation from domain specific
models of high-level requirements”, Proceedings of the 2015
Conference on research in adaptive and convergent systems, pp. 505-
508, ACM, 2015.

[18] Vu, T.D., Hung, P.N. and Nguyen, V.H., “A Method for Automated
Test Data Generation from Sequence Diagrams and Object Constraint
Language”, Proceedings of the Sixth International Symposium on
Information and Communication Technology, pp. 335-341, 2015.

[19] Oluwagbemi, O. and Asmuni, H., “Automatic generation of test cases
from activity diagrams for UML based testing (UBT)”, Jurnal
Teknologi, 77(13), 2015.

[20] Anand, S., Burke, E. K., Chen, T. Y., Clark, J., Cohen, M. B.,
Grieskamp, W., Harman M., Harrold M.j. & McMinn, P., “An
orchestrated survey of methodologies for automated software test case
generation”, Journal of Systems and Software, 86(8), pp. 1978-2001,
2013.

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

