
 

Abstract— This paper exposed the results for an automatic 

control implemented into a Raspberry Pi 2 B+ platform, using 

the Octave tool for mathematical modeling and the controller 

running. Linux operating system was used for this purpose, 

being installed the mathematical modeling tool and the 

complimentary toolboxes for automatic control. The 

distribution of Linux chosen was Raspbian, which is the 

vendor’s official recommended distribution with Debian bases. 

It was implemented a DC brushed motor control to test the 

hypothesis that is possible to build applications for classical 

automatic control using this platform, taking the motor velocity 

as a variable control interpreted like a differential of potential, 

showing an example of control. It was necessary to use 

additional devices to complete the system, like an external 

Analog to Digital Converter (ADC), due to the selected 

embedded board lacked this component. It was also 

implemented additional software libraries for communication 

between the control system and the real external world across 

the pins of the board. These libraries were PIGPIO and Oct2Py. 

The first library generates PWM pulses using C++ and Python, 

and the second one is used to open a session between Octave and 

Python, and can be used Octave in the Python environment. In 

the last stage, the test was running in both languages, taking 

several measurements for the control system. With the results of 

the experiments was determined that the implemented 

controller in Python with the Oct2Py was not enough reliable to 

run continuously in a control system. On the other hand, the test 

on the controller implemented in C++ resulted in better outputs 

allowing classical control systems to be executed permanently 

without any problem and satisfying the hypothesis. 

 
Index Terms— Embedded automatic control, Octave, PID 

control, Raspberry Pi B2+, Raspbian. 

 

I. INTRODUCTION 

T can be found in a globalized world several ways to build 

an automatic control for a process, either for a small or a 

big industry. Among the devices that can perform the control 

task, the   most   popular   and   known   is the   Programmable  
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Logic Controller. 

There is a huge variety of companies that trades 

programmable logic controllers (PLC) [8], which can turn 

expensive according to the customer requirements, demands 

or capacity needed, affecting somehow the economy for the 

trademarks whenever is asked a maintenance, upgrading or in 

the worst case a replacement. Of course, these companies 

consider these costs in its operative process before a 

production period starts. In addition to physical features of 

the device, software that allow the system programming for 

each specific task is generally more expensive. But, what 

happened if these systems could be replaced for others more 

accessible? Or even better, if there is an opportunity to 

achieve a free distribution system that does not require 

proprietary licenses. 

The main goal of this project is to develop a low cost 

system based on both open hardware and open software, 

which performs control in an automatic way using 

mathematical models, such as the proposed ones in 

undergraduate courses of automatic control. 

It was used a 9V DC motor to test the hypothesis. 

Furthermore, to develop the controller was necessary to know 

the features of the plant, determining the control variables, in 

order to control several aspect of a motor. To show the 

validity of the hypothesis (to know if it was possible to use 

open source embedded both hardware and software to 

perform an automatic control task) it was taken as a control 

variable the angular speed of the motor. It was needed a 

sensor with this capability and also to feedback an embedded 

system to measure the revolutions generated by the motor. 

Coupled another motor which worked as a generator was an 

alternative method used, so when the motor turns, the 

generator would produce a proportional voltage to the motor 

revolutions. 

To execute the whole system is necessary to have an 

embedded system that allow to run Octave and the additional 

toolboxes for modeling and deploy the control systems. It was 

also needed to abstract the interaction with the external world 

across the pins, either when sending the control signals and 

when the response of the sensors is received. To achieve this, 

several embedded systems platforms were evaluated, which 

could implement any Linux operating system distribution 

[3][4] such as BeagleBone Black, Raspberry Pi [7], and 

FPGA [5] SoC embedded platform. It was chosen the 

Raspberry Pi 2 B+ platform for the first part of the project, 

because it was easy to find it in the market and there is too 

much support information available on the web or books. In 

the board was implemented the controller, modeled with 
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Octave [9] and the toolbox for automatic control. At the end, 

there were experienced several test to measure the 

performance of the embedded system when it runs a classical 

PID control. 

II. METHODS AND PROCEDURES 

A. The Plant  

It is defined as a “plant” the object to be controlled, e.g., a 

motor, or even a more complex system, like an UAV 

(Unmanned Aerial Vehicle). Each system has particular 

considerations of how it works, depending on the variables to 

consider, which always is defined before specifying the 

model that is intended to work, defining the characteristics of 

the plant. With a larger number of variables for modeling a 

plant, the model complexity level will be increased. 

For this project was considered a plant with a feature of 9V 

DC motor, which was coupled with a twin motor working as 

a generator and was used as a sensor for the system feedback 

process, and allowed detecting the state of the motor any time 

required. In nominal conditions and without vibrations with a 

good coupling the current consumption was 0.2 A. Physical 

dimensions of the motor are shown in the Fig. 1. 

 

 
 Fig. 1. DC motor dimensions. 

It worth to mention that the work in the laboratory was not 

in nominal conditions because the inertia of the motor-

generator system could break with a voltage of 8 V. With that 

voltage was possible to generate up to 3.8 V of response for 

a square pulse train which was put through it. The reasons to 

generate less voltage than the applied into the motor were 

frictional losses, vibrations, electric and magnetics circuit’s 

losses, among others, so that even taking a perfect coupling, 

it could only generate up to 4.5 V with the motor and the 

generator working at nominal values. Another reason to work 

at lower voltage levels than the nominal value was to increase 

the useful life of the engines. 

As a result, a PWM signal was provided with a frequency 

of 100 Hz and an amplitude of 8 V to the plant. The sensor 

generated a voltage of 3.9 V. 

 

B. Mechanical Coupling  

It was necessary to run correctly the automatic control, in 

order to guarantee the sensor used return correct data. For this 

case, because there were two motors coupled, it generated 

vibrations that corrupted the information read by the 

acquisition stage. To improve the physical component was 

needed to deploy a structure that removes misalignment of 

the axes. Clamps were used to set the two motors to the 

metallic base. The dimension of the threaded rods used was 

5/32 inch. The metallic base to hold the motor-generator 

system was a base metal carbon steel with 8 mm thick. 

Additional features were considered: the motors were 

covered in support areas with brackets made of anti-vibration 

sponge and clamps, plus screws were placed with pressure 

rings. A whole metal-plate motor on the bottom surface in 

contact with the workstation system, plus an antistatic sponge 

were added, in order to avoid the presence of eddy currents, 

which could lead to erroneous data. The result of the final 

physical system is shown in Fig. 2. 

 

 
Fig. 2. Mechanical coupled system. 

C. Modeling Plant 

To model the plant, MATLAB’s Ident tool is used [1][2]. 

Data acquisition through the identification is made with a 

DE0 Nano board [10] with FPGA [5]. 

First, the signal is filtered to obtain only the parts that are 

deemed necessary, in this case signals ranging from 2.7 to 3.8 

volts approximately, which are the responses when the 

system is powered by a PWM signal of 60Hz and 100Hz, 

respectively. With the information acquired and the Ident 

tool, the transfer function that better approximates the 

behavior of the plant is obtained. To estimate this, there were 

used two poles and one zero in the transfer function. Fig. 3 

shows the results obtained in MATLAB. 

 

 
 

Fig. 3. Transfer function of the plant obtained with MATLAB’s 

Ident tool. 

To build the system controller, a classic PID control [1][6] 

as the ones used in the undergraduate courses of automatic 

control courses was considered. To evaluate the controller 

parameters, MATLAB’s PIDTOOL function was used. This 

evaluates the system and returns the values for the 

proportionally, integrative and derivative constants that are 

part of the model and adjust the PID controller for a better 

performance. Fig. 4 shows the transfer function of the PID 

controller obtained with MATLAB’s PIDTOOL. 

D. Embedded System 

Raspberry Pi 2 B+ is a small-scale computer, open 

hardware and accessible in many hardware stores around the 
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world, useful to perform electronics projects. The operating 

system distributions range that handles this embedded 

platform is based on the Linux operating system: an open 

source operating system and for free distribution. There are 

several distributions available for testing, being the case of 

Raspbian, the official manufacturer's distribution based on 

Debian and optimized for Raspberry Pi, which has 35,000 

available packages and pre-compiled for easy installation. 

Wolfram Alpha has also preinstalled, which is also a 

mathematical modeling tool, which for a moment was 

considered to be used, but was dropped because additional 

packages have to be paid. Raspberry Pi 2 B+ has an ARM 

Cortex-A7 900MHz quad-core, and has a RAM of 1GB. The 

board has four USB 2.0 ports, 40 GPIO pins, a video output 

port Full HDMI, an Ethernet port, a combined audio port and 

composite video as shown in Fig. 5 [7]. For data storage an 

SD card is used, having there the operating system. 

 

 

 
 

Fig. 4. Transfer Function for the PID controller obtained with 

MATLAB’s PIDTOOL. 

 

 
Fig. 5. Distribution of ports on Raspberry Pi 2 Model B+. 
 

The board has 40 pins freely accessible to the user, 26 of 

them are pins for general purpose or GPIO, useful for UART 

and SPI communication. It has also pins that deliver voltages 

of 3.3 V and 5 V with their respective ground pins. This pin 

map is based on the BCM2835 distribution specified in Fig. 

6. It is necessary to say that pins from Raspberry Pi have not 

internal protection and is recommended connect no more than 

3.3 V, although the same board can energize up to 5 V. 

It is needed the use of an external ADC due to the lack of 

an ADC module into the board, in order to abstract the analog 

data that may be required during the control, not only in the 

case of a specific plant, but also to any other use of the 

embedded system for development purposes. It can be used 

several programming languages with libraries, such as 

Python, C ++, C, Basic, Java, among others, to use the general 

purpose pins that interacts directly with the external 

environment. The chosen ones were Python and C ++, due to 

reasons inherent to their management and interaction with 

Octave, which requires at the same time interaction with the 

GPIO pins to interact with the plant and the sensor. 

 
Fig. 6. BCM2835 distribution in Raspberry PI 2 B + GPIO. 

 

E. Signal conditioning 

Another important issue is the mechanical connection 

between the plant and the sensor. It is also necessary the 

conditioning of the input and output signals to both the 

controller system and the controlled system, in order they can 

communicate by the same parameters. Knowing the variables 

of the plant and the sensor, the sensor must return a signal 

voltage, which is a function of the speed regarding to the 

plant. This voltage for the Raspberry must be connected to its 

external ADC, ADS115. This analog signal is filtered by a 

100uF capacitor to stabilize the data that enters to the ADC 

to also reduce the noise. Due to the low frequencies handled 

within the ADC and the sensor, a low pass filter is enough to 

obtain a good signal reliability. Although the ADC supports 

an input of 5.5 V, it has been placed protection diodes to the 

ADC input and generator output to isolate the embedded 

system circuit to avoid unexpected increases in current or 

voltage surges, as this was unprotected. The circuit is shown 

in Fig. 7. 

 
Fig. 7. Signal conditioning between the sensor and the ADC. 

This is also applicable to the connection between the ADC 

and the sensor, since the model is feedback controlled.  The 

signal sent is a PWM, which is conveyed through one of the 

Raspberry Pi’s pins to a transistor that acts as a switch and 

amplifier. When this signal is applied and closes the circuit, 

the current flows through the plant and if the voltage is 

enough to break the inertia of the system, the motor starts to 

move. As in the case of the sensor, for Raspberry Pi 

protection a diode was placed to prevent an overcurrent (Fig. 

8). 

F. Software 

Octave is a mathematical modeling tool based on an 

interpretative high level language, and has the ability to solve 

linear or nonlinear systems problems, like other experiments 

while is modeled mathematically. Most of the programs made 

in MATLAB are easily converted and interpreted by the 

Octave format (with *.oc extension). An Octave property is 
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the use of a "batch-oriented" programming, aimed to carry 

out tasks without the user interaction. In order to execute each 

of the instructions send a group of input data processed in a 

group that is a "batch processing", thus returning a group of 

output data. For processes data must be collected in a group 

or be stored in a set by this way, processing Octave like a unit. 

 

 

Fig.8. Signal conditioning between GPIO and the plant 

It is necessary to show that is possible to create scripts 

using Octave through languages that can extend its properties, 

e.g., Python, C ++, C, FORTRAN, among others. On the 

other hand, Octave is free software, being distributed and 

modified according to the needs, always under the GNU 

General Public License (GPL) and also published by the Free 

Software Foundation. 

The next step was to install and test the control toolbox in 

the Octave environment. Own repositories for Octave were 

used. It can be installed a toolbox just writing the command 

"-forge pkg install package_name". It was installed from the 

Linux console using the "apt-get install octave-control" 

command and the 2.3.52 package as the compatible version 

with the Octave version installed. Sometimes, even though 

the control toolbox is installed, this is not initialized in 

Octave; in this case, it just loads the toolbox in the 

environment with the "load pkg-name" command to be 

executed in Octave [9]. 

III. TEST AND RESULTS 

A. Results for the PID Test 

Based on a classic PID control model as shown in Fig. 9 

and using the Octave API in C ++, it is possible to make the 

control of the proposed plant. To measure and display the 

results was used the Analog Discovery Oscilloscope from 

Digilent.  

 

 

 
 

 

 

 
Fig.9. Model of the proposed system. 

The reference was set to 3 V on the sensor output. The 

stabilization takes about 20 seconds, which for the case of 

study is not bad for the platform used (Fig. 10). 

 

 
Fig. 10. Response taken with a fixed reference. 

When a variable reference is added, the controller does not 

stabilize the plant with the same easiness as it does when the 

reference remains fixed (Fig. 11). As point to point is 

analyzed, it is noticed that the change from the reference level 

keeps an error in the tenth between 4% and 7%, and it 

represents a big mistake for a motor dimensions chosen, 

because the delivered values are in a range between 2.5 to 3.8 

volts as was mentioned before. 

 

 
Fig. 11. Results of the experiment 2 with PID. Variable reference. 

B. Results for Software Test 

It was observed in the previous section how the controller 

stabilizes the plant, but to know how reliable is the control is 

necessary to establish the time it takes to do this task from the 

initiation of peripherals instantiation function PID, and of 

course the time it takes to complete each iteration completely, 

i.e., take the data, get the error, evaluate, adjust the value of 

the work cycle and send the PWM module. These times are 

described in Table I, where all the data is expressed in 

seconds. 
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TABLE I 

RUNTIMES PID CONTROLLER IN SECONDS 

Test 
Initializa

tion 

Sum of 

Iterations 

Average 

iteration 

Slower 

Iteration 
Total time 

P1 0.5726 292.06 0.2434 0.4363 292.6326 

P2 0.5712 291.75 0.2431 0.4333 292.3212 

P3 0.523 291.92 0.2433 0.4360 292.4430 

P4 0.5671 291.68 0.24307 0.43506 292.2471 

Aver

age 
0.5585 291.8525 0.2432 0.4352 292.4110 

 

Fig. 12 depicts a time histogram for one test. In the PID are 

1,200 iterations and the highest concentrations are in the inner 

loop iterations, which is around 0.24 seconds. This time could 

be less, but it was necessary to add a delay in the program, 

because the plant did not respond to the same speed as the 

controller. 

  
Fig. 12. Percentage of iterations for PID Controller. 

C. Results for Hardware Test 

The Quad Core ARM processor in the Raspberry has a 

consumption of 12% without performing the PID execution 

(Fig. 13). Likewise, when the program starts to instantiate 

PID, the peripherals have a useful charge of 26%. Then, 

charge decreases as control iterations start, e.g., the 

acquisition and adjustment of the PWM controller output. 

 

 
Fig. 13. Percentage of CPU usage while the Raspberry executes 

PID control. 

 

IV. CONCLUSION 

The initial hypothesis was tested, assuming a controller run 

on an embedded open source platform using system 

mathematical models, such as is posed in undergraduate 

courses. 

Communication libraries were tested with embedded 

system environment that allows abstracting the use of 

general-purpose pins. A library in Python and another in C 

++ were evaluated. It was verified that interaction between 

Python and Octave with the Oct2Py library was useful only 

to analyze groups event, but did not provide reliability to 

generate continuous control event by event, as the C ++ 

library did. 
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