

Abstract—Sensors for collecting 3D spatial data from the

real world are becoming more important. They are a prime

research area topic and have applications in consumer markets,

such as medical, entertainment, and robotics. However, a

primary concern with collecting this data is the vast amount of

information being generated, and thus, needing to be processed

before transmitted. To address the issue, several filtering

methods have been proposed to remove unimportant data. In

this paper, a comparative study is conducted to find which

methods work best and under what situation. To collect the 3D

spatial data, called point clouds, we used the Microsoft Kinect

sensor. In addition, we utilized the Point Cloud Library (PCL)

to process and filter the data being generated by the Kinect.

Two different computers were setup: a client which collects,

filters, and transmits the point clouds; and a server that

receives and visualizes the point clouds. In order to compare

the filtering methods, quality of service (QoS) metrics such as

frame rate, filtering time, and percentage of filter were

introduced. These metrics indicate how well a certain filtering

method accomplishes the goal of transmitting point clouds from

one location to another in real-time. Results show that,

regardless of the filtering approach chosen, there is still too

much data for a satisfactory QoS. For a real-time system to

provide reasonable end-to-end quality, further compression

and other techniques need to be developed.

Index Terms—filtering, Kinect, point clouds, real-time, video

streaming

I. INTRODUCTION

NE of the major contributions that technology has

provided to society is the ease of communication. As

we continue to move forward, people are looking for other

areas of communication that can benefit from or be improved

on by technology. One such example is the collection of 3D

spatial data from the real world for real-time video

streaming. Such an area provides research challenges and

contains applications in consumer markets, such as medical,

entertainment, and robotics [8]. Providing good efficiency

and high quality for real-time video streaming requires that

(i) a hardware sensor that is able to capture spatial

information in all three dimensions; (ii) encoding and

decoding algorithms; and (iii) data quality assurance

mechanisms that meet application needs.

Hardware sensors have been in development for the past

decade to allow for 3D image acquisition from a real world

Manuscript received June 22, 2016; revised July 26, 2016.

C. Moreno is with the California State University, Fresno, Fresno, CA

93740 USA (email: mmxzbnl@mail.fresnostate.edu).

environment. A variety of techniques can be used to develop

these sensors, such as time-of-light (TOF), stereo, lasers,

infrared light, and structured light [7]. Due to their different

approaches in acquiring depth data, there is a varying cost

and size for these sensors. For example, the Velodyne

spinning LiDaR system is expensive, costing upwards of

thousands of dollars, making it, and sensors similar to it,

impractical for many projects [3]. In contrast, we have seen a

rise in low cost solutions to collect RGB-D data, such as

Microsoft’s Kinect [1]. For this study, we used the Kinect

sensor to collect the 3D spatial data and the Point Cloud

Library (PCL) to process them.

The primary concern with these hardware sensors is the

rate and volume of information that is being generated.

Depending on the quality of the sensor and the physical

environment being sensed, a single capture can range from a

few thousand points to a few million points. In terms of the

Kinect sensor specifically, it generates 307,200 points per

frame, which leads to a data rate of about 45 megabytes per

second (MBps) [9]. Such a data rate is impractical to achieve

over a network for real-time video streaming, especially

when juxtaposed with the average American household

bandwidth of 12.6 megabits per second (Mbps) [2].

Therefore, in order to overcome the network bandwidth

bottleneck, the use of filtering methods is considered a viable

solution. Filtering allows us to modify or remove data from a

dataset according to certain criteria. Numerous methods for

filtering data have been developed over the past years,

originating from different services and application needs.

Given the variation of filtering algorithms, there needs to be

a comparative study that is able to compare and contrast

different filters for use in real-time video streaming.

In this study, we have implemented and conducted

experiments to evaluate four filters: pass through filter,

voxel grid filter, approximate voxel grid filter, and bilateral

filter. Results show that, overall, the pass through filter

provides the best quality of service (QoS) relative to the

other options. Yet, despite the reduction in the number of

points being transmitted, the data rate is still too high. We

conclude that, in conjunction with filtering methods, a real-

time video streaming service will require further techniques

such as frame skipping, compression, and dynamic

adjustments.

II. RELATED WORKS

Microsoft’s Kinect was originally meant for entertainment

M. Li is with the California State University, Fresno, Fresno, CA 93740

USA (phone: 559-278-4792; email: mingli@csufresno.edu).

A Comparative Study of Filtering Methods for

Point Clouds in Real-Time Video Streaming

Carlos Moreno and Ming Li

O

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

purposes, but since its inception, it has been integrated in

many other fields. For example, [11] has integrated the

Kinect with Simulink to allow for real-time object tracking.

[12] shows that the hardware sensor is applicable to the

medical field through its use in a virtual rehabilitation system

to help stroke victims regain balance. [13] explains how the

Kinect’s inherit issues can be transformed into useful

information for use in creating automatic foreground

segmentation. Lastly, [14] shows a unique example of

utilizing the Kinect in the music field.

PCL has also experienced multiple uses. [15] uses it to

develop efficient facial registration processes, encompassed

into the Digital Face-Inspection (DFI) system, to help in the

dental field. [16] explains how indoor robots also benefit

from PCL by allowing for real-time, general object

recognition. An important data structure used in PCL is the

octree, and it too has implications in other fields, as shown in

[17] and [18].

III. SYSTEM ARCHITECTURE

Microsoft’s Kinect is a peripheral hardware sensor

originally developed for interactive use of Microsoft’s Xbox

360 video game console. The RGB-D sensor was developed

with three main functions in mind: 3D image detection,

human skeleton tracing, and audio processing. This

functionality, in addition to its relatively inexpensive price,

has drawn researchers and developers to utilize the Kinect

for other purposes, such as robot vision and healthcare

systems. The sensor itself consists of an RGB camera, an

infrared (IR) emitter, an IR camera, and an array of

microphones. The Kinect can achieve a maximum frame rate

of 30 fps with a resolution of 640 x 480. Each color channel

uses 8 bits while the depth data is represented in 16 bits [10].

Therefore, for a single frame consisting of 307,200 points,

this Kinect raw data is represented in about 1.46 MB.

The Kinect raw data can be converted to point clouds. To

process these point clouds, we require the use of PCL, which

is an open-source, fully templated C++ library. It

incorporates many algorithms for point clouds and 3D

geometry, such as filtering, feature estimation, visualization,

segmentation, and more [3]. The point cloud data (PCD) for

the Kinect is about 10 MB in size; much larger than the raw

RGB-D data. If we achieved a frame rate of 30 fps, this

would result in a data rate of 300 MBps for PCL, compared

to the 45 MBps of raw Kinect data. Processing and

transmitting at either data rate is impractical.

In PCL, one of the fundamental data structures used to

represent a point cloud is the octree. An octree recursively

divides a point cloud into eight smaller sections, called

voxels (see figure 1). These voxels are 3D cubes that

encapsulate a subset of points from the point cloud. The

resolution of the frame is determined by the depth level of

the octree, i.e. a higher resolution means more voxels and a

deeper octree.

Hardware and software aside, what makes real-time video

streaming particularly challenging is finding the balance

between the data rate and the network bandwidth. Having a

high-quality hardware sensor and efficient software for

processing is wasted if the network bandwidth is unable to

deliver the data in real-time. Therefore, for this survey, we

assume that the network is in such a state: the bandwidth is

much less than the data rate. Moreover, we are using the

following configurations for the two computers: (i) a wired

desktop PC with an Intel i7-6700 processor, GTX 745 GPU,

and 16GB DDR3 RAM; and (ii) a wireless laptop with an

Intel i7-2630QM processor and 8GB DDR3 RAM.

IV. FILTERING METHODS

The filters used for this comparative study come from

PCL. There is an extensive list of available filters, however,

not all of these are practical or suited for data transmission in

real-time. Narrowing down this list, we determined that the

following four filters seem most applicable to real-time video

streaming: pass through, voxel grid, approximate voxel grid,

and bilateral. These filters each take a point cloud as input

and will output a new, filtered point cloud.

A. Pass Through

The pass through filter passes the input points through

constraints based on a particular field. It iterates through the

entire point cloud once, performing two operations. First, it

removes non-finite points. Second, it removes any points that

lie outside the specified interval for the specified field. For

example, a programmer is able to set the field so it refers to

the z-dimension (depth) and set the limit so that the filter

removes any points that are half a meter away from the

sensor.

B. Voxel Grid

The voxel grid filter assembles a 3D voxel grid over the

entire input cloud. This means that a set of cubes is placed

over the entire point cloud. For each individual voxel, the

points that lie within it are down-sampled with respect to

their centroid. This approach has a few drawbacks: (i) it

requires a slightly longer processing time as opposed to using

the voxel center; (ii) it is sensitive to noisy input spaces; and

(iii) it does not represent the underlying surface accurately

[6].

C. Approximate Voxel Grid

The approximate voxel grid filter attempts to achieve the

same output as the voxel grid filter. However, rather than

using the above method, it sacrifices accuracy for speed. It

does so by, instead of carefully determining the centroid and

Fig 1. A visual representation of a voxel (left) and its corresponding

octree (right).

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

down-sampling the points, this filter makes a quick

approximation of the centroid through the use of a hashing

function.

D. Bilateral

The bilateral filter preserves the edges in a frame and

reduces the noise. This is performed by replacing the

intensity value for each point in the frame by the weighted

average of intensity values from nearby points, based on a

Gaussian distribution. These weights depend on the

Euclidean distance and differences in ranges (such as color

and depth). For further information, see [5].

V. PERFORMANCE EVALUATION

A. Experiment Setup

In order to conduct a survey of different filtering methods,

we needed to setup an experiment that would be able to

measure certain characteristics for comparison. Because this

is in the context of real-time video streaming, we developed

a client/server application that would test each filter (see

figure 2).

The client program is designed for generating, filtering,

and transmitting the point clouds. It is connected to the

Kinect hardware sensor in order to capture the RGB-D data

from the real world. Furthermore, it uses PCL to process and

filter the point clouds. These filtered point clouds are

transmitted to the server using TCP/IP.

The server program is designed for receiving the point

clouds from the client and then visualizing them to the

monitor for display. Similar to the client, the server will

receive the filtered point clouds and use PCL’s visualization

functionality to display the received data.

We tested these filtering algorithms in three different

network environments. First, as a control/ideal case, we had

the client and server programs running locally on the desktop

PC. Second, we setup a wired-to-wireless scenario, meaning

that the client program is using a wired connection to the

Internet, while the server is receiving data through a wireless

connection. Third, we used a wireless-to-wired scenario: the

client is wirelessly connected to the Internet, the server has a

wired connection.

To test the relative effectiveness of each filter in this

application, we had to develop ways of measuring the QoS.

We therefore created a set of metrics that capture the relative

information for each filter.

B. QoS Metrics

QoS is critical for the success of real-time video

streaming. The quality of a video stream is, in part,

determined by its number of frames per second (fps). Video

streams with a high fps usually results in a smooth visual

experience for the users; low fps, on the other hand, tends to

result in a choppy stream and poor user experience.

The other part of this application is the real-time

characteristic. To measure the QoS for this aspect, we used a

processing time metric, which is the overall summation of

the individual phases. This means, it adds up the time it takes

for: (i) point cloud filtering; (ii) point cloud transmission; (iii)

receiving point cloud; and (iv) point cloud visualization. The

lower the time metric, the more likely it is performed in real-

time.

While the above two metrics work well in determining the

QoS for real-time video streaming, they do not take into

account of how well the filters perform in isolation.

Therefore, we also used a filter percentage metric, meaning

how much of the points in the original point cloud were

filtered out. To calculate this, we found the difference in the

number of points in the filtered cloud from the original cloud,

and divided that by the original number of points.

Yet, despite these three metrics, there is still a lack of

measurement of how well the real-time video stream

performs visually. For that, we developed a set of three

additional metrics: (i) branch similarity, which compares the

two branch structures of the octrees against each other; (ii)

point similarity, which measures how well two point values

match up; and (iii) color similarity, which calculates the

similarity in the color values.

C. Results

The bilateral filter was disregarded due to the large

processing time required. A single point cloud required over

half an hour to filter, making it impractical for further testing

and for any real-time application.

In the local network setup, using no filter results in the

best overall metric scores. Achieving an average frame rate

of 8.46 fps and an average overall time of 0.11 seconds, the

no filter option makes sense since the data does not need to

be transmitted over the Internet; instead, it simply moves

from the client program to the server program. Therefore,

the assumption we made about network bandwidth is

broken and the need for filtering is no longer necessary.

However, for the two live network scenarios, using no filter

performs the worst.

In the wired-to-wireless scenario, using the pass through

filter provided for the highest frame rate among the other

filters (see figure 3). The same is true in the wireless-to-

wired network environment. Moreover, it also achieved the

lowest overall time in both network environments. These

can be explained due to the pass through filter filtering the

Fig. 2. Visual overview of the experiment program flow. The first three

tasks are the client’s responsibility: using the Kinect, generate the point

clouds through PCL, filter them, and then transmit. The last task is the

server, which receives the filtered point clouds and visualizes to the

monitor them using PCL.

TABLE I

SUMMARY OF QOS METRICS

Filter
Filter

Percentage

Branch

Similarity

Point

Similarity

Color

Similarity

No Filter 0.00% 100.00% 100.00% 100.00%

Pass Through 88.07% 13.26% 99.77% 98.81%

Voxel Grid 79.82% 62.46% 78.20% 99.42%

Approximate

Voxel Grid

73.27% 74.96% 75.33% 99.19%

This data was collected over a set of 100 point clouds.

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

most points relative to the others (see table). With fewer

points, the filtered point clouds from the pass through filter

are smaller in data size, which allows for a higher frame rate

and lower overall time.

In terms of the visual QoS metrics, the pass through filter

appears to have a relatively low branch similarity. However,

this is due to the nature of the filter. It effectively removes a

large portion of the original point cloud, which drastically

changes the underlying octree data structure, including its

branch structure (see figure 4). While the octree might be

different, the pass through filter still maintains the highest

similarity for the points (apart from the control case which

uses no filter).

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100

F
ra

m
e
s
 p

e
r

S
e
c
o

n
d

Time (Seconds)

Frame Rate

Wired-to-Wireless Network

No Filter Pass Through Voxel Grid Approximate Voxel Grid

Fig. 3. A scatter plot that compares the frame rate for different filters in a wired-to-wireless network environment. The pass through filter maintains the

highest fps of the four. This data was collected over a period of 500 frames.

 (a) No filter (b) Pass through filter

 (c) Voxel grid filter (d) Approximate voxel grid filter

Fig. 4. A visual comparison of the four filters used in this paper.

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

VI. SUMMARY

Among the four filtering methods allowed by PCL, the

pass through filter results in the best scores for the QoS

metrics. It removes the unnecessary background data, which

reduces the point cloud size and allows for a better

experience in real-time video streaming. If the whole frame is

required, however, the best filter is the approximate voxel

grid, which outperforms the (normal) voxel grid filter in all

QoS metrics.

Although the use of filters reduces the original PCD size,

the highest average frame rate that was achieved is merely

4.59 fps. Such a low frame rate cannot be considered to be

real-time. Therefore, while filtering improves the QoS

metrics compared to the no filter case, there needs to be

more done to truly achieve real-time.

For that purpose, we require additional techniques. First,

compression will allow the data size to become even smaller,

which translates to a higher frame rate. Second, a frame

skipping method that skips frames that are similar to

previous frames, allows us to save on bandwidth and instead

send more important data. Third, because of the network

behavior that causes bandwidth fluctuation, a static

compression ratio might work at certain bandwidth rates, but

not all; instead, we need a dynamic compression algorithm

that adjusts the compression ratio as a response to the

bandwidth. Fourth, a progressive transmission scheme allows

us to transmit the PCD layer-by-layer, in which each

additional layer provides more details for the frame; the

number of layers sent depends on the bandwidth and

dynamically adjusts as the network changes.

VII. CONCLUSION

Collecting 3D spatial data for real-time video streaming

provides research challenges due to the high volume and high

velocity data rate from the hardware sensors. Using

Microsoft’s Kinect sensor to collect the RGB-D data and

PCL to process them, we were able to compare and contrast

different filtering methods to be used with the PCD. Filtering

is a requirement due to the high data rate compared to the

low bandwidth (300 MBps vs. 12.6 Mbps).

Using a client/server application, we were able to survey

the differing filtering algorithms by measuring different QoS

metrics. Our results show that, in a live network

environment, the pass through filter achieves the highest

scores in these metrics. Yet, utilizing only filters will not

achieve true real-time. To do so, we require the use of four

additional techniques: octree compression, frame skipping,

dynamic compression, and a progressive transmission

scheme.

REFERENCES

[1] R. B. Rusu, Z. Marton, N. Blodow, M. Dolha, and M. Beetz, "Towards

3D point cloud based object maps for household environments,"

Robotics and Autonomous Systems, vol. 56, no. 11, pp. 927-941,

2008.

[2] D. Belson, J. Thompson, J. Sun, R. Möller, M. Sintorn, and G. Huston,

"The State of the Internet," Akamai, Cambridge, MA, Tech. Rep., Dec.

2015.

[3] R. B. Rusu and S. Cousins, "3D is here: Point Cloud Library

(PCL)," Robotics and Automation (ICRA), 2011 IEEE International

Conference on, Shanghai, 2011, pp. 1-4.

[4] J. Kammerl, N. Blodow, R. B. Rusu, S. Gedikli, M. Beetz and E.

Steinbach, "Real-time compression of point cloud streams," Robotics

and Automation (ICRA), 2012 IEEE International Conference on,

Saint Paul, MN, 2012, pp. 778-785.

[5] C. Tomasi and R. Manduchi, "Bilateral filtering for gray and color

images," Computer Vision, 1998. Sixth International Conference on,

Bombay, 1998, pp. 839-846.

[6] S. Orts-Escolano, V. Morell, J. García-Rodríguez and M. Cazorla,

"Point cloud data filtering and downsampling using growing neural

gas," Neural Networks (IJCNN), The 2013 International Joint

Conference on, Dallas, TX, 2013, pp. 1-8.

[7] J. Fu, D. Miao, W. Yu, S. Wang, Y. Lu and S. Li, “Kinect-Like Depth

Data Compression,” in IEEE Transactions on Multimedia, vol. 15, no.

6, pp. 1340-1352, Oct. 2013.

[8] M. Miknis, R. Davies, P. Plassmann and A. Ware, “Near real-time

point cloud processing using the PCL,” 2015 International

Conference on Systems, Signals and Image Processing (IWSSIP),

London, 2015, pp. 153-156.

[9] F. Nenci, L. Spinello and C. Stachniss, “Effective compression of

range data streams for remote robot operations using H.264,” 2014

IEEE/RSJ International Conference on Intelligent Robots and

Systems, Chicago, IL, 2014, pp. 3794-3799.

[10] A. Jana, “Understanding the Kinect Device,” in Kinect for Windows

SDK Programming Guide, Birmingham, UK: Packt, 2012, pp. 8-17.

[11] J. Fabian, T. Young, J. C. P. Jones and G. M. Clayton, “Integrating the

Microsoft Kinect With Simulink: Real-Time Object Tracking

Example,” in IEEE/ASME Transactions on Mechatronics, vol. 19, no.

1, pp. 249-257, Feb. 2014.

[12] C. L. Lai, Y. L. Huang, T. K. Liao, C. M. Tseng, Y. F. Chen and D.

Erdenetsogt, “A Microsoft Kinect-Based Virtual Rehabilitation System

to Train Balance Ability for Stroke Patients,” 2015 International

Conference on Cyberworlds (CW), Visby, 2015, pp. 54-60.

[13] T. Deng, H. Li, J. Cai, T. J. Cham and H. Fuchs, “Kinect Shadow

Detection and Classification,” Computer Vision Workshops (ICCVW),

2013 IEEE International Conference on, Sydney, NSW, 2013, pp.

708-713.

[14] M. F. Lu, J. S. Chiang, T. K. Shih and S. Wu, “3D sphere virtual

instrument with Kinect and MIDI,” Ubi-Media Computing

(UMEDIA), 2015 8th International Conference on, Colombo, 2015,

pp. 140-145.

[15] C. T. Hsieh, “An efficient development of 3D surface registration by

Point Cloud Library (PCL),” Intelligent Signal Processing and

Communications Systems (ISPACS), 2012 International Symposium

on, New Taipei, 2012, pp. 729-734.

[16] Q. Zhang, L. Kong and J. Zhao, “Real-time general object recognition

for indoor robot based on PCL,” 2013 IEEE International Conference

on Robotics and Biomimetics (ROBIO), Shenzhen, 2013, pp. 651-655.

[17] F. Ouyan and T. Zhang, “Octree-based Spherical hierarchical model

for Collision detection,” Intelligent Control and Automation (WCICA),

2012 10th World Congress on, Beijing, 2012, pp. 3870-3875.

[18] J. He, M. Zhu and C. Gu, “3D sound rendering for virtual

environments with octree,” Smart and Sustainable City 2013 (ICSSC

2013), IET International Conference on, Shanghai, 2013, pp. 153-

156.

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

