
 

 

Abstract—Sensors for collecting 3D spatial data from the 

real world are becoming more important. They are a prime 

research area topic and have applications in consumer markets, 

such as medical, entertainment, and robotics. However, a 

primary concern with collecting this data is the vast amount of 

information being generated, and thus, needing to be processed 

before transmitted. To address the issue, several filtering 

methods have been proposed to remove unimportant data. In 

this paper, a comparative study is conducted to find which 

methods work best and under what situation. To collect the 3D 

spatial data, called point clouds, we used the Microsoft Kinect 

sensor. In addition, we utilized the Point Cloud Library (PCL) 

to process and filter the data being generated by the Kinect. 

Two different computers were setup: a client which collects, 

filters, and transmits the point clouds; and a server that 

receives and visualizes the point clouds. In order to compare 

the filtering methods, quality of service (QoS) metrics such as 

frame rate, filtering time, and percentage of filter were 

introduced. These metrics indicate how well a certain filtering 

method accomplishes the goal of transmitting point clouds from 

one location to another in real-time. Results show that, 

regardless of the filtering approach chosen, there is still too 

much data for a satisfactory QoS. For a real-time system to 

provide reasonable end-to-end quality, further compression 

and other techniques need to be developed. 

 
Index Terms—filtering, Kinect, point clouds, real-time, video 

streaming 

 

I. INTRODUCTION 

NE of the major contributions that technology has 

provided to society is the ease of communication. As 

we continue to move forward, people are looking for other 

areas of communication that can benefit from or be improved 

on by technology. One such example is the collection of 3D 

spatial data from the real world for real-time video 

streaming. Such an area provides research challenges and 

contains applications in consumer markets, such as medical, 

entertainment, and robotics [8]. Providing good efficiency 

and high quality for real-time video streaming requires that 

(i) a hardware sensor that is able to capture spatial 

information in all three dimensions; (ii) encoding and 

decoding algorithms; and (iii) data quality assurance 

mechanisms that meet application needs. 

Hardware sensors have been in development for the past 

decade to allow for 3D image acquisition from a real world 
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environment. A variety of techniques can be used to develop 

these sensors, such as time-of-light (TOF), stereo, lasers, 

infrared light, and structured light [7]. Due to their different 

approaches in acquiring depth data, there is a varying cost 

and size for these sensors. For example, the Velodyne 

spinning LiDaR system is expensive, costing upwards of 

thousands of dollars, making it, and sensors similar to it, 

impractical for many projects [3]. In contrast, we have seen a 

rise in low cost solutions to collect RGB-D data, such as 

Microsoft’s Kinect [1]. For this study, we used the Kinect 

sensor to collect the 3D spatial data and the Point Cloud 

Library (PCL) to process them. 

The primary concern with these hardware sensors is the 

rate and volume of information that is being generated. 

Depending on the quality of the sensor and the physical 

environment being sensed, a single capture can range from a 

few thousand points to a few million points. In terms of the 

Kinect sensor specifically, it generates 307,200 points per 

frame, which leads to a data rate of about 45 megabytes per 

second (MBps) [9]. Such a data rate is impractical to achieve 

over a network for real-time video streaming, especially 

when juxtaposed with the average American household 

bandwidth of 12.6 megabits per second (Mbps) [2]. 

Therefore, in order to overcome the network bandwidth 

bottleneck, the use of filtering methods is considered a viable 

solution. Filtering allows us to modify or remove data from a 

dataset according to certain criteria. Numerous methods for 

filtering data have been developed over the past years, 

originating from different services and application needs. 

Given the variation of filtering algorithms, there needs to be 

a comparative study that is able to compare and contrast 

different filters for use in real-time video streaming. 

In this study, we have implemented and conducted 

experiments to evaluate four filters: pass through filter, 

voxel grid filter, approximate voxel grid filter, and bilateral 

filter. Results show that, overall, the pass through filter 

provides the best quality of service (QoS) relative to the 

other options. Yet, despite the reduction in the number of 

points being transmitted, the data rate is still too high. We 

conclude that, in conjunction with filtering methods, a real-

time video streaming service will require further techniques 

such as frame skipping, compression, and dynamic 

adjustments. 

II. RELATED WORKS 

Microsoft’s Kinect was originally meant for entertainment 
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purposes, but since its inception, it has been integrated in 

many other fields. For example, [11] has integrated the 

Kinect with Simulink to allow for real-time object tracking. 

[12] shows that the hardware sensor is applicable to the 

medical field through its use in a virtual rehabilitation system 

to help stroke victims regain balance. [13] explains how the 

Kinect’s inherit issues can be transformed into useful 

information for use in creating automatic foreground 

segmentation. Lastly, [14] shows a unique example of 

utilizing the Kinect in the music field. 

PCL has also experienced multiple uses. [15] uses it to 

develop efficient facial registration processes, encompassed 

into the Digital Face-Inspection (DFI) system, to help in the 

dental field. [16] explains how indoor robots also benefit 

from PCL by allowing for real-time, general object 

recognition. An important data structure used in PCL is the 

octree, and it too has implications in other fields, as shown in 

[17] and [18].  

III. SYSTEM ARCHITECTURE 

Microsoft’s Kinect is a peripheral hardware sensor 

originally developed for interactive use of Microsoft’s Xbox 

360 video game console. The RGB-D sensor was developed 

with three main functions in mind: 3D image detection, 

human skeleton tracing, and audio processing. This 

functionality, in addition to its relatively inexpensive price, 

has drawn researchers and developers to utilize the Kinect 

for other purposes, such as robot vision and healthcare 

systems. The sensor itself consists of an RGB camera, an 

infrared (IR) emitter, an IR camera, and an array of 

microphones. The Kinect can achieve a maximum frame rate 

of 30 fps with a resolution of 640 x 480. Each color channel 

uses 8 bits while the depth data is represented in 16 bits [10]. 

Therefore, for a single frame consisting of 307,200 points, 

this Kinect raw data is represented in about 1.46 MB. 

The Kinect raw data can be converted to point clouds. To 

process these point clouds, we require the use of PCL, which 

is an open-source, fully templated C++ library. It 

incorporates many algorithms for point clouds and 3D 

geometry, such as filtering, feature estimation, visualization, 

segmentation, and more [3]. The point cloud data (PCD) for 

the Kinect is about 10 MB in size; much larger than the raw 

RGB-D data. If we achieved a frame rate of 30 fps, this 

would result in a data rate of 300 MBps for PCL, compared 

to the 45 MBps of raw Kinect data. Processing and 

transmitting at either data rate is impractical. 

In PCL, one of the fundamental data structures used to 

represent a point cloud is the octree. An octree recursively 

divides a point cloud into eight smaller sections, called 

voxels (see figure 1). These voxels are 3D cubes that 

encapsulate a subset of points from the point cloud. The 

resolution of the frame is determined by the depth level of 

the octree, i.e. a higher resolution means more voxels and a 

deeper octree. 

Hardware and software aside, what makes real-time video 

streaming particularly challenging is finding the balance 

between the data rate and the network bandwidth. Having a 

high-quality hardware sensor and efficient software for 

processing is wasted if the network bandwidth is unable to 

deliver the data in real-time. Therefore, for this survey, we 

assume that the network is in such a state: the bandwidth is 

much less than the data rate. Moreover, we are using the 

following configurations for the two computers: (i) a wired 

desktop PC with an Intel i7-6700 processor, GTX 745 GPU, 

and 16GB DDR3 RAM; and (ii) a wireless laptop with an 

Intel i7-2630QM processor and 8GB DDR3 RAM.  

 

IV. FILTERING METHODS 

The filters used for this comparative study come from 

PCL. There is an extensive list of available filters, however, 

not all of these are practical or suited for data transmission in 

real-time. Narrowing down this list, we determined that the 

following four filters seem most applicable to real-time video 

streaming: pass through, voxel grid, approximate voxel grid, 

and bilateral. These filters each take a point cloud as input 

and will output a new, filtered point cloud. 

A. Pass Through 

The pass through filter passes the input points through 

constraints based on a particular field. It iterates through the 

entire point cloud once, performing two operations. First, it 

removes non-finite points. Second, it removes any points that 

lie outside the specified interval for the specified field. For 

example, a programmer is able to set the field so it refers to 

the z-dimension (depth) and set the limit so that the filter 

removes any points that are half a meter away from the 

sensor. 

B. Voxel Grid 

The voxel grid filter assembles a 3D voxel grid over the 

entire input cloud. This means that a set of cubes is placed 

over the entire point cloud. For each individual voxel, the 

points that lie within it are down-sampled with respect to 

their centroid. This approach has a few drawbacks: (i) it 

requires a slightly longer processing time as opposed to using 

the voxel center; (ii) it is sensitive to noisy input spaces; and 

(iii) it does not represent the underlying surface accurately 

[6]. 

C. Approximate Voxel Grid 

The approximate voxel grid filter attempts to achieve the 

same output as the voxel grid filter. However, rather than 

using the above method, it sacrifices accuracy for speed. It 

does so by, instead of carefully determining the centroid and 

 
 

Fig 1.  A visual representation of a voxel (left) and its corresponding 

octree (right). 
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down-sampling the points, this filter makes a quick 

approximation of the centroid through the use of a hashing 

function. 

D. Bilateral 

The bilateral filter preserves the edges in a frame and 

reduces the noise. This is performed by replacing the 

intensity value for each point in the frame by the weighted 

average of intensity values from nearby points, based on a 

Gaussian distribution. These weights depend on the 

Euclidean distance and differences in ranges (such as color 

and depth). For further information, see [5]. 

 

V. PERFORMANCE EVALUATION 

A. Experiment Setup 

In order to conduct a survey of different filtering methods, 

we needed to setup an experiment that would be able to 

measure certain characteristics for comparison. Because this 

is in the context of real-time video streaming, we developed 

a client/server application that would test each filter (see 

figure 2). 

The client program is designed for generating, filtering, 

and transmitting the point clouds. It is connected to the 

Kinect hardware sensor in order to capture the RGB-D data 

from the real world. Furthermore, it uses PCL to process and 

filter the point clouds. These filtered point clouds are 

transmitted to the server using TCP/IP. 

The server program is designed for receiving the point 

clouds from the client and then visualizing them to the 

monitor for display. Similar to the client, the server will 

receive the filtered point clouds and use PCL’s visualization 

functionality to display the received data. 

We tested these filtering algorithms in three different 

network environments. First, as a control/ideal case, we had 

the client and server programs running locally on the desktop 

PC. Second, we setup a wired-to-wireless scenario, meaning 

that the client program is using a wired connection to the 

Internet, while the server is receiving data through a wireless 

connection. Third, we used a wireless-to-wired scenario: the 

client is wirelessly connected to the Internet, the server has a 

wired connection. 

To test the relative effectiveness of each filter in this 

application, we had to develop ways of measuring the QoS. 

We therefore created a set of metrics that capture the relative 

information for each filter.  

B. QoS Metrics 

QoS is critical for the success of real-time video 

streaming. The quality of a video stream is, in part, 

determined by its number of frames per second (fps). Video 

streams with a high fps usually results in a smooth visual 

experience for the users; low fps, on the other hand, tends to 

result in a choppy stream and poor user experience. 

The other part of this application is the real-time 

characteristic. To measure the QoS for this aspect, we used a 

processing time metric, which is the overall summation of 

the individual phases. This means, it adds up the time it takes 

for: (i) point cloud filtering; (ii) point cloud transmission; (iii) 

receiving point cloud; and (iv) point cloud visualization. The 

lower the time metric, the more likely it is performed in real-

time. 

While the above two metrics work well in determining the 

QoS for real-time video streaming, they do not take into 

account of how well the filters perform in isolation. 

Therefore, we also used a filter percentage metric, meaning 

how much of the points in the original point cloud were 

filtered out. To calculate this, we found the difference in the 

number of points in the filtered cloud from the original cloud, 

and divided that by the original number of points. 

Yet, despite these three metrics, there is still a lack of 

measurement of how well the real-time video stream 

performs visually. For that, we developed a set of three 

additional metrics: (i) branch similarity, which compares the 

two branch structures of the octrees against each other; (ii) 

point similarity, which measures how well two point values 

match up; and (iii) color similarity, which calculates the 

similarity in the color values. 

 

C. Results 

The bilateral filter was disregarded due to the large 

processing time required. A single point cloud required over 

half an hour to filter, making it impractical for further testing 

and for any real-time application. 

In the local network setup, using no filter results in the 

best overall metric scores. Achieving an average frame rate 

of 8.46 fps and an average overall time of 0.11 seconds, the 

no filter option makes sense since the data does not need to 

be transmitted over the Internet; instead, it simply moves 

from the client program to the server program. Therefore, 

the assumption we made about network bandwidth is 

broken and the need for filtering is no longer necessary. 

However, for the two live network scenarios, using no filter 

performs the worst. 

In the wired-to-wireless scenario, using the pass through 

filter provided for the highest frame rate among the other 

filters (see figure 3). The same is true in the wireless-to-

wired network environment. Moreover, it also achieved the 

lowest overall time in both network environments. These 

can be explained due to the pass through filter filtering the 

 
 

Fig. 2.  Visual overview of the experiment program flow. The first three 

tasks are the client’s responsibility: using the Kinect, generate the point 

clouds through PCL, filter them, and then transmit. The last task is the 

server, which receives the filtered point clouds and visualizes to the 

monitor them using PCL. 

TABLE I 

SUMMARY OF QOS METRICS 

Filter 
Filter 

Percentage 

Branch 

Similarity 

Point 

Similarity 

Color 

Similarity 

No Filter 0.00% 100.00% 100.00% 100.00% 

Pass Through 88.07% 13.26% 99.77% 98.81% 

Voxel Grid 79.82% 62.46% 78.20% 99.42% 

Approximate 

Voxel Grid 

73.27% 74.96% 75.33% 99.19% 

This data was collected over a set of 100 point clouds. 
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most points relative to the others (see table). With fewer 

points, the filtered point clouds from the pass through filter 

are smaller in data size, which allows for a higher frame rate 

and lower overall time. 

In terms of the visual QoS metrics, the pass through filter 

appears to have a relatively low branch similarity. However, 

this is due to the nature of the filter. It effectively removes a 

large portion of the original point cloud, which drastically 

changes the underlying octree data structure, including its 

branch structure (see figure 4). While the octree might be 

different, the pass through filter still maintains the highest 

similarity for the points (apart from the control case which 

uses no filter). 
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Fig. 3.  A scatter plot that compares the frame rate for different filters in a wired-to-wireless network environment. The pass through filter maintains the 

highest fps of the four. This data was collected over a period of 500 frames. 

           
   (a) No filter                         (b) Pass through filter 

 

           
   (c) Voxel grid filter                      (d) Approximate voxel grid filter 

 

Fig. 4.  A visual comparison of the four filters used in this paper. 
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VI. SUMMARY 

Among the four filtering methods allowed by PCL, the 

pass through filter results in the best scores for the QoS 

metrics. It removes the unnecessary background data, which 

reduces the point cloud size and allows for a better 

experience in real-time video streaming. If the whole frame is 

required, however, the best filter is the approximate voxel 

grid, which outperforms the (normal) voxel grid filter in all 

QoS metrics. 

Although the use of filters reduces the original PCD size, 

the highest average frame rate that was achieved is merely 

4.59 fps. Such a low frame rate cannot be considered to be 

real-time. Therefore, while filtering improves the QoS 

metrics compared to the no filter case, there needs to be 

more done to truly achieve real-time. 

For that purpose, we require additional techniques. First, 

compression will allow the data size to become even smaller, 

which translates to a higher frame rate. Second, a frame 

skipping method that skips frames that are similar to 

previous frames, allows us to save on bandwidth and instead 

send more important data. Third, because of the network 

behavior that causes bandwidth fluctuation, a static 

compression ratio might work at certain bandwidth rates, but 

not all; instead, we need a dynamic compression algorithm 

that adjusts the compression ratio as a response to the 

bandwidth. Fourth, a progressive transmission scheme allows 

us to transmit the PCD layer-by-layer, in which each 

additional layer provides more details for the frame; the 

number of layers sent depends on the bandwidth and 

dynamically adjusts as the network changes. 

 

VII. CONCLUSION 

Collecting 3D spatial data for real-time video streaming 

provides research challenges due to the high volume and high 

velocity data rate from the hardware sensors. Using 

Microsoft’s Kinect sensor to collect the RGB-D data and 

PCL to process them, we were able to compare and contrast 

different filtering methods to be used with the PCD. Filtering 

is a requirement due to the high data rate compared to the 

low bandwidth (300 MBps vs. 12.6 Mbps). 

Using a client/server application, we were able to survey 

the differing filtering algorithms by measuring different QoS 

metrics. Our results show that, in a live network 

environment, the pass through filter achieves the highest 

scores in these metrics. Yet, utilizing only filters will not 

achieve true real-time. To do so, we require the use of four 

additional techniques: octree compression, frame skipping, 

dynamic compression, and a progressive transmission 

scheme. 
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