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Abstract—Model-based clustering of directional data has
been proposed as a basis for clustering by many authors,
using mixtures of different distributions that are natural for
directional data such as von Mises-Fisher (vMF) distribution,
and Watson distribution. However, when vMF and Watson
distributions are used as component densities, an approximation
of the concentration parameter is used to estimate κ in both
cases. We present a clustering method based on mixtures of
Poisson kernels on the sphere. The Poisson kernel offers a
natural way of clustering data on the surface of a sphere
as well as in the ball and half-sphere. We derive estimates
of the parameters and describe the corresponding clustering
algorithm. We compare the performance of this model with
existing methods.

Index Terms—Clustering, kernel method, algorithms, proba-
bility models.

I. INTRODUCTION

MANY applications of interest involve data that can be
analyzed as unit vectors on a d-dimensional sphere, or

equivalently are directional in nature. Directional data arise
frequently in many natural and physical sciences such as
Biology, Medicine, Ecology, Geology, Material Sciences and
others. Specific applications in Medicine include assessment
of recovery of orthopaedic patients where the angle of knee
flexion was measured [18], the study of hospital emer-
gency room entrance times [7], and the study of circadian
rhythms (i.e. study of body temperature fluctuations, sleep-
wakefulness cycle etc.). In medical imaging, diffusion mag-
netic resonance imaging (dMRI) allows one to examine the
microscopic diffusion of water molecules in biological tissue
in vivo. Water molecules are in constant thermal motion, but
this motion is constrained by surrounding structures such
as nerves, cells & tissue. Measurements of this diffusion are
useful in the study of anisotropic structures like white matter
fibers in the central nervous system, and reveal microstruc-
tural properties of the underlying tissue. Gene expression,
cancer cell data and word counts in a corpus of documents
are additional examples of directional data, once normalized
to have unit norm.
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In ecology, the prevailing wind direction is considered
as an important factor in many studies including those
that involve pollutant transport, whereas geologists study
paleocurrents to infer the direction of the flow of rivers.
Currently, new materials, such as polymer, metal foams or
fibre-reinforced materials, have found many applications in
industry. But extensive use of these may be limited because
of the difficulty to quantify their performance (i.e. dura-
bility under stress or permeability). Microstructural models
based on distributions on the sphere are used to simulate
macroscopic properties in model materials to understand the
microstructucture relations [15].

Conventional methods suitable for the analysis of linear
data cannot be applied for directional data due to its circular
nature. The statistical methods that are used to handle such
data are given in several references such as [29], [14],
[25], and [20]. Due to the non-linearity of the hyper-sphere,
clustering on the spherical manifold is often treated in an ad-
hoc manner by either ignoring the geometry of the sphere or
using overly-restricted models.

Computational methods have been developed and used
for clustering directional data. Some commonly used non-
parametric approaches are K-means clustering [11], [27],
[24], spherical K-means [9], and online spherical K-means
[32]. Reference [31] evaluates the performance of different
criterion functions in the context of partitional clustering
algorithms for document datasets.

Generative (parametric) approaches such as multivariate
mixture models provide methods that have distinct advan-
tages over competing non-probabilistic approaches for cer-
tain problems. Generative approaches allow uncertainty in
cluster membership, and direct control over the variability
allowed within each cluster (as captured by the variance char-
acteristics of each component model). A list of references
on generative approaches to text clustering can be found
in [33]. Reference [3] considered a finite mixture of von
Mises-Fisher distributions to cluster text and genomic data.
The spherical k-means algorithm, has been shown to be a
special case of a generative model based on a mixture of
von Mises-Fisher (vMF) distributions with equal priors for
the components and equal concentration parameters [4], [2].
A comparative study of some generative models based on
the multivariate Bernoulli, multinomial distributions, and the
generative model based on a mixture of von Mises-Fisher
(vMF) distributions is presented in [34].

References [5] and [28] discuss a generative model of
mixtures of Watson distributions on a hypersphere and derive
numerical approximations of the parameters in an Expec-
tation Maximization (EM) setting. Each paper presents a
different approximation for the estimation of the concentra-
tion parameter (κ) in both cases, when vMF and Watson
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distributions are used.
Reference [10] proposed to use the inverse stereographic

projections of multivariate normal distributions. This distri-
bution allows a clustering with various shapes (not just spher-
ical) and orientations, but the Maximum Likelihood (ML)
estimate of the mean direction does not have a closed-form
expression. The Kent distributions [19] have also this feature
and allow different shapes and orientations. Nevertheless, the
estimation of their parameters is problematic [10].

We present a clustering method based on mixtures of
Poisson kernels on the sphere, with important mathematical
and physical interpretations. The Poisson kernel is a density
with respect to uniform measure and offers a natural way of
assessing goodness of fit, a strength that is not present in
existing algorithms. We derive estimates of the parameters
of the mixture of Poisson kernels in an Expectation Maxi-
mization setting, and describe the corresponding clustering
algorithm. We compare the performance of this model with
existing methods.

II. EXISTING LITERATURE

Clustering approaches can be categorize as either genera-
tive (also known as parametric or probabilistic) or discrim-
inative (non-parametric). The performance of an approach,
and of a specific method within that approach, is quite data
dependent; there is no clustering method that works ”best”
across all types of data. Generative models, however, often
provide greater insight into the anatomy of the clusters.

A. Discriminative (non-parametric) Approaches

K-means clustering [11] is an iterative algorithm. Given
a set of N observations X , where each observation is a d-
dimensional real vector, k-means clustering partitions the N
observations into M(≤ N) sets X1, · · · ,XM by minimizing
the within-cluster sum of squares.

Spherical K-means [9], uses cosine similarity instead of
Euclidean distance, that measures the cosine of the angle
formed by two vectors. In other words, the objective function
is

Q({X (t)
k }

M
j=1) =

M∑
k=1

∑
x∈Xk

xTµk, (1)

where µk is the concept vector (the normalized mean vector)
corresponding to the partition Xk. We seek a solution that
maximizes the objective function in (1). Spherical K-means
algorithm is preferred to standard K-means for clustering
of the document vectors or any type of high-dimensional
observations on the unit sphere. However, it is sensitive to
initialization and outliers.

Online Spherical K-means [32] is an extension of skmeans
which has a competitive learning nature; as a data point is
processed, centroids are updated correspondingly by

µ
(new)
k(x) =

µk(x) + ηx∥∥µk(x) + ηx
∥∥ , (2)

where η is the learning rate. It is less sensitive to initializa-
tion. Spherical k-means clustering can be performed, using
the package skmeans in R software, by using the function
skmeans [16].

B. Probabilistic (parametric) Approaches

The parametric mixture model approach to clustering,
assumes each cluster is generated by its own density
function that is unknown. The overall data is modeled as a
mixture of individual cluster density functions. In reality,
the unknown densities may not be from the same family of
distributions. In this section we consider mixture models in
which the densities are from the same family of distributions.

For d ≥ 2, let Sd−1 be the unit sphere. The probability
density function of a mixture with M components on the
hypersphere, Sd−1, is given by

f(x|Θ) =
M∑
j=1

αjfj(x|θj), (3)

where M is the number of clusters, αj’s are the mixture
proportions that are non-negative and sum to one and Θ =
(α1, · · · , αM ,θ1, · · · ,θM ).

Some commonly used mixture models are:
1) Mixtures of Von-Mises-Fisher Distributions [3]: Given

µ ∈ Sd−1, and κ ≥ 0, the probability distribution
function of von Mises-Fisher Distribution (vMF) is
defined by

f(x|µ, κ) = cd(κ)eκµ
Tx, (4)

where µ is a vector orienting the center of the distri-
bution, κ is a parameter to control the concentration of
the distribution around the vector µ. The normalizing
constant cd(κ) is given by

cd(κ) =
κd/2−1

(2π)d/2Id/2−1(κ)
, (5)

where Ir(.) represents the modified Bessel function of
the first kind of order r. The von Mises distribution
is unimodal and symmetric about µ. Banerjee et al.
performed Expectation Maximization (EM) [8], [6] for
a finite vMF mixture model to cluster text and genomic
data.
The advantage of using the class of vMF distributions
in the mixture model is that it incorporates many den-
sity shapes. The disadvantage is that numerical estima-
tion of the concentration parameter involves functional
inversion of the ratios of Bessel functions. Thus, it is
not possible to directly estimate the κ values in high
dimensional data and an asymptotic approximation of
κ is used for estimating κ. The package movMF in
R software can be used for fitting a mixture of vMF
distribution [17].

2) Mixture of Watson distributions [5], [28]: Given µ ∈
Sd−1, and κ, the probability function of the Watson
distribution is defined by:

f(x|µ, κ) = M(1/2, d/2, κ)−1eκ(µTx)2 , (6)

where M(1/2, d/2, κ) is the confluent hyper-geometric
function also known as Kummer function.
The advantage of using the class of Watson distribu-
tions in the mixture model is that it shows superior
performance for noisy, thinly spread clusters over the
von Mises-Fisher distributions [5]. The disadvantage
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is that in high-dimensions, maximum likelihood equa-
tions pose severe numerical challenges. Also, numeri-
cal estimation of the concentration parameter involves
a ratio of Kummer functions. Thus, similar to vMF, it
is not possible to directly estimate the κ values and in
both papers an asymptotic approximation of κ is used
for estimating κ.

3) Mixture of inverse stereographic projection of multi-
variate normal distribution [10]. The density function,
which is denoted by Lµ,Σ, is the stereographic projec-
tion of Nd−1(0,Σ) on the plane of dimension d − 1
perpendicular to µ. It allows clustering with various
shapes and orientations.
The advantage of using the class of inverse stereo-
graphic projection of multivariate normal distribution
in the mixture model is that it allows a clustering
with various shapes and orientations. The disadvantage
is that, there is no closed expression for µMLE . In
practice, it is obtained via a heuristic search algorithm.

III. PROPOSED CLUSTERING METHOD

A. Introduction to Poisson Kernel
For d ≥ 2, let Sd−1 be the unit sphere and IBd be the unit

Ball in IRd. The Poisson kernel is defined by

Pd(x, ζ) =
1−

∥∥x∥∥2

ωd
∥∥x− ζ

∥∥d , (7)

for (x, ζ) ∈ IBd × Sd−1 ωd = 2πd/2{Γ(d/2)}−1 is the
surface area of the unit sphere in IRd.

Some properties of Poisson Kernel are [1]:
• Pd(x, ζ) > 0 for all x ∈ IBd and all ζ ∈ Sd−1;
• let σ be the normalized surface-area measure on Sd−1

(so that σ(Sd−1) = 1) then, for all x ∈ IBd∫
Sd−1

Pd(x, ζ)dσ(ζ) = 1; (8)

• for every η ∈ Sd−1 and every δ > 0∫
|ζ−η|>δ

Pd(x, ζ)dσ(ζ)→ 0 as x→ η. (9)

Definition: For d ≥ 2, a d-dimensional unit random vector
x is said to have a d-variate Poisson kernel distribution on
Sd−1 if its density is given by

f(x|ρ,µ) =
1− ρ2

ωd
∥∥x− ρµ∥∥d , (10)

where
∥∥µ∥∥ = 1, 0 < ρ < 1 and ωd = 2πd/2{Γ(d/2)}−1.

It can be written as

f(x|ρ,µ) =
1− ρ2

ωd(1 + ρ2 − 2ρ x.µ)d/2
, (11)

where x.y indicate the inner product of x and y.

The Poisson kernel density is unimodal and symmetric
around x = µ. We note that x.y = cos(α) where α is the
angle between the vectors x and y and so

1− ρ
ωd(1 + ρ)d−1

< f(x|ρ,µ) <
1 + ρ

ωd(1− ρ)d−1
. (12)

Therefore, if ρ → 0 then f(x|ρ,µ) → 1/ωd which is the
uniform density on Sd−1 and if ρ→ 1, f(x|ρ,µ) converges
to the point density.

B. Proposed Model

Let X be a set of sample unit vectors drawn independently
from mixtures of Poisson kernel distributions with parameter
space Θ = (α1, · · · , αM , ρ1, · · · , ρM ,µ1, · · · ,µM ) where
M is the number of clusters, and αj’s are the mixture
proportions that are non-negative and sum to one. We assume
the following probabilistic model:

f(x|Θ) =
M∑
j=1

αjfj(x|ρj ,µj), (13)

C. Estimation of Parameters
Let X be a data set of N independently sampled points

that follows (13) and Z be the corresponding set of hidden
random variables that indicates the particular distribution
from which these points are sampled. The expectation of
the likelihood over the given posterior distribution p can be
written as
M∑
j=1

N∑
i=1

ln(αj)p(j|xi,Θ) +

M∑
j=1

N∑
i=1

ln(fj(xi|ρj ,µj)p(j|xi,Θ).

(14)

Following the standard EM algorithm, we obtain

αj = 1/N
N∑
i=1

p(j|xi,Θ). (15)

The distribution of the hidden variables is given by

p(j|xi,Θ) =
αjfj(xi|ρj ,µj)∑M
l=1 αlfl(xi|ρl,µl)

. (16)

For details on EM algorithm and estimation of αk’s we
refer to [8] and [6].
The Lagrangian for the second term of (14) is given by∑M

j=1

∑N

i=1
{ln(1− ρ2j )− ln(ωd)− d ln

∥∥xi − ρjµj

∥∥}×
p(j|xi,Θ) +

∑M

j=1
λj(1−

∥∥µj

∥∥2).
(17)

To obtain the estimates of the parameters we maximize
the above expression subject to 0 < ρj < 1 for each j.

The estimates of the parameters µk and ρk can be ob-
tained using the following iterative re-weighted algorithm;
Let Θ̂(0) = {α̂(0)

1 , · · · , α̂(0)
M , ρ̂

(0)
1 , · · · , ρ̂(0)

M , µ̂
(0)
1 , · · · , µ̂(0)

M }
be the initial values of the parameters, then we define
α̂k

(t+1), ŵ
(t+1)
ik , µ̂

(t+1)
k and ρ̂

(t+1)
k for t = 1, · · · iteratively

as follows;

p(j|xi, Θ̂
(t)) =

α
(t)
j fj(xi|ρ̂(t)

j , µ̂
(t)
j )∑M

l=1 α
(t)
l fl(xi|ρ̂(t)

l , µ̂
(t)
l )

, (18)

α̂k
(t+1) = 1/N

N∑
i=1

p(k|xi, Θ̂
(t)), (19)

ŵ
(t+1)
ik =

p(k|xi, Θ̂
(t))∥∥xi − ρ̂k(t)µ̂k

(t)
∥∥2 , (20)

µ̂
(t+1)
k = sk ∗

∑n
i=1 ŵ

(t)
ik xi∥∥∑n

i=1 ŵ
(t)
ik xi

∥∥ , (21)
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where sk = sign(µ̂
(t+1)
k .µ̂

(t)
k ).

And ρ̂(t+1)
k is the solution to the equation

−2nxα̂k
(t)

1− x2
+ d
∥∥ n∑
i=1

ŵ
(t)
ik xi

∥∥− dx n∑
i=1

ŵ
(t)
ik = 0, (22)

subject to the constraint 0 < ρ < 1.
The proposed model based on the Poisson kernel (and

hence our clustering method) has several advantages. Those
are as follows: (a) the estimation of the parameters of the
kernel does not require any approximations; (b) an expression
for the Poisson kernel of an upper half-sphere (or lower half-
sphere) can be obtained by certain Möbius transformations.
This can be used to create a clustering method on the half-
sphere. (c) The Poisson kernel itself has inferential capacity,
in that it can be used to develop goodness of fit procedures
for testing model appropriateness. These can be constructed
following [22] and [23].

IV. EXPERIMENTAL RESULTS

To obtain an understanding of the performance of the
proposed clustering algorithm we conducted a small sim-
ulation study and evaluated our model on real world data.
We benchmark our performance against competing state of
art clustering methods and report our results.

The goal of our limited simulation is to assess the perfor-
mance of the models in an environment that is favorable to
the state-of-the-art ([3]). Performance is measured by macro-
precision and macro-recall that are computed as functions
of the overlap between the component distributions. We
simulated 100 data sets as follows. For each sample, we
generated a random unit vector in Sd−1 from a mixture of
three von Mises-Fisher (movMF) distributions with equal
mixing proportions and random mean center. We used a
common and fixed concentration parameter κ, in each case,
as given in the tables. As κ increases the overlap of the
points decreases, providing a better separation of the different
component densities.

Figures 1-4 show 3D plots of 4 simulated data sets
in S2 based on mixtures of three component von Mises-
Fisher (vMF) distributions that illustrate the overlap of the
different components for different values of κ. The data were
generated from the vMF distribution class to favor the state-
of-the-art algorithm of [3].

For each sample, we used three clustering methods; 1) The
Spherical K-means 2) a mixture of three von Mises-Fisher
distribution and 3) a mixture of three Poisson kernel-based
distributions (proposed model).

The approach given in [12], was used for the initialization
of the parameters. Stopping rule for the iteration in our
algorithm was 100 runs. We compared the performance of
each algorithms using the macro-precision and macro-recall
[26]. Suppose ω1, · · · , ωc are the true classification classes.
For a given clustering, let at denote the number of data
objects that are correctly assigned to the class ωt, bt denote
the data objects that are incorrectly assigned to the class ωt,
and ct denote the data objects that are incorrectly rejected
from the class ωt. The precision and recall are defined as
pt = at

at+bt
and rt = at

at+ct
for 1 ≤ t ≤ c. The macro-

precision, and macro-recall, are the averages across classes
of the precisions and recalls.

Fig. 1. Mixtures of vMF: κ=4

Fig. 2. Mixtures of vMF: κ=10

Fig. 3. Mixtures of vMF: κ=15

Fig. 4. Mixtures of vMF: κ=20

A. Simulations results

The statistical software R was used for all analyses. Spher-
ical k-means clustering was performed by using the function
skmeans in R software [16]. Mixture of vMF clustering was
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performed by using the function movMF in R software [17],
and using the approximation given in [3] for estimation of
the concentration parameters.

Tables I & II present mean macro-precision/recall and
their associated standard deviations for sample sizes 500 and
5, 000 and dimensions 50 and 100 respectively. The mixture
of vMF algorithm is expected to outperform the other
methods. Our results indicate that the Poisson kernel based
method, for large κ, provides slightly better macro-precision
and macro-recall. However, when the standard deviation is
accounted for the Poisson kernel based method performs
equivalently with the state-of-the-art, and all methods show
approximately the same performance.

Table I: Mean and standard deviation of the macro-
precision & macro-recall of three clustering algorithms, when
N = 500, d = 50 and number of clusters = 3.

κ Eval. spkmeans mix-vMF mix-PKBD
4 m-p 0.298 (0.07) 0.295 (0.07) 0.295 (0.07)

m-r 0.377 (0.02) 0.372 (0.02) 0.371 (0.02)
10 m-p 0.617 (0.09) 0.630 (0.10) 0.641 (0.08)

m-r 0.627 (0.064) 0.624(0.064) 0.626 (0.061)
15 m-p 0.848 (0.024) 0.843 (0.063) 0.848 (0.047)

m-r 0.848 (0.024) 0.843(0.043) 0.846 (0.035)
20 m-p 0.9369 (0.017) 0.9378 (0.017) 0.9383 (0.017)

m-r 0.9368 (0.017) 0.9368 (0.018) 0.9374 (0.017)

Table II: Mean and standard deviation of the macro-
precision & macro-recall of three clustering algorithms, when
N = 5, 000, d = 100 and number of clusters= 3.

κ Eval. spkmeans mix-vMF mix-PKBD
4 m-p 0.285 (0.059) 0.281 (0.064) 0.29 (0.062)

m-r 0.355 (0.008) 0.354 (0.009) 0.353 (0.008)
10 m-p 0.583 (0.024) 0.59 (0.046) 0.588 (0.053)

m-r 0.583 (0.02) 0.588 (0.03) 0.588 (0.03)
20 m-p 0.8560 (0.011) 0.8563 (0.011) 0.8564 (0.011)

m-r 0.856 (0.011) 0.856 (0.011) 0.8562 (0.011)

B. Illustrative examples

Here we compare our method against well-established in
the literature methods, using real data sets. The data points
are projected onto the sphere by normalizing them so the
associated vectors have length one. In what follows we
briefly describe the data sets.

1. The household data set was obtained from
”HSAUR2” in R software [13], see ”https://cran.r-
project.org/web/packages/HSAUR2/HSAUR2.pdf”. The
data is part of a data set collected from a survey
on household expenditures and gives the expenses
of 20 single men and 20 single women on four
commodity groups (housing, food, goods and services).
Hornik et al. [17] focused only on three of those
commodity groups (housing, food and service) to
obtain 3-dimensional data for easier visualization. We
will focus on all four commodity groups. The scale of
measurement of the data is interval.

2. The Wisconsin Breast Cancer Database was ob-
tained from UC Irvine Machine Learning Repository
”https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+
Wisconsin+(Original)”. The original breast cancer
databases were obtained from the University of Wiscon-
sin Hospitals, Madison from Dr. William H. Wolberg

[30]. The objective is to identify each of a number
of benign or malignant classes. There are 16 missing
attribute values which we removed from the data set.
The data frame has 699 observations on 11 variables,
one being a character variable, 9 being categorical (1
through 10), and 1 target class. The variables are: Id,
Clump Thickness, Uniformity of Cell Size, Uniformity
of Cell Shape, Marginal Adhesion, Single Epithelial
Cell Size, Bare Nuclei,Bland Chromatin, Normal Nu-
cleoli, Mitoses and Class Source.

3. The Landsat Multi-Spectral Scanner Image Data (satel-
lite data set) from package ”mlbench” in R software
[21]. The database consists of the multi-spectral values
of pixels in 3x3 neighbourhoods in a satellite image,
and the classification associated with the central pixel
in each neighbourhood. The aim is to predict this clas-
sification, given the multi-spectral values. The database
is a (tiny) sub-area of a scene, consisting of 82 x 100
pixels. Each line of data corresponds to a 3x3 square
neighbourhood of pixels completely contained within
the 82x100 subarea. Each line contains the pixel values
in the four spectral bands (converted to ASCII) of
each of the 9 pixels in the 3x3 neighbourhood and a
number indicating the classification label of the central
pixel. The data has 6435 rows and 37 columns (x1-
x36 continuous variables and class). The classes are;
red soil, cotton crop, grey soil, damp grey soil, soil with
vegetation stubble, and very damp grey soil.

Table III: The macro-precision and macro-recall of three
clustering algorithms for various data sets.

Data Set Eval. spkmeans mix-vMF mix-PKBD
Household m-p 0.847 0.870 0.926
n =40 (97.35%) (100%) (106.43%)
d =4 m-r 0.825 0.825 0.925
M =2 (100%) (100%) (112.12%)
Cancer m-p 0.694 0.734 0.723
n =683 (94.55%) (100%) (98.5%)
d =9 m-r 0.704 0.710 0.712
M =3 (99.29%) (100%) (100.42%)

Satellite m-p 0.609 0.579 0.606
n =6435 (105.18%) (100%) (104.83%)
d =36 m-r 0.533 0.558 0.543
M =6 (95.51%) (100%) (97.31%)

The approach given in [12], was used for the initializa-
tion of the parameters. Stopping rule for the iteration in
our algorithm was 100 runs. We notice that if we specify
different seeds in the movMF algorithm, we obtain different
results. Similar observations hold when we carried out our
simulations indicating potential instability of the movMF
algorithm. The best results were obtained when no seed
was used. Table III present the results in terms of macro-
precision and macro-recall of the different algorithms. Note
that 100% performance in either macro-precision or macro-
recall indicates the performance set for the state-of-the-art
algorithm. The percentages, listed in Table III, are obtained
by dividing the current algorithm’s macro-precision/recall
with the movMF macro-precision/recall and multiplying by
100. The Poisson kernel based model outperforms all other
models in the case of ”Household” data and either is the top
performer or performs equivalently to the top performer in
all other cases.
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V. DISCUSSION & CONCLUSION

In this paper, we presented an algorithm for clustering
data on the sphere that is based on the Poisson kernel. Our
results indicate that the method performs equivalently to the
state of the art and outperforms the state of the art for
certain data structures. The method has advantages in that no
approximation is needed to estimate the parameters; further
an expression of the Poisson kernel for the upper (lower)
half-sphere can be obtained and used to allow clustering of
data that reside in these spaces. Future work will incorporate
further characterization of the data structures that can be
expected to obtain superior results when Poisson kernel based
clustering is used, an extensive study of the role of initializa-
tion on the performance of the algorithm, and determination
of the optimal number of clusters. Additionally, we will study
the conditions for identifiability of the mixture of Poisson
kernels and we will explore the inferential properties of the
kernel for use in the context of clustering.
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