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Abstract—Evaluating surgeon skill has predominantly been
a subjective task. Development of objective methods for sur-
gical skill assessment are of increased interest. Recently, with
technological advances such as robotic-assisted minimally in-
vasive surgery (RMIS), new opportunities for objective and
automated assessment frameworks have arisen. In this paper,
we applied machine learning methods to automatically evaluate
performance of the surgeon in RMIS. Six important movement
features were used in the evaluation including completion time,
path length, depth perception, speed, smoothness and curvature.
Different classification methods applied to discriminate expert
and novice surgeons. We test our method on real surgical
data for suturing task and compare the classification result
with the ground truth data (obtained by manual labeling).
The experimental results show that the proposed framework
can classify surgical skill level with relatively high accuracy of
85.7%. This study demonstrates the ability of machine learning
methods to automatically classify expert and novice surgeons
using movement features for different RMIS tasks. Due to the
simplicity and generalizability of the introduced classification
method, it is easy to implement in existing trainers. .

Index Terms—Skill assessment, Surgeon skill, Robotic-
assisted surgery, Classification, Machine learning.

I. INTRODUCTION

DESPITE advances in computer systems and simulation
methods, today surgical training is still based on man-

ual assessment involving significant expert monitoring [1, 2].
For many years, surgical skills have been learned in the
operation room under direct supervision of expert surgeons
[3]. These methods are threatened with a lack of consistency,
reliability and efficiency due to the subjective nature of
experts intervention [4]. Subjective skill assessment methods
are being surrendered for more structured techniques such
as Objective Structured Assessment of Technical Skills (OS-
ATS) [5]. Using OSATS, an expert surgeon gives scores to
surgical trainees based on predefined criteria such as flow
of surgery, motion time and final product by observing the
surgery in person or watching the recorded video of the
operation.

The new technology innovations such as robotic-assisted
minimally invasive surgery (RMIS), open great opportunities
for automated objective skill assessment which was not
available before [6]. The potential of recording motion and
video data, has been motivated for a new automatic RMIS
skill assessment system [7, 8]. Current systems like da Vinci
(Intuitive Surgical, Sunnyvale, CA) [9] record motion and
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video data, enabling development of computational models to
analyze surgical skills through data-driven approaches [10].
However, elaborating such models has always lagged behind.
It is, however, quite clear that to develop any framework that
automatically evaluates surgical skills, a more rigorous model
of surgical procedures is needed [11].

A number of researchers developed skill assessment meth-
ods by decomposing a surgical tasks into pre-defined surgical
gestures [12]. Most existing work in this area uses statistical
approaches such as Hidden Markov Model (HMM) [13–15]
and descriptive curve coding (DCC) [16]. Although these
methods have the ability to find the underling structure of
MIS/RMIS tasks, they are context-based and suffer from
requiring large number of training samples and complex
parameter tuning, causing in a lack of robustness in the
results [14]. On the other hand, most research in objective
surgical skill assessment has been focusing entirely on mo-
tion features because of their simplicity in implementation
and interpretation [17]. Metrics such as operation time,
speed, number of hand movements [18], force and torque
signatures [19], path length and motion smoothness [17, 20]
have been widely used to identify the relation between the
features and surgical tools movement pattern of expert and
novices during Laparoscopic surgery [21].

Although previous work built the foundation of objective
surgical skill assessment, the current state of the art has a
few shortcomings. First, they mostly focus on descriptive
statistical methods to show the dependency of surgical skill
level and GFMs. However, these measures alone are not
an adequate proficiency measurement. More advanced tech-
niques such as data mining and machine learning algorithms
need to be applied [22]. While machine learning techniques
have been used extensively in other fields [23] because of
their advantages over traditional statistical methods such
as robustness, better prediction ability and higher tolerance
violence of assumptions (e. c. normality or undependability
of data) [24], but it is only recently that these methods have
been considered to analyze RMIS tasks [25, 26]. Addition-
ally, human factor study should be developed to have better
understanding of this aspect in surgical training [27, 28].
Thus, developing quantitative classification techniques that
can automatically and accurately evaluate surgical skills
needs to be investigated.

II. SURGICAL SKILL EVALUATION FRAMEWORK

In this paper, we develop a predictive framework for
objective skill assessment based on the trajectory movement
of the surgical robot arms. For this, we quantify surgical task
by extracting movement features from the raw motion data
for suturing task. Different classifiers, including logistic re-
gression and support vector machines have been applied. The
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Fig. 1: Illustration of the Cartesian position plots for an expert and a novice surgeon doing suturing on the da Vinci surgical robot..

classifier with the high accuracy can be used to automatically
predict the skill level of surgeon.

A. Features Extraction

Surgical tasks have different characteristics, such as
smoothness, straightness or response orientation, which ac-
count for competence while relying only on instrument
motion. For instance, studies have shown that the tool motion
of an experienced surgeon has more clearly defined features
than that of a less experienced surgeon while performing the
same task [29]. Figures I illustrates the Cartesian position
plots of an expert and a novice surgeon doing four throw
suturing on the da Vinci surgical robot.

In order to transform these parameters into quantitative
metrics, we applied kinematic analysis theory that has been
successfully used in previous works to study psychomotor
skills [17]. Metrics such as task completion time, length of
path, depth perception and velocity can show some aspect of
surgeon’s dexterity. However, other aspects such as smooth-
ness, curvature, torsion and complexity of the motion need to
be quantified. In the following, we explain the six important
features from the clinical point of view.

• Time to Complete (TTC): is defined as total time required
to complete the task, measured in seconds.

• Path Length (PL): is the length of the curve described
by the tip of the instrument while performing the task (in

cm). We calculate it using sum of all consecutive pairs’
Euclidean distance.

• Depth Perception (DP): is the total distance traveled by
the instrument along its axis (in cm).

• Speed: can be defined as the magnitude of velocity and
calculated as the rate of position change from previous
time step as dis(pi, p(i− 1))/(∆ti), where dis(pi, p(i − 1))
can be calculated as a Euclidean distance between ith

point and of (i− 1)
th point (in cm/s). Given that the time

difference between two consecutive frames in our signal
is constant, ∆ti is equal to 1.

• Motion Smoothness: is a measure of the rhythmic pattern
of acceleration and deceleration. Smoothness has most of-
ten been based on minimizing jerk, the third time derivative
of position, which represents a change in acceleration (in
cm/s3).

• Curvature: measures the straightness of the path and is
calculated at each point by the following equation [17]

κi =
vi × ai
v3
i

where vi and ai are instantaneous velocity and acceleration
of the instrument tips respectively, which can be calculated
directly by computing the first and second derivatives
of the positions of the instrument tips. The curvature
measures how fast a curve is changing direction at a given
point. For straight and smooth movement, the mean of
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curvature is close to zero, while larger values indicate
curved an jerky movements.

B. Surgical Skill Classification

Features that are extracted in the previous section are used
to quantify the movement pattern of surgeons with different
levels of dexterity. Our aim is to build a discriminative model
to differentiate between surgeons with different levels of
expertise while doing RMIS tasks. Surgeons are categorized
into two skill levels, expert and novice. Thus, this is a binary
classification problem that can be resolved by machine learn-
ing algorithms. In particular, we compared two frequently
used machine learning techniques, Logistic regression [30]
and Support Vector Machine [31].

1) Logistic Regression (LR): One of the well-established
statistical models is the Logistic regression where the de-
pendent variable is categorical. In this model, logit trans-
formation of a linear combination of features is used to
resolve a binary classification problem. Formally, the logistic
regression model can be formalized as

p(x) =
1

1 + e(−(β0+β.x))
(1)

where β is the coefficient for corresponding x feature and
p(x) is the probability of belonging to one of the classes.

2) Support Vector Machine (SVM): Support vector ma-
chine (SVM) is one of the important classification method
that constructs a hyperplane and tries to maximize the margin
that separate two class of data shows as 2/||ω||. The ability
to learn the non-linear separable function by mapping the
data to a higher dimensional space makes this classifier
unbeatable for some classification problems. Linear SVM can
be formalized as

minimize
2

||ω||
subject to yi(ω · xi + b) ≥ 1 ∀i = 1, ..., n

(2)

where yi is the class label for ith data. In order to solve
the non-linear classification problem, SVM uses a kernel
transformation. In this study we applied radial basis function
(RBF) which is one of the most popular kernel functions used
in SVM [32], defined as

K(xi, xj) = e(−γ||xi−xj ||2) (3)

where γ controls the width of RBF function.

III. EXPERIMENTAL RESULTS

In this section, we describe the experimental method
including the dataset and feature extraction in detail for each
surgical task. We also explain the performance metrics that
we used to evaluate the proposed automated surgical skill
assessment framework.

A. Dataset

We implemented our framework on real robotic surgery
data presented in [33]. This is comprised of data for sutur-
ing task (see Figure 2). Eight right-handed surgeons with
different skill levels performed suturing around 5 times. We

analyze kinematic data captured using the API of the da Vinci
robot at 30 Hz to extract features. The data includes manual
annotation for surgeons skill based on a global rating score
(GRS). Surgeons are divided into two categories of experts
and novices based on their scores.

Fig. 2: Snapshot of the suturing task in robotic-assisted minimally 
invasive surgery [33].

Feature are extracted for both hands using Cartesian posi-
tions of right and left patient-side manipulator end-effectors
of da Vinci arms. Before computing the features, the raw data
were filtered using a local regression weighted linear least
square method, which reduces the noise in signal data and
keeps the detail of the pattern. Speed, motion smoothness
and curvature are temporal features and were calculated
for each point in data. Therefore, the descriptive statistics
including mean and standard deviation are derived for these
features. Finally, a total of 17 features are derived from each
trajectory. Then, we employed principle component analysis
(PCA), a dimensionality reduction technique that is based on
an orthogonal transformation to reduce the set of possible
correlated features to a smaller set of uncorrelated features
that are linear combinations of the original features [34].

B. Performance Evaluation

Classifier validation was conducted using two model val-
idation schemas as suggested in [33]. The first is leave-
one-super-trial-out (LOSO), where one trial for each one of
the surgeons is left out for testing. The second is leave-
one-user-out (LOUO), where we leave out all the trials
from one surgeon for testing. While the first validation
method evaluates the robustness of a method for repeating
a task by leaving out one trial for all subjects, the second
setup evaluates the robustness of a method when a subject
(i.e., surgeon) is not previously seen in the training data.
The performance of the different classification methods was
determined by classification accuracy, which is expressed
in terms of percentage of subjects in the test set that are
classified correctly.

The results of performing two classification methods,
logistic regression and SVM using LOSO and LOUO for
suturing, are shown in Table I. The best accuracy was
obtained for the combination of all movement features for
both tasks. Table I shows that the best overall accuracy
that has been achieved for suturing is 85.7% in LOSO and
71.9% in LOUO. Results also show that logistic regression
for LOSO and SVM for LOUO model validation schema
provide the best classification performance.

From the results shown in Table I , the classification ac-
curacy improves when combination of spatial and curvature
features are used. This is consistent with previous studies
which emphasized that task completion time and distance
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TABLE I: Classification accuracy for skill level evaluation in
suturing task using Logistic regression (LR) and SVM for two
validation schema LOSO and LOUO (best accuracy is highlighted
in bold).

LOSO LOUO

Novices LR 79.3% 66.7%
SVM 47.1% 67.9%

Experts LR 83.5% 69.8%
SVM 61.3% 71.2%

Overall LR 85.7% 70.5%
SVM 58.7% 72.1%

traveled are insufficient to explain all aspects of surgical
assessment. The features that have been used in this study can
be applied globally on RMIS tasks as they have the potential
to identify additional aspects of surgeon skill level which
cannot be quantified by task completion time and distance
traveled alone.

Table I also shows that for almost all experiments, the best
overall accuracy obtained was from logistic regression for
LOSO schema while SVM gives the best result for LOUO.
It should be noted that, the result of LOUO provides an
insight into the ability of the algorithms to evaluate the
skill level of a surgeon that was unseen during the training
phase. Therefore, we can conclude that the underlying pattern
of different surgeons with same skill level is not linear.
Therefore, SVM with a nonlinear kernel, such as the one
we applied in this study (RBF), has better classification
ability to assess the skill level of surgeons who are not
previously seen in the training data. In other words, SVM has
more generalizability in this context. Interestingly, experts
can be classified with higher accuracy compared to novices
due to the consistency in the values of movement features
for experts. It is also important to mention that the overall
accuracy of surgical skill classification decreases 16% when
we switch from LOSO validation schema to LOUO. This
suggests that surgeons with the same level of expertise
perform suturing in a more similar way.

IV. CONCLUSION

This study demonstrates the ability of machine learning
methods to automatically distinguish between expert and
novice performance in robotic-assisted surgical tasks. It is
generally accepted that not only the skill level of surgeon
vary, but also each surgical task has different levels of
complexity. This complexity is not only captured through
the features extracted from trajectory movement data, but
also through more advanced machine learning methods that
are needed to model the underlying pattern of surgical skill
level. The results presented in this paper could form a
basis for decision support tools that effectively, objectively
and automatically evaluate surgeons dexterity and provide
more personalized skill assessment and online feedback
to trainees based on their performance. Furthermore, the
proposed method can be applied on a more granular level of
tasks in robotic-assisted surgery, such as surgical gestures,
to provide more insight into the skill level differences of
surgeons. Future research could focus on performing more
validation studies with a larger number of participants for
different surgical tasks, which would yield a larger training
set with the potential for improving the classification result.
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