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Abstract—In the insurance industry, catastrophe risk analysis
using catalogs of catastrophic events is a major component
for quantifying financial risks of an insurance portfolios. To
ensure an accurate quantification of risk, particularly for rare,
strong catastrophic events, large sizes of catalogs are simulated
and used for computing loss estimates location-by-location and
event-by-event, but this is computationally intensive. In this
paper, we propose to speed up the risk computation by taking
a data analytic approach to compress the catalog—specifically,
using dimension reduction and clustering. To address the non-
linear geometry of the loss data from the U.S. Flood model, we
used a nonlinear dimension reduction technique, the diffusion
map. Combined with clustering, we show that it yields accurate
catalog compression and produces a realistic representation of
hydrometeorological patterns over the entire country. Finally,
we discuss how clustering results must be refined to ensure
fidelity in retaining the most important catastrophic events,
and how in real life, a risk manager can utilize our results to
make informed risk management decisions.

Index Terms—Diffusion map, nonlinear dimension reduction,
spectral clustering, catastrophe modeling, insurance risk ana-
lytics.

I. INTRODUCTION

THE purpose of catastrophe modeling (known as CAT
modelling in the industry) is to anticipate the chances

and severity of catastrophic events from earthquakes and
hurricanes to terrorism and crop failure, so companies or
governments can appropriately prepare for their financial
impact.

CAT models provide a robust, structured approach for es-
timating a wide range of possible future scenario losses from
catastrophes, along with their associated probabilities. Loss
estimates produced from CAT models can be deterministic
for a specific event (e.g., Hurricane Katrina, a magnitude
8.0 earthquake in San Francisco) or probabilistic from an
ensemble of hypothetical events [1]. The latter approach uses
Monte–Carlo techniques and physical models to simulate
large catalogs of events. For example historical data on
the frequency, location, and intensity of past hurricanes are
modeled and used to predict 10,000 catalog years of potential
hurricane experience. Each of the 10,000 years should be
thought of as a potential realization from a distribution which
characterizes the probability of what could happen in the
year 2016, for example, instead of simulations or predictions
of hurricane activity from now until the year 12016 [2].
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To pass from catalog to financial risk, the risk analysis
aggregates event losses over the locations or properties in a
particular portfolio, noting that losses are typically modeled
by random variables characterized by loss distributions. Then
the event losses are aggregated within each catalog year to
obtain an aggregate annual loss (AL) distribution for each
year. Finally, empirical samples from the overall portfolio
loss distribution can be obtained from the mixture of AL
distributions. These empirical samples are used to construct
the exceedance probability (EP) curve [3], which is equiva-
lent to estimating the survival function of the portfolio loss
distribution, or 1 minus its cumulative distribution function.
The EP curve is the key tool used by insurers to estimate
their probabilities of experiencing various levels of loss. In
addition, two important risk statistics of the portfolio loss
are the Average (Aggregate) Annual Loss (AAL), which
measures the expected AL, and the Tail Value at Risk (or
p%-TVaR), which measures the expected AL conditional on
observing the upper p% tail of the portfolio loss distribution
[2], [4].

Our paper is focused on the risk analysis for the U.S. flood
catalog. This catalog relies on complex, physically based
probabilistic flood model for the U.S. [5], [6], [7], and
requires significant computational cost to estimate portfolio
losses for each flood event. This is compounded by the
large number of events in the catalog. Therefore, it is
desirable to compress the size of the catalog to reduce
computational time. Here, we take a clustering approach
to catalog compression. This idea stems from the fact that
events in the catalog can be split into two groups: strong,
infrequent events generating substantial losses and weak,
frequent events generating small losses. So, we aim to
identify clusters of similar weak events in such a way that the
risk analysis from the clusters provide a good approximation
for that of the full catalog. At the same time we retain all
the original strong events. Inevitably, catalog compression
will incur errors in the portfolio’s EP curve, AAL and TVaR
estimates so it is crucial to find the right patterns in the loss
data to minimize these errors.

A. Basic data set: loss matrix

The flood model for the U.S. simulates on-floodplain
riverine flooding for a river network of 1.4 million miles,
including all streams with a minimum drainage area of
3.9 square miles, with 335,000 drainage catchments. Off-
floodplain flooding is simulated only for areas away from
floodplains [5], [7]. Each simulated flood event is charac-
terized by physical model parameters, such as peak flow,
peak runoff and catchments affected, from which the losses
of exposed property are calculated. Because the extent of

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I 
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016



losses depend not only on the model’s physical parameters
but also on the geomorphology of the catchments, large scale
weather patterns etc., the relationship between the physical
parameters and the losses is very complex. For this reason,
we take a loss-based approach to catalog compression, in
which industry loss data (the expected total on- and off-
floodplain ground-up losses that have been estimated for all
insurable property industry-wide), is assumed to be a suitable
surrogate data set for risk analysis. The industry loss data
implicitly reflects the physical parameters of events in the
catalog, the geomorphology of property locations and the
exposure information of the properties.

Our basic data set is the loss matrix L comprising of
industry losses in each catchment for each event,

Lij = Industry loss for event i in catchment j (1)

The dimensionality of L is huge, containing 685,477 events
covering 335,000 catchments, but it is also sparse, because
the majority of flood events affects only a small proportion
of catchments. In practice, loss data is not always available
nationwide or at the spatial resolution of catchments. In
some data sets, the losses are aggregated to a coarser spatial
resolution of zipcodes or counties. The loss data available to
us are for
• 6186 catchments in the Northeastern U.S.
• 29911 zipcodes in the entire U.S.
• 3101 counties in the entire U.S.
Because the industry loss data does not contain distribu-

tional information, in this paper the portfolio loss distribution
is the distribution of the means of the AL distributions. Here,
the set of insurable properties within a given zipcode z is
treated as a type of portfolio. Aggregating L by catalog years
produces Ny = 10, 000 empirical samples for the zipcode
loss distribution,{

AL∗(y, z) :=
∑

{i:Event i ∈ Year y}

Liz

}Ny

y=1

.

The EP curve for that zipcode is estimated by sorting the em-
pirical samples in descending order and plotting them against
the corresponding probability. The p%-TVaR is estimated by
averaging the top p% of the empirical samples.

B. Catalog compression as clustering and multiobjective
optimzation

The clustering approach to the catalog compression seeks
to find a clustering solution which partitions weak events
into disjoint subsets (clusters). Each cluster of events is
then represented by a reference event (medoid) which is
an existing event within that cluster. The losses incurred by
an event are approximated by that of its cluster’s reference
event. This means that only the losses incurred by the
reference event need to be computed in the risk analysis,
thereby decreasing the time spent for risk computation.

Standard clustering algorithms such as k-means or hierar-
chical clustering [8] are designed to minimize the difference
between the losses of an event and its reference event.
Our main objective of catalog compression is to maintain
accuracy of the EP curve and the risk statistics by minimizing
errors in the 1%-TVaR and AAL for zipcode losses:

• Average error in 1%-TVaR

FTV aR(c) =
1

Nz

Nz∑
z=1

∣∣∣∣TV aRc(z)− TV aR∗(z)∣∣∣∣ (2)

where TV aRc(z) is the 1%-TVaR for zipcode z com-
puted under the clustering solution c, and TV aR∗(z) is
that computed from the full catalog.

• Average error in AAL

FAAL(c) =
1

Nz

Nz∑
z=1

∣∣∣∣∣∣ 1

Ny

Ny∑
y=1

(
ALc(y, z)−AL∗(y, z)

)∣∣∣∣∣∣
(3)

where ALc(y, z) is annual loss of the z-th zipcode in
the y-th catalog year, under c.

In addition to the above objectives we also aim to minimize
the ratio:

Fred(c) =

∑
eref

#(counties affected by reference event eref)∑
e #(counties affected by event e)

(4)
which counts the reduction in the number of affected counties
for which portfolio losses need be computed. The county
compression rate 1 − Fred is closely related to the event
compression rate, 1 − #reference events

#events . Determining the event
compression rate is equivalent to determining the number
of clusters as in [28]. The two compression rates are not
interchangeable because of the variability in spatial extent
of the clustered events: large clusters often comprise of
localized low-loss events, while widespread high-loss events
tend to become singleton clusters. Because the actual savings
in loss computation time depend on the number of portfolio
locations for which losses need be computed and the effi-
ciency with which the loss computation is implemented in
software, the county compression rate is a preferred surrogate
for gain in computing speed.

All three criteria FTV aR,FAAL and Fred are nonlinear
functions of the data and are not equivalent to the objectives
of standard clustering algorithms. The sole application of
the latter may not yield an optimal solution so both sets of
objectives should be considered as in [22] [23] and [24],
[25].

Apart from the above dichotomy, (2), (3) and (4) conflict
with each other—no single clustering solution minimizes
them simultaneously. Thus, we cast the catalog compression
as Multiobjective Optimization Problem (MOP) in [21] to
compare different clustering solutions. This formalism seeks
to find the Pareto front, which is the collection of Pareto
optimal solutions for which no such solution is better than
another by all objectives simultaneously. (See Figure 7 for
a visualization of a Pareto front). The catalog compression
problem formulated as MOP reads:

min
c∈C

(FTV aR(c),FAAL(c),Fred(c)) (MOP)

where C is the set of all possible event clustering solutions.
The computational cost of the MOP can be reduced by
both using more efficient clustering algorithms and pre- or
post-processing refinements to finetune clustering solutions
as proposed [27]. For catalog compression, the refinement
is targeted towards improving the accuracy of estimating
mean and tail statistics from the EP curve, by ensuring
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that error-prone events become singleton clusters—clusters
comprising of a single event—thereby eliminating errors due
to approximation by a reference event.

C. The role of nonlinear dimension reduction in event clus-
tering

The fundamental ingredient of any clustering technique is
the specification of a metric to quantify similarity between
data points. Because of the ease at which Euclidean distances
can be computed, some of the most efficient clustering
algorithms assume Euclidean metric. In high dimensional ap-
plications, however, the choice of the metric is non-obvious
and to large extent heuristic. Additionally, due to the curse
of dimensionality [9], the concept of proximity, distance
or nearest neighbor may not be meaningful. Examples of
counterintuitive behavior of the Minkovski norm and its
influence on the performance of k-means clustering are given
in [10]. To tackle the curse of dimensionality, we aim to find
an embedding of the high dimensional loss matrix L ∈ RN×p
into a low-dimensional space RN×q , q � p equipped with
an appropriate metric (see Section III).

The well-known linear dimension reduction technique,
principal component analysis (PCA), achieves this embed-
ding by seeking the best low-rank approximation to identify
the best low-dimensional linear subspace that represents the
directions of greatest correlations in the data[8].The linearity
of the PCA, however, limits its usefulness to situations when
the data conform to a Gaussian assumption—an assumption
which our loss data does not satisfy. In fact, because of
the sparsity of the data, the majority of events incur no
loss at most zipcodes. Almost all the events lie on a nons-
mooth, nonlinear manifold. In this case PCA will not give
a meaningful low-dimensional representation. To tackle this
problem, many recent techniques, including locally linear
embedding [11], semidefinite embedding [12], Isomap [13],
Laplacian eigenmaps [14] and the diffusion map [15], [16],
[17], [18], have been proposed. One in particular, the diffu-
sion map (DM), adopts the formalism of diffusion processes
on a manifold in order to define a new distance (called the
diffusion distance). (e.g., [19]). The DM embeds the data
into a new coordinate system that preserves the diffusion
distance such that the embedding represents the diffusion
distance within the first few eigendimensions. This makes
the DM particularly attractive to apply to the event clustering
problem: it provides a geometry-aware distance that can be
used in conjunction with Euclidean-based clustering algo-
rithms. For example, [17] showed a rigorous justification for
k-means clustering of the diffusion coordinates. In Section
III we show that another clustering algorithm, the Growing
Neural Gas (GNG) [34] combined with a graph community
finding method [33], is particularly suited to our application.
In Section II we show computationally fast implementation
of DM.

The paper is organized as follows. We first describe the
foundation and implementation of the DM in Section II, then
give an example of its application to the spectral clustering of
catchments and counties into Flood Regions, in Section III.
For catalog compression, Section IV-A details the main event
clustering procedure, while Section IV-B describes the pre-
/post-processing refinements. We further explain the nature

Fig. 1. Intuitively, the diffusion distance reflects the connectivity by short
hops (characterized by high probability transitions) between the two ends
of the arc (solid lines), in contrast to a lack of connectivity to the points in
the center (dotted line). As the diffusion time t increases, the ends of the
arc grow closer, in diffusion distance, relative to their diffusion distance to
the center data points.

of the conflicting TVaR and AAL objectives in Section IV-C.
Finally, in Section V, we show that the results of the overall
catalog compression methodology yields good solutions, and
demonstrate the role of Pareto optimal solutions in making
risk management decisions.

II. DIFFUSION MAP

The DM constructs a nonlinear transformation of high-
dimensional data into the diffusion space, through a spectral
decomposition of the graph Laplacian, defined by a random
walk on the graph of data points that respects the connec-
tivity and topological structure of the data manifold. Such
decomposition provides an efficient representation of the data
in terms of the diffusion coordinates, the leading few of
which are used to define a low dimensional embedding of
the data. In what follows, we give the theoretical framework
and discuss computationally fast implementation of the DM.

A. Theory

The input to the DM is a symmetric weight matrix W ,
where Wij > 0 represents similarity between data points
xi, xj . Then, the algorithm constructs a Markov random walk
on the weighted graph G = (X,W ), with transition matrix
P given by

Pij =
Wij

di
, (5)

where di =
∑
kWik is the degree of vertex xi. Under the

positivity condition of Wij and if G is connected, the random
walk converges to a unique stationary distribution,

lim
t→∞

P
(t)
ij =

dj∑
k dk

:= φ∗j . (6)

where P (t) = P t is the t-step transition matrix. The
random walk favors transitions between similar points, so the
stationary distribution concentrates in regions of high data
density. The diffusion distance D(t), at a diffusion time t,
reflects the connectivity by short and highly probable paths
between two data points xi, xj (see Fig. 1). This gives rise
to its probabilistic definition, which can be re-expressed in
a more convenient form in terms of the eigendecomposition
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Algorithm 1: DM algorithm.

Input : Weight matrix W (derived from data X ∈ RN×m),
maximum embedding dimension pmax.

1 d← rowSums(W) // vertex degrees
2 φ∗ ← d/sum(d) // stationary distribution
3 ∆← diag(d−1/2).
4 W̃ ← ∆ ∗W ∗∆ // symmetric graph Laplacian

5 (Λ, Ṽ )← eigendecomposition(W̃ , pmax)
6 (t, p)←getTimeDimension(Λ) // (see text)
7 ψ ← ∆ ∗ Ṽ [:, 1:p] // right eigenvector
8 ψ ← ψ∗diag((t(φ∗)∗ψ)ˆ{−1/2}) // normalize
9 Ψ← ψ∗diag(Λ[1:p]ˆt) // diffusion coordinates

Output: Diffusion coordinates Ψ ∈ RN×p.

of the transition matrix:

(D
(t)
ij )2 :=

∑
k

(P
(t)
ik − P

(t)
jk )2

φ∗k
≡
N−1∑
k=0

λ2tk (ψik − ψjk)2

(7)

where λk, ψ·,k are the eigenvalues and corresponding right
eigenvector of P (normalized w.r.t. the weight φ∗). Note
that λ0 = 1 and ψ·,0 ≡ 1 is a constant vector. If the
eigenvalues decay sufficiently fast, the summation in Eq.
7 can be approximated by the first p summands, chosen
up to error tolerance. By defining the diffusion map—the
transformation of the data points into the p-dimensional
diffusion space—as

Ψ(t) : xi ∈ RN 7→ (λt1ψi1, . . . , λ
t
pψip)

T ∈ Rp, (8)

it follows that the diffusion distance is approximated by the
Euclidean distance of the diffusion coordinates,

(D
(t)
ij )2 ≈ ‖Ψ(t)(xi)−Ψ(t)(xj)‖2. (9)

B. Algorithm and Implementation

Given an input similarity measure Sim(·, ·), a common
choice for the weight matrix W is to use a Gaussian kernel,

Wij = e−(1−Sim(xi,xj))
2/2κ2

.

The kernel width, κ, can be automatically set as the median
distance of each data point’s k-th nearest neighbor [18], with
k typically 1% of the data size. The diffusion time t and
embedding dimension p should meet an error tolerance for
the approximation of D(t); e.g. to satisfy p = max{j : |λtj | >
δ|λt1|} for a given tolerance δ [17]. In practice, we choose
δ = 0.1 and fix a maximum dimension pmax (to limit the
number of eigenvectors that must be computed), and then
choose t large enough to meet the error tolerance.

Algorithm 1 shows the basic steps of DM implementation.
It uses the symmetric graph Laplacian in lieu of the transition
matrix, so that eigendecomposition for symmetric matrices
can be used. This step is often the computational bottleneck
with large data, but we the fast randomized SVD technique
of [29] can tackle this problem. Our implementation of the
DM algorithm in R/Rcpp is as follows:
• Fast linear algebra using fast randomized SVD algo-

rithm [29]. Based on a random projection and iterative
orthogonalization procedure, the fast randomized SVD
algorithm reduces the estimation of the leading singular
values to the eigendecomposition of a small matrix.

Algorithm 2: Fast randomized eigendecomposition of sym-
metric matrices, with power iteration [29, Algorithms 4.4 and
5.3].

Input : Symmetric matrix A ∈ Rn×n, desired number of
eigendimensions p, and number of power iterations
q.

1 Ω← rnorm(n, 2p); // random Gaussian matrix
2 for i← 0 to 2q do
3 (Q,R)←qr(A ∗ Ω); // QR decomposition
4 Ω← Q;
5 end
6 B ← transpose(Ω) ∗A ∗ Ω; // a small matrix
7 (Λ, V )← eigen(B); // eigendecomposition
8 Λ← Λ[1:p]; V ← V [,1:p];

Output: Eigenvalues Λ ∈ Rp, eigenvectors V ∈ Rn×p.

The random projection is justified by the Johnson-
Linderstrauss lemma [30]. We used a version for eigen-
decomposition of symmetric matrices (shown in Algo-
rithm 2) with complexity O((q + 1)(N2p+Np2)).

• Memory efficient implementation requiring negligible
additional memory allocation. Memory efficiency is
achieved by utilizing packed storage of symmetric ma-
trices [31] and designing modification-in-place subrou-
tines.

• Optimized BLAS libraries for symmetric packed matrix
multiplication. In Algorithm 2, the multiplication of
the (large) input matrix with the (small) random Gaus-
sian matrix is performed by the BLAS routine dspmv
[31] for symmetric packed matrix-vector multiplication.
Note that if the input matrix is too large to fit into
RAM, a single-pass matrix multiplication scheme can
be adopted to allow entry-wise streaming of the input
matrix.

• Higher eigendecomposition accuracy possible with ad-
ditional computation. The option to improve the ap-
proximation accuracy utilizes a power iteration feature
of the fast randomized eigendecomposition algorithm.
The additional cost is due to multiple repetitions of
matrix multiplication. Empirically, q = 2 is sufficient
for accurate results.

• Speed up with parallelization. Many of the computa-
tions are highly parallelizable.

III. AN EXAMPLE: SPECTRAL CLUSTERING OF FLOOD
REGIONS USING DM

In this section we illustrate the efficacy of the DM using
an example of clustering catchments or counties, instead
of events, into regions of similar flood activity. To cluster
catchments, the loss matrix is transposed, L′, so that each
data point z ∈ RN represents a catchment’s losses from
the N events in the catalog. The input to the DM can be
any similarity measure computed on L′ (e.g. Jaccard and
Yule similarities, Simple Matching Coefficient, correlation
coefficient, Euclidean distance, etc.), so that it defines a
corresponding diffusion distance. Thereafter, a clustering al-
gorithm is applied to the Euclidean distance on the diffusion
coordinates, noting that conceptually, it is the closeness with
respect to the diffusion distance that the clusters obey. This
is illustrated in Figure 2.
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Fig. 2. Workflow for spectral clustering using DM. In parentheses are
ballpark computational times taken on the Northeastern U.S. catchment
loss data set, computed on a 3.4 GHz Intel i7-4770 processor. Our DM
implementation used 8 core parallelization; the other algorithms used a
single core. GNG+GCF used the gmum.r package [32].

As mentioned before, clustering algorithms that require an
Euclidean distance assumption (such as k-means, neural gas),
as well as those that accept an arbitrary similarity measure
(such as hierarchical clustering, agnes) can now be used. An-
other clustering method that is particularly effective for this
application is the Growing Neural Gas algorithm combined
with a graph community finding algorithm (GNG+GCF):
• The Growing Neural Gas (GNG) algorithm combines

key ideas from competitive Hebbian learning and the
Neural Gas algorithm to build a graph of nodes that
represent the centroids of clusters, defined through the
Voronoi tesselation. An edge between two nodes reflects
the density of data points connecting the nodes.

• Graph community finding (GCF) algorithms attempt to
find communities of nodes that are highly connected
within each community but poorly connected with
other communities. One way communities are found
is through minimizing the modularity score function,
which measures the fraction of edges falling within a
community: ∑

n,n′ En,n′δcn,cn′∑
n,n′ En,n′

where edge En,n′ = 1 if nodes n, n′ are connected,
and 0 otherwise; cn is the community to which n
belongs. GCF is achieved by the fast greedy modularity
optimization algorithm [35], which is of almost linear
complexity, O(n log2 n). A drawback of GCF is that
the exact number of communities is not known a priori.

To obtain effective clustering using GNG+GCF, the GNG
was trained using more nodes than the number of desired
regions, so that each node represents a “micro-cluster” of
catchments. Then, a flood region is formed by a community
of nodes found by the GCF algorithm, which represents the
corresponding collection of catchments.

For catchment loss data in Northeastern U.S., we per-
formed the spectral clustering using DM as shown in Figure
2. In our experiments, the Jaccard similarity yielded the best
results. It is defined as

SimJac(z, z
′) :=

n11
n11 + n10 + n01

,

where the entries of the data points z, z′ are first converted to
binary values (with 1 and 0 indicating positive and zero loss,
respectively), and then nij = |{k : zk = i and z′k = j}|.

Fig. 3. Map of Northeastern U.S. catchments clustered into six regions,
using the benchmark method (LEFT) and GNG+GCF clustering on the
diffusion distance (RIGHT). Catchments not affected by any event are not
included.

Fig. 4. 3D visualization of the first 3 diffusion coordinates, for diffusion
time t = 5 and dimension p = 4. The GNG+GCF algorithm was used with
200 nodes. The labeled groups of nodes correspond to the Regions B and
C in Figure 3 RIGHT

The Jaccard similarity computes overlap ratios and is well-
suited to image and text processing applications [36]. Here,
two catchments are Jaccard-similar if the events affecting
both catchments form a large proportion of those affecting
at least one of the catchments; that is, if they have a similar
propensity for flooding.

We looked for heuristic qualities of how well hidden
relationships in the data were captured, such as the abil-
ity to reproduce large scale weather patterns and maintain
geographical connectivity of the regions. For comparison,
hierarchical clustering based on the correlation coefficient
Corr(z, z′) = V ar(z, z′)/

√
V ar(z)V ar(z′), a method used

in feature cluster analysis, was used as a benchmark.
• The methods shown in Figure 2 and the benchmark

method produced regions with fairly cohesive bound-
aries, and broadly captured weather patterns moving in
a northeastern direction.

• Hierarchical and k-means clustering on the diffusion
distance, as well as the benchmark method, were unable
to separate the two coastal regions that are subjected
to the same weather patterns but are geographically
disconnected. (Region A in Figure 3 LEFT.)

• Only GNG+GCF clustering on the diffusion distance
successfully distinguished the two geographically sepa-
rated coastal regions (Regions B, C in Figure 3 RIGHT)

• The DM provides a visualization of the catchments with
similar weather patterns, particularly the ‘closeness’ of
the separate coastal regions (Figure 4). This explains
why it is easy for a clustering algorithm to cluster
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those two regions together. Nonetheless, GNG+GCF
distinguishes those two regions because the correspond-
ing groups of nodes are sparsely interconnected despite
being close in diffusion distance.

For county loss data for the entire U.S., we again per-
formed spectral clustering using DM with Jaccard similarity,
and with diffusion time t = 1 and 100 diffusion coordinate
dimensions. Figure 5 compares the k-means and GNG+GCF
clustering on the diffusion distance. The GNG+GCF al-
gorithm identified 20 flood regions, and the number of
clusters for k-means was fixed at 20 for comparison. Both
clustering procedures pick up the general weather patterns
in the Tornado Belt and Eastern U.S. where meteorology
dominates the flooding patterns, but produce distinctly dif-
fering clusters in the drier Central and Western U.S. Once
again, GNG+GCF successfully distinguishes Florida from
the central part of the U.S., something that k-means fails to
achieve. Interestingly, the boundaries of the clusters found by
GNG+GCF sometimes coincide with the boundaries of the
USGS Hydrological Flood Regions [37], which are defined
by the geomorphology of river basins. This is significant
because it indicates the ability of our clustering method
to identify distinct types of patterns—meteorological and
hydrological—from the loss data.

IV. CATALOG COMPRESSION

A. Using DM in Event Clustering

It is intractable to work directly with the entire pairwise-
distance matrix required for the DM, due to the large size
of the catalog. Therefore, we partition the catalog into sub-
catalogs to make it computationally tractable and scalable.
This is equivalent to approximating the similarity matrix
by a sparse matrix possessing a block diagonal structure,
where events in different subcatalogs are assumed to be
completely dissimilar. Effectively, we only allow events
within the same subcatalog to be clustered together. The

Fig. 5. Map of U.S. counties clustered into 20 Flood Regions using k-
means (top) and GNG+GCF (bottom) algorithms on the diffusion distance.
Overlaid on both maps are the boundaries of the 18 USGS Hydrological
Flood Regions.

TABLE I
COMPRESSION RATES (BALLPARK) DEPENDING ON THE SUBCATALOG’S

LOSS AMOUNT(M=MILLION, B=BILLION).

Loss ($) <1M 1–10M . . . 1–10B >10B
Compression 99.5% 99% . . . 75% None

subcatalog size should ideally be within the constraints of
computer resources. The idea of pre-partitioning the data set
is not new, an example being the heuristic CF-tree building
procedure of BIRCH [38]. Instead of using the heuristics,
however, we applied partitioning schemes that exploit our
application-specific knowledge:
• Partition by total loss: Compute each event’s total

loss and define disjoint loss intervals. Each subcatalog
comprises of the events whose total event loss lies in a
given loss interval.

• Partition by Flood Regions: Each subcatalog comprises
of the events affecting a given combination of flood
regions (regions obtained from the clustering procedure
in Section III).

Partitioning by flood regions is tractable only when there are
a small number of flood regions, such as in the Northeastern
U.S. catchment loss data. For the entire U.S., partitioning
by loss is preferred because of its computational tractabil-
ity. The loss interval partitions were $105.5, 106, 106.25,
106.5, . . . , 1010 dollars, and the subcatalog sizes ranged from
about 1000 to 50000 events.

To compute the DM, we used the Jaccard similarity
(between events), and for each subcatalog computed the dif-
fusion coordinates up to a maximum of p = 50 dimensions.
Then, k-means was applied to the diffusion coordinates to
cluster the events within each subcatalog. To promote better
accuracy for high-loss events, a different compression rate
was used for each subcatalog (Table I): higher loss events are
afforded a lower compression rate, and vice versa. Finally,
because k-means produces the cluster centroids in diffusion
space, the last step is to determine the reference event for
each cluster. Even for a single objective problem, finding
the globally optimal set of reference events is an expensive
combinatorial problem. An effective alternative is to adopt a
local strategy: select, cluster-by-cluster, the reference event
whose total loss is closest to the average total loss for events
in the cluster.

B. Pre- and post-processing refinements

We present pre- and post-processing refinements to fine-
tune the clustering solutions obtained from the previous sec-
tion in order to minimize the FTV aR and FAAL objectives.
The refinements target and correct errors in the risk measures
by identifying, a priori and post hoc, events that potentially
incur large errors and force them into singleton clusters. This
method of improving the accuracy of the clustering solution
comes at the expense of compression rate.

a) Preprocessing: Prior to clustering, identify “impor-
tant events” that contribute most to the tail statistics of the EP
curve for each county. Each such event becomes a singleton
cluster and does not need to be accessed by the clustering
algorithm, thereby slightly reducing the computation needed
to cluster the remaining events. The important events for
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Algorithm 3: Extremal Error Correction for TVaR.
The zipcodes are handled in the order of their error’s magnitude. For each

zipcode, the order in which events in the top 100 years (which factor

into the 1%-TVaR computation) are converted to singleton clusters depends

on whether the TVaR was under- or over-estimated; in the former, events

incurring the most negative errors go first. This minimizes the number of

additional singleton clusters. The process is iterated until all errors are within

the threshold.
Input : Error threshold ε, loss matrix L, clustered loss matrix M .

1 zErrors ← computeErrors(L,M);
2 while max(|zErrors|) > ε do
3 zRank ← argsort(−zErrors); // decreasing
4 for z in zRank do
5 if zErrors[z] < −ε then // underestimation
6 eRank ← argsort(M [:, z]− L[:, z]);
7 else
8 eRank ← argsort(L[:, z]−M [:, z]);
9 end

10 i ← 0;
11 while |zErrors[z]| > ε do
12 e← eRank[i]; i← i + 1;
13 topYears←computeTopYears(M [:, z]);
14 if Year(e) ∈ topYears then

// Convert event e to singleton
15 M [e, z]← L[e, z];
16 zErrors[z]←updateError(L[:, z],M [:, z]);
17 end
18 end
19 end
20 zErrors ← computeErrors(L,M);
21 end

Output: New clustering solution.

each county are those that make up at least 95% of its 1%-
TVaR estimate, as well as those that make up 50% of its
1.5%-TVaR estimate. The union of important events for all
counties is the overall important event set, and comprises
16.5% of the catalog.

b) Postprocessing: Upon obtaining a clustering solu-
tion, identify the events that contribute most to the TVaR or
AAL error, and convert them to singleton clusters. This pro-
cess necessarily decreases the compression rate. We propose
the Extreme Error Correction algorithm to perform this re-
finement, given a desired error threshold. Algorithm 3 shows
the algorithm for correcting TVaR errors; the algorithm for
AAL is similar.

C. Conflicting TVaR and AAL objectives

It is intuitive that FTV aR and Fred are conflicting ob-
jectives, but it is less obvious that the two error metrics
FTV aR and FAAL conflict. The reason for this conflict is
best illustrated by an extreme example: if in a clustering
solution, the important TVaR events are each turned into
singleton clusters, and all remaining events form one huge
cluster, then one would expect a very good FTV aR but very
bad FAAL. The act of re-allocating singleton clusters towards
maintaining accuracy of important TVaR events, without
changing the compression rate, comes at the expense of
accuracy for other events and hence at the expense of AAL
error.

This trade-off between the two objectives is shown in
Figure 6, where the NSGA2 algorithm [26] was used to
estimate the Pareto front for the bi-objective optimization
of FTV aR,FAAL. The population size was 200, and a
penalty on the event compression rate was imposed on the

Fig. 6. Estimated (1st) Pareto front in 2-objective space (black). The other
solutions are ranked by their closeness to Pareto optimality: the 2nd front
becomes the new estimated Pareto front if the 1st front is removed; the r-th
front becomes the estimated Pareto front if all fronts ranked less than r are
removed. All solutions have approximately 74.3% event compression rate.

Fig. 7. Estimated Pareto fronts for 3-objective space. On the z-axis is the
reduction rate Fred. Note that the error objectives shown are the average
relative errors, instead of the average absolute errors in (2), (3).

fitness function. For the genetic operators in NSGA2, the
mutation operator was designed to randomly split or merge
clusters. The solutions shown in Figure 6 have roughly the
same event compression rate of 74.3%. However, while the
FTV aR,FAAL trade-off is interesting and subtle, the trade-
off with Fred is more significant.

V. SIMULATION RESULTS

We ran the catalog compression methodology on the 10K
U.S. flood catalog, using industry loss data at the county
and zipcode resolutions. A collection of candidate solutions
was obtained by running the full methodology with varying
pre- and post-refinement parameters, to yield 162 solutions
with county compression rates ranging from 40-70%. Figure
7 shows the candidate solutions in 3D-objective space, in-
cluding the estimated Pareto optimal solutions in black. We
observe a trade off between the three objectives, but the most
significant trade off is between the 1%-TVaR (or AAL) error
and the reduction ratio Fred.

At this juncture, a risk manager is enlisted to select the
final solution, based on a desired accuracy, compression
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Fig. 8. Estimated Pareto fronts in 2-objective space using TVaR errors for
zipcodes and portfolio locations.

rate or other managerial criteria. A typical decision making
process may proceed as follows.

Suppose the risk manager desires a county compression
rate of at least 60%, and he also has a portfolio of 800
insured locations on the East coast of the U.S. He is
concerned with the average TVaR errors for both zipcodes
nationwide and in his portfolio, but is willing to accept
more error in his portfolio than nationwide, up to 5% error.
He looks at the Pareto optimal solutions subject to this
criteria (Figure 8), and selects the one with an acceptable
level of error: 2.4% error nationwide, and 3.8% error in
his portfolio. This solution has 75.1% event compression
rate and 60.1% county compression rate, and is produced
after the sequential application of extreme error correction
to the event clustering solution at the zipcode resolution
with a threshold of 10% error in TVaR and 15% error in
AAL. To ensure good results at the county resolution, he
further passes the selected solution through a final touch-up
using extreme error correction at the county resolution with
a threshold of 5% error in TVaR and 10% error in AAL. The
final solution has 74.9% event compression rate and 59.9%
county compression rate. The resulting errors of the final
compressed catalog, at the county resolution, are shown in
Figure 9. Figure 10 shows a good agreement between the EP
curves estimated from the full and the clustered catalogs.

VI. CONCLUSION

We showed the application of the DM for dimension
reduction and spectral clustering in the context of U.S. flood
insurance risk analysis. By applying event clustering in con-
junction with a refinement strategy to optimize the estimation
accuracy of the risk measures, we can compress the catalog
size to speed up loss computation. We showed that even at
event compression rates close to 75%, a high accuracy in
risk measures is maintained. Risk management decisions are
aided by the presentation of Pareto optimal solutions under
the multiobjective optimization framework.

This entire methodology of combining general dimension
reduction and clustering techniques with problem specific
optimization and refinement algorithms can be useful in
many other applications. Furthermore, the low dimensional
embedding produced by the DM provides a good visualiza-
tion of the relationships between catchments or counties (or
more generally, spatial dimensions). By using an appropriate

Fig. 9. Map of the U.S. showing 1%-TVaR and AAL errors by county.
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Fig. 10. EP curves constructed from the full and clustered catalogs, for
selected counties, including some with the highest errors.

clustering algorithm, such as GNG+GCF, this clustering
methodology is better able to reveal hidden relationships in
the data, as illustrated by the weather patterns and geograph-
ical connectivity captured in the U.S. county loss data.
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