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Abstract—Model reduction techniques are needed to directly
solve the chemical master equation (CME) due to its enormous
size. We recently described an algorithm that solved the CME
by combining the finite state projection, stochastic simulation
algorithm and Krylov subspace approximations. In this work,
we add further improvements that consist of an incomplete
orthogonalization process with Krylov subspaces of variable
dimension, and a refined strategy for monitoring the projection.
We test these enhancements on difficult problems such as the
MAPK cascade with 22 species.

Index Terms—stochastic gene regulation, chemical master
equation, finite state projection, Krylov approximation.

I. INTRODUCTION

Molecular interactions within a biological cell are in-
herently stochastic. To account for this stochasticity, the
dynamics of the system is treated as a continuous-time,
discrete-state Markov process, whose probability distribution
is obtained by solving the chemical master equation (CME).

In recent years, there has been much interest in methods
for directly approximating the probability distribution via the
CME. The finite state projection (FSP) algorithm [1] was
an early milestone on this direction, and many numerical
methods for the CME have been proposed over the years [2],
[3], [4], [5], [6], [7], [8], [9]. Direct CME solvers have been
incorporated into a larger framework for selecting models
and identifying parameters of gene regulatory networks [10],
[11]. In a previous work [8], we described an adaptive
Krylov-FSP [2] that was driven by the stochastic simulation
algorithm (SSA). Our present study improves on that early
method with several additions, namely incomplete orthogo-
nalization, variable Krylov subspace dimension and a refined
strategy for monitoring the projection.

Our paper is organized as follows. Section II summarizes
the CME and sets up the terminology. Section III explains in
details our adaptive Krylov-FSP solver. We report numerical
examples solved with our method in section IV.

II. BACKGROUND

A. The chemical master equation

We consider a system of N ≥ 1 different chemical species
that are interacting via M ≥ 1 chemical reactions in the cell,
the state of the system is a vector x ≡ (x1, . . . , xN )T of
nonnegative integers counting each species. The kth reaction
(k = 1, . . . ,M ) is associated with the stoichiometric vector
νk, and when such a reaction occurs in an infinitestimal
interval [t, t+dt) with probability αk(x)dt, the state changes
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from x to x + νk . The state-dependent function αk(x) is
called the propensity function of reaction k. The state space
is a discrete subset of the lattice of N -tuple of nonnegative
integers, allowing the states to be enumerated as {xi}ni=1,
which is why we often refer to a state x just by its index
i ≡ ix in the enumeration. The chemical master equation
(CME) can be formulated as a linear system of ordinary
differential equations (ODEs)

ṗ(t) = Ap(t), p(0) = p0, (1)

where p = (p1, . . . , pn)
T is a vector of probabilities indexed

by the states, i.e., pi = Prob{x(t) = xi}; A = [aij ] is a
sparse n× n matrix defined by

aij =

{
αk(xj) if xi = xj + νk
0 otherwise

. (2)

B. Finite state projection

Solving (1) amounts to evaluating the action of a matrix
exponential, i.e., to compute the expression

p(t) = exp(tA)p(0). (3)

However, the size of the CME makes the computational
cost intractable. The finite state projection [1] alleviates this
problem by projecting the CME upon a finite set of states
enumerated in J , and approximate the full solution by

p(t) ≈ pJ(t) = exp(tAJ)pJ(0), (4)

where J is a subset of state indices, and

(AJ)ij =

{
aij if i, j ∈ J
0 if i /∈ J or j /∈ J

,

and for any v = (v1, . . . , vn)
T , vJ is defined by

(vJ)i =

{
vi if i ∈ J
0 otherwise

.

From there, all computations are done in practice on the
effective truncations, which keep only the entries indexed by
J , justifying why the FSP is a reduction method. The states
indexed by J form a finite state projection (or projection
for short). The truncation error is controlled by imposing the
condition based on a bound derived in [1].

Theorem II.1 (adapted from Theorem 2.2 in [1]). Consider
any Markov process in which the probability vector evolves
according to the linear ODE (1). Let J be a subset of state
indices, and pJ the solution of (4). If for ε > 0 and tf ≥ 0
we have

11TpJ(tf ) ≥ 1− ε, (5)

then pJ(tf ) ≤ [p(tf )]J ≤ pJ(tf ) + ε11.
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C. Krylov subspace approximation

A popular way to evaluate the action of the matrix expo-
nential (3) is by the Krylov subspace approximation

exp(τA)v ≈ Vm exp(τHm)‖v‖e1, m� n (6)

where ‖.‖ is the Euclidean norm and e1 the first unit vector
of length m. The matrices Vm and Hm are generated by
the Arnoldi process. The advantage of the Krylov-based ap-
proach is that it reduces the computation of a massive matrix
exponential into a small exponential of Hm (with m� n).
Furthermore, it only requires matrix-vector products that can
be kept in functional form. Our algorithm exploits these
advantages to solve the CME efficiently.

III. ADAPTIVE KRYLOV-FSP DRIVEN BY THE SSA

This section details our algorithm. The first two subsec-
tions review the fundamental features previously described
in [8] and that are critical to understanding our approach. The
remaining subsections describe the improvements developed
in this work.

A. Overview of the method

We advance the solution through time steps t0 := 0 <
t1 < . . . < tK := tf using the recurrence

p(tk+1) ≈ pk+1 := exp(τkAJk)pk, tk+1 := tk+τk, (7)

where τk is the stepsize and Jk the projection containing the
most likely states the Markov process can occupy within the
time interval [tk, tk+τk]. Operand vectors are padded with 0
for consistency. The evaluation of (7) is done by the Krylov
scheme (6), seeded with τ := τk, A := AJk and v := pk.
In the original implementation, the Krylov dimension m
was fixed, but this will be made adaptive in section III-E.
We always tune the stepsize τk and the projection Jk at
each time step to control the Krylov subspace error and
the FSP truncation error. We estimate the Krylov error as
in Expokit [12] that we build upon. For the FSP error, we
impose the criteria

11Tpk+1 ≥ 1− εFSP
tk+1

tf
, tk+1 = tk + τk, (8)

where εFSP is the tolerance for FSP-truncation error at time
tf . We could view (8) as controlling the accumulation of the
FSP truncation error at each step so that the final error does
not exceed the prescribed tolerance εFSP . If this condition is
passed at step k with stepsize τk, we move on to the next step
with pk+1 as the approximation to the probability distribution
at time tk+1. Otherwise, we reduce the stepsize repeatedly
until the condition is met, then enlarge the projection before
moving to the next step. Finally, there is an opportunity for
further savings that we exploit at every step by dropping
states that become unlikely. We shall make clear in the next
subsections how to carry out these updates.

B. SSA-driven state space expansion

The FSP-like criteria (8) ensures that the projected system
with projection Jk approximates the full CME with sufficient
accuracy. Failure to meet this means that more states outside
of the projection are becoming likely in the current time

interval, and we need to expand Jk to capture these states.
We recap the way we expand the projection as given in [8].
Let J0, ..., Jk be a sequence of sets approximating the most
likely reachable states at time t0, ..., tk, respectively. Let
SSA(xtk , tk, τk) be the (random) path of a SSA run over
[tk, tk + τk] starting at a given state xtk ,

SSA(xtk , tk, τk) =
{
x
tk+
∑
si

}
tk+

∑
si≤tk+τk

Let J be the set of all possible states, and let Jk = J0 ∪
· · · ∪ Jk be the states enumerated so far. Recall that ix is
the index function that returns the index of the state x from
the enumeration in Jk and xi its inverse (the correspondence
between the two equivalent identifications of a state). Thus
if p̃(tk) approximates the probability vector at time tk, its
ix-th component approximates the probability that the system
is in state xi at time tk. We approximate the next set of most
likely reachable states using the three-stage scheme:

Jk+ 1
3
= { i ∈ Jk, µ(xi) ≥ droptol} (9a)

Jk+ 2
3
=

⋃
i∈J

k+1
3

{
SSA(xi, tk, τk)

}
(9b)

Jk+1 = Rr
(
Jk+ 2

3

)
, (9c)

where Rr (J) is the r-step expansion of J , i.e., the set of
states reachable from J in at most r reactions, which is
formally defined by the recurrence:

R0 (J) = J,

R (J) = J ∪
M⋃
k=1

{
i ∈ J : xi = xj + νk, j ∈ J

}
,

Rr (J) = R
(
Rr−1 (J)

)
.

The first stage (9a) is meant to drop states that have
become improbable as measured by the function µ. The
next stage (9b) performs predictive SSA runs, each of which
scouts a relatively cheap single path confined to a small
interval of length τk, the stepsize for which the Krylov
approximation to the matrix exponential is expected to be
numerically worthwhile. The last stage (9c) is meant to widen
(or smooth) the path by r-step reachability. Note that the
expansion is only called if the current projection Jk failed
the FSP-like criteria (8).

The original implementation used a crude dropping strat-
egy with µ(x) = (pk)ix in (9a). We refine the strategy here.

C. Dropping states from the projection

The motivation for dropping states is that, since the
probability distribution varies over time, states that are now
probable may have low probabilities at the next step, and we
can exploit this fact to improve efficiency by dropping states
that become unlikely. The early version of our method [8]
pruned states with probability below a prescribed threshold
droptol. This may, however, remove states that have yet
accumulated enough probabilities in the current time but soon
turn out to be significant. Aggressively discarding these states
increases the chance of failure at the following steps, forcing
the algorithm to recover the just-dropped states. Therefore,
we need to take into account the rate of probability flow
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between states as done in [13]. Recall that the derivative of
the FSP-projected solution at time tk is given by

ṗk = AJkpk.

The positive entries of ṗk tell us which states will receive
more probability mass, and likewise, the negative entries in-
dicate states that will lose probability mass. We only remove
states with both small probabilities and small derivatives.
Let droptol be the drop tolerance for the probability and
droptol′ the tolerance for the derivative, we remove states
i in the projection that satisfy both (pk)i < droptol and
(ṗk)i < droptol′.

Finally, we mention that the value of droptol needs to
be chosen small enough so that the entries of the truncated
vector pk sum close to 1, as mandated by the post-check (8).
More specifically, define the set of candidate entries to be
dropped as

L = {i : (pk)i < droptol},

we require that

11Tpk −
∑
i∈L

(pk)i ≥ 1− εFSP
tk
tf
.

If this fails then the value droptol is too large and our code
automatically reduce this threshold by a factor of 10 to avoid
removing important states.

D. Incomplete orthogonalization

Our previous work [8] uses Arnoldi’s full orthogonaliza-
tion process (FOP) to generate the matrices Vm+1 and Hm.
But FOP has the main drawback that the long recurrences
in the modified Gram-Schmidt sweeps cost O(m2n) and
thus become prohibitive for large n. In this sequel we use
an incomplete orthogonalization process (IOP) outlined in
Alg. 1. It is an alternative procedure that orthogonalizes
each basis vector vj in Vm+1 only to the preceding q ones
vmax(1,j−q), . . . ,vj−1 where 1 ≤ q ≤ m. Setting q := m
recovers the original Arnoldi process. IOP’s cost of O(qmn)
is much smaller than FOP’s cost of O(m2n) when n is large
and q � m (we took q = 2 in our experiments). With
the matrices Vm+1 and Hm now formed by IOP, we still
invoke (6) for the approximation of the matrix exponential,
and the error estimation is done in the same way as already
implemented for FOP in Expokit [12, Alg. 3.2].

Algorithm 1 IOP(m, q)
Input: Matrix A and vector v, Krylov dimension m, orthg-
onalization length q.
Output: Krylov basis Vm and banded matrix Hm.
v1 := v/‖v‖2
for j := 1 : m do
p := Avj ;
for i := max(1, j − q + 1) : j do

hij := v
T
i p;

p := p− hijvi;
end for
vj+1 := p/hj+1,j ;

end for

Although FOP is preferable in solving linear systems
and finding eigenvalues of general unsymmetric matrices
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Fig. 1. The numerical range of the FSP matrices A(Jk), k = 1, 2, 3, 4 for
a simple birth-death process with birth rate γ = 0.5, death rate γ = 0.2.
The projections are J1 = {0, . . . , 5} ∪ {25, . . . , 40}, J2 = {0, . . . , 150},
J3 = {100, . . . , 300} and J4 = {0, . . . , 500}. Larger numerical range
typically implies slower convergence of the Krylov approximation. The
numerical range is computed by the algorithm of Cowen and Harel
(https://www.math.iupui.edu/∼ccowen/Downloads/33NumRange.html).

due to its numerical robustness [14], the IOP yields better
performance for our matrix exponential solver because the
Krylov pairs Vm and Hm can be built and discarded quickly,
even when m varies in a larger range, as the FSP projection
Jk changes. The strategy to vary m adaptively is described
next.

E. Adaptive Krylov dimension

The quality of the Krylov approximation to exp(τAJk)pk
is closely related to the numerical range ofAJk . In particular,
assuming that the numerical range is contained in a disk
|z+ρ| < ρ, superlinear convergence in Krylov approximation
is guaranteed for m ≥ 2ρτ [15]. Changing the projection
Jk alters the numerical range of AJk at every step. Fig. 1
illustrates the effects of changing J on the numerical range
W (AJ) in a simple birth-death process. Keeping the same
m across different projections may not be ideal and may
cause the stepsize to become small to compensate the loss
of accuracy induced by an inadequate m for a particular Jk,
as occured in the original Krylov-FSP [2] and our previous
work [8], both of which used a fixed Krylov dimension m.
This motivates adopting an adaptive strategy suggested by
Niesen and Wright [16]. Let Tol be the desired tolerance for
the approximation (6) and τk−1,mk−1, ε̃k, be respectively
the stepsize, Krylov dimension, and estimated local error in
successfully advancing from tk−1 to tk. Following heuristics
of ODE solvers, we seek the next stepsize τk to advance from
tk to tk+1 = tk + τk in the suggested form

τ suggestedk := γτk−1 (ωk)
−1/s

, (10)

where ωk is an error factor characterized by

ωk =
ε̃k

τk−1.Tol
, (11)

and γ is a safety factor (taken as 0.9 here), and s is the
‘heuristic order’ of the time-stepping scheme. As in [16],
we let s = m/4 for the first two suggestions, and if two
consecutive stepsizes τ (1)k and τ

(2)
k suggested by (10) have

been rejected in the same step with estimated errors ε̃(1)k+1

and ε̃(2)k+1 respectively, then we estimate the next suggestion
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using

s ≈
log(ε̃

(2)
k+1/ε̃

(1)
k+1)

log(τ
(2)
k /τ

(1)
k )

− 1.

Alongside of this, we compute the prospective dimension

msuggested
k := mk−1 +

log (ωk/γ)

log(κ)
, (12)

where ωk is given by (11) as before. The value of κ is set
to 2 for the first two suggestions (as in [16]). If there are
two consecutive attempts in the same step using subspace
dimensions m(1)

k and m
(2)
k with estimated errors ε̃(1)k+1 and

ε̃
(2)
k+1 respectively, then we use the estimate

κ ≈
(
ε̃
(1)
k+1

/
ε̃
(2)
k+1

)1/(m(2)
k −m

(1)
k )

.

With candidates for stepsize and dimension at hand, we
now weight their future costs. Advancing one step with a
matrix AJk , stepsize τ , and Krylov dimension m using IOP
with an orthogonalization of length q costs about

C1(τ, q,m,AJk) = CIOP(q,m,AJk) + CPadé(τ,m) + COVH,

where CIOP(q,m,AJk) is the cost of the IOP (which includes
the cost of the matrix-vector products withAJk ), CPadé(τ,m)
is the cost of the Padé technique for exp(τHm) and COVH

accounts for some overhead. We extrapolate from the cost
of one step to estimating the future cost of integrating over
the whole of [tk, tf ] as C = d tf−tkτ eC1. Now, if

C(τ suggested
k , q,mk−1,AJk) ≤ C(τk−1, q,m

suggested
k ,AJk),

meaning that the cost of varying the stepsize is smaller, then
we choose to vary stepsize and retain the dimension (i.e.
letting τk := τ suggested

k , mk := mk−1). Otherwise, we retain
the stepsize and vary the dimension (i.e., letting τk := τk−1,
mk := msuggested

k ).

IV. NUMERICAL EXAMPLES

We test our algorithm on a set of challenging CME
problems taken from the literature. Our testing platform is
a laptop running Ubuntu Linux, with 8 GB RAM and Intel
Core i7 CPU. The Krylov tolerance is set at Tol := 10−8 for
all three tests. The incomplete orthogonalization parameter
is set to q := 2, and the Krylov dimension can vary
dynamically from 10 to 100, except for the MAPK example
where the maximum dimension is reduced to 30 due to
memory constraint. Other algorithmic parameters are chosen
differently for the specific problems explained below. We
implemented our algorithm in FORTRAN, compiled by the
GNU compiler.

A. Toggle switch

We revisit the toggle switch problem taken from [7].
There are two species interacting with each other through
4 reactions (Table I). We set the final time tf = 100,
FSP tolerance εFSP = 10−6, drop tolerances starting at
droptol = 10−10 and droptol′ = 10−16. Although [7]
reports the need to use an FSP of 225 (over 30 million) states,
our algorithm was able to solve the problem with a much
smaller projection size that stays below 50 thousand states.
This confirms the effectiveness of the SSA-driven scheme in

Algorithm 2 Adaptive Krylov-FSP.
Input:Initial projection J0, final time tf , stoiochiometric
vectors ν1, . . . , νM , propensity functions α1, . . . , αM ; FSP
tolerance εFSP , Krylov approximation tolerance Tol, drop
tolerance values droptol and droptol′.
Output:The approximation pFSP (tf ) to the solution of the
CME at time tf within the FSP tolerance εFSP .

1: Initialize t := 0, q := 2, m := 10 and the stepsize τ .
2: Apply IOP(m, q) to generate Vm and Hm.
3: Estimate the Krylov error. If the error is above τ.Tol,

adjust m and τ and go back to step 2. Otherwise,
compute the suggested values msuggested and τsuggested
for the next step.

4: Compute the tentative approximation

w := Vm exp(τHm)‖v‖e1

5: Check the FSP-like criteria

11Tw ≥ 1− εFSP
t+ τ

tf
. (13)

If fails, reduce τ and go back to step 4 and set the flag
iexpand := TRUE.

6: Set t := t+ τ . Set pFSP (t) := w.
7: Prune states with probabilities below droptol and deriva-

tives below droptol′. Reduce droptol if necessary.
8: If iexpand is TRUE, set τnext := max(τ, τsuggested).

Use the SSA-guided procedure to expand the projection
J to propagate the solution over the next time interval
[t, t+ τnext].

9: If t < tf , set v := pFSP (t) and go back to step 2.
Otherwise, export the approximation as well as the
projection space.

tracking the most relevant states. Furthermore, our algorithm
took only 200 seconds to solve the CME, as equilibrium was
detected at t ≈ 30 by the happy breakdown feature of the
Krylov approximation. Fig. 2 shows the history of problem
size and accumulated CPU time for this example.

TABLE I
REACTION CHANNELS OF THE TOGGLE SWITCH EXAMPLE. PARAMETERS

AS IN [7], NAMELY α1 = 5000, α2 = 1600, β = 2.5, γ = 1.5,
δ1 = δ2 = 1. ([X] IS THE NUMBER OF COPIES OF THE SPECIES X.)

reaction propensity

1. U −→ ∅ δ1[U ]

2. ∅ −→ U α1

1+[V ]β

3. V −→ ∅ δ2[V ]

4. ∅ −→ V α2
1+[U ]γ

B. Goutsias model

This test problem is adopted from a model of transcrip-
tional regulation proposed by Goutsias [17] and is setup
as in [18]. There are 6 chemical species M , D, RNA,
DNA, DNA.D, DNA.2D, that interact through 10 reaction
channels (Table II), rate constants are set as in [18]. We
integrate the CME for this model to tf = 300s starting with
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Fig. 3. Goutsias model. Projection size (solid) and accumulated CPU time
(dotted) over the integration interval [0, 300].

the initial state
x0 = ([M ], [D], [RNA], [DNA], [DNA.D], [DNA.2D])

= (2, 6, 0, 2, 0, 0).
(14)

We set the FSP tolerance εFSP = 10−6, drop tolerances
starting from droptol = 10−10 and droptol′ = 10−16.
To provide further validation for our result, we sampled
5 million trajectories using a direct implementation of the
SSA in FORTRAN. From these we obtained the histogram
for the marginal distribution of each species at tf = 300.
Fig. 4 shows the distribution of dimer approximated by SSA
and our direct CME solver with good agreement. The same
holds for all of the remaining species but we did not include
the graphs here for brevity. Contrary to the toggle switch
example, the support of the CME solution keeps growing in
the Goutsias example. This provides a significant challenge
to our approach. Nevertheless, our algorithm was able to
finish in less than 400 seconds on the testing platform.

C. Mitogen-activated Protein Kinase (MAPK) cascade

The MAPK cascade problem consists of 22 species and
30 reactions, originating from the chemical reaction network
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Fig. 4. Goutsias model. Marginal distribution of dimer at tf = 300 as
computed by the SSA (bar) and our CME solver (line).

TABLE II
REACTION CHANNELS IN GOUTSIAS MODEL OF REGULATED

TRANSCRIPTION. THE PARAMETER A = 6.0221415× 1023 IS
AVOGADRO’S NUMBER, AND V = 10−15L IS THE SYSTEM VOLUME
CHOSEN FOR THIS EXPERIMENT. ([X] IS THE NUMBER OF COPIES OF

THE SPECIES X.)

reaction propensity

1. RNA −→ RNA+M c1[RNA]
2. M −→ ∅ c2[M ]
3. DNA.D −→ RNA+DNA.D c3[DNA.D]
4. RNA −→ ∅ c4[RNA]
5. DNA+D −→ DNA.D c5[DNA][D]
6. DNA.D −→ DNA+D c6[DNA.D]
7. DNA.D +D −→ DNA.2D c7[DNA.D][D]
8. DNA.2D −→ DNA.D +D c8[DNA.2D]
9. M +M −→ D c9

2
[M ]([M ]− 1)

10. D −→M +M c10[D]

studied in [19]. The CME for this system was set up and stud-
ied before in [20] with the total quasi-steady state assumption
and we refer to that paper for the set of reactions and pa-
rameters. We revisit it here using our algorithm with εFSP =
10−1, final time tf = 10. We start with the seven key species
[E1], [E2], [KKP

′ase], [KP ′ase], [KKK], [KK], and [K]
set to 50 and other species at zero. Our method finished
in less than 45 minutes. We plot the marginal distribution
of the first four species in the cascade in Fig. 5. This is
the first time the MAPK cascade problem is solved in this
challenging settings by a direct CME approach without using
advanced knowledge about the model as done in [20].

V. CONCLUSION

We have improved our SSA-driven Krylov approximation
scheme with an incomplete orthogonalization process, a strat-
egy to vary the dimension of Krylov subspaces and a refined
logic for dropping states that become unlikely throughout the
integration. We tested our algorithm on increasingly difficult
CME problems, namely the toggle switch example with two
species, the Goutsias model with six species and the MAPK
cascade with twenty two species.
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Fig. 5. MAPK example. Marginal distributions of the first four species in the cascade at time tf = 10.
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