
  
Abstract— In this paper, we will introduce a two phases 

compression algorithm based on the binary representation of 
DNA sequences. In the first phase, we will use an implemented 
version of the Hoffman codation to efficiently compress and 
convert the DNA sequence into binary representation. 
Thereafter, we will compress the resulting DNA using the 
Extended-ASCII encoding through which one character can 
represent 16 bytes. The remarkable compression ratio and the 
easy way to implement our algorithm makes its use interesting. 
 

Index Terms—Extended-ASCII representation, Hoffman 
codation, DNA compression, horizontal compression; 

I. INTRODUCTION 
owadays, a huge quantity of digital content is used, 
shared, analyzed and stored. Powerful computers 
should be used to properly analyze and store this 

content. Consequently, two problems have arisen: the first is 
the encoding of the data and the second is the time required 
to process them. To reduce data sizes, many data 
compression methods have been implemented. Compressors 
such as JPEG and MPEG are lossy compressors that try to 
remove some information that human being are unable to 
notice in images. Lossless compressors, on the other hand, 
compress data without any loss of its information. Therefore, 
they are used for text compression methods and thus for 
DNA sequences. 
A DNA sequence is a biomolecule present in all cells. This 
biomolecule contains the genetic information required for 
the functioning and development of all living beings. Each 
nucleotide is composed of a nitrogenous base; adenine (A), 
cytosine (C), guanine (G) or thymine (T). Many public 
databases (GENBANK, EMBL, etc.) store gigabytes of 
DNA sequences. This quantity continues to grow to reach 
the double in only 18 months. The DNA sequences are 
stored in raw format and this may consequently lead to 
redundant data. For this reason, we aim at proposing DNA 
sequences compression algorithms that reduce the size of the 
DNA sequences and properly analyze and choose which data 
to be stored. 
In this article, we will start with a review of existing DNA 
sequences compression algorithms (Section II). In section 
III, we will present our DNA sequences compression 
approach and explain how it significantly reduces their sizes. 
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Finally, in section IV, we will illustrate the experimental 
results and we will draw a comparison of ratio between our 
algorithm and existing algorithms. 
 

II. EXISTING COMPRESSION ALGORITHMS 
The compression of DNA sequences is based on text 

compression algorithms. However, researchers proved that 
conventional text compression algorithms are insufficient for 
DNA sequences compression. Therefore, they proposed 
specific compression algorithms. There are two classes of 
DNA sequences compression algorithms. The algorithms for 
DNA compression in horizontal mode and the algorithms for 
DNA Compression in vertical mode. The first class 
compresses a single sequence based on its genetic 
information. For example, Biocompress [1] seeks repetitions 
in a sequence. Biocompress-2[2] uses a Markov model to 
compress non-repetitive regions of a sequence. By applying 
these algorithms to the standard benchmark data [3], the 
compression ratio is 1.85 BpB for Biocompress and 1.78 
BPB for biocompress-2.  
Some DNA sequences compression algorithms are based on 
the binary representation of the nucleotides (e.g. A = 00, C = 
01, G = 10, T = 11). For example, GENBIT [4] divides 
sequences into 8-bit blocks and makes a 9th bit. If the block 
is identical to that above it, the 9th bit is equal to 1, otherwise 
to 0. DNABIT [5] divides the sequence into small blocks 
and compresses them while taking into consideration 
whether they existed previously or not. Saada, B. and Zhang, 
J compress the DNA sequence to less than 25% of its initial 
size by using the   extended-ASCII representation and 
applying the RLE technique to compress the similar blocks 
and keep only one instance [6]. 
The second class analyzes the genetic information of a set of 
sequences to identify only one sequence that would represent 
the whole set. For example, DNAZIP package [7] introduces 
a series of techniques dividing a genome into small blocks 
and compressing them. LZ77 [8] proposes a compression 
technique for a set of genomes belonging to the same genus. 
Saada, B. and Zhang, J. introduced some techniques to 
convert the DNA sequence to hexadecimal representation 
and detect regions of similarities between a set of sequences 
[9]. They also introduced an algorithm that detects the 
longest common chain for a set of sequences belonging to 
the same genus and uses it as representative of the whole set 
[10]. 
Studying the DNA sequences belonging to the same genus 
revealed that they contain similar substrings [11]. Besides, 
the same DNA sequence contains redundant substrings. For 
these reasons, we will present, in this paper, a new DNA 
sequences compression algorithm that compress the 
redundant substrings of a sequence. 
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III. OUR PROPOSED ALGORITHM 
A. Description of the algorithm 

 

Our algorithm is a statistical algorithm which works in 
two phases. During the first phase it implements the 
Hoffman coding to code the frequencies of the nucleotides 
into a binary representation. On the second phase, to reduce 
the size of the output data, it converts the bits into Extended 
ASCII character.  

B. Presentation of the algorithm 
 

The main objective of the first phase of our algorithm is to 
assign variable-length that codes the input blocks of the 
DNA sequences. The lengths of the assigned codes are based 
on the frequencies of the blocks. The most frequent block is 
assigned the smallest code and the least frequent block is 
assigned the largest code. 

1. Extraction Phase 

In this phase, our algorithm reads a DNA sequence and 
divides it into blocks of four nucleotides. The blocks would 
be stored in a vocabulary table associated with their 
frequency in the whole DNA sequence. As the length of each 
block is four characters, the vocabulary size is 256 words 
(44). 

Here is an example of this phase of the algorithm is executed 
how : 

ACGT ACGT GATC TAAC ACGT TAAC GAGA AAAC 

the vocabulary table will be illustrated as follows: 
Table. 1.   Vocabulary table content 

Index Word Frequency 

0 ACGT 3 

1 GATC 1 

2 TAAC 2 

3 GAGA 1 

4 AAAC 1 

 
To prepare the data to be encoded in the second phase, the 
content of the vocabulary table is sorted by the frequency  
of each block. The content of the vocabulary table is shown 
in table 2. 
 
 
 

Table. 2.   Vocabulary table content after sorting 
Index Word Frequency 

0 ACGT 3 

1 TAAC 2 

2 GATC 1 

3 GAGA 1 

4 AAAC 1 
 

2. Encoding Phase 
The second phase of our algorithm encodes the blocks into 
binary representation following the procedure below: 

• Level 0: the first 20 words of the vocabulary table 
that have the most frequency will be coded 
respectively by 00 and 0. 

• Level 1: the next 21+0 to 22+20 words will be coded 
with four bits by adding 00 for the two higher 
frequency words and 11 as a prefix for the two 
others. 

• Level l: In general, for the l level, the next 2l words in 
the positions from 2l-1 +(2l-2 +…+0) to 2l+(2l-

1+…+0) will be coded by adding 00 and 11 as a 
prefix to the codes generated in the l-1 step. 

This procedure is repeated until the N words in the 
vocabulary table are encoded. 
For our example, the codes generated are as shown in 
table 3. 

Table. 2.   Vocabulary table codes 
Index Word Code 

0 ACGT 00 

1 TAAC 10 

2 GATC 0001 

3 GAGA 0010 

4 AAAC 1101 

 
 The output sequence will be as follows: 
00 00 0001 11 00 11 0001 1101 

3. Additional Structure for storing the level of codes 
The number of bits assigned to each block varies from one 
block to another. For this reason, we need to add an extra 
table to store the level of coding of each block. This 
structure will help us to decode the final output chain and 
obtain the original DNA sequence. 
Our example will be as follows: 

Output : 00    00   0001   11   00   11   0001   1101 
  
  
      
Level :   0     0      1        0     0     0      1         1 

Fig. 1.   Additional data structure 
 
 

4.  Compression of the binary output to extended-
ASCII representation 

To better reduce the size of the output result, we will convert 
the binary representation to an extended-ASCII 
representation. The benefit from the use of this technique is 
that one extended-ASCII character encodes 8 binary digits. 
This means that the output result will be reduced to 12.5% of 
its initial representation (fig.2). 

 
 

Fig. 2.   Conversion to extended-ASCII representation 
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The output result of our example will be as follows: 
Output = 1100110001110100 
ASCII = Ìt 
In this case, we added the suffix “00” to the end of the 
output file to get 8 binary digits and be able to apply the 
extended-ASCII coding. 
While applying the decoding phase, by referring to the 
additional data structure, we will delete those bits. 
 

5. The Use of the Run–Length Encoding algorithm  
The extended-ASCII representation may contain some 
repeated sequences of nucleotides. To better compress the 
sequence, we apply the technique of Run-Length Encoding 
that detects similar adjacent characters and keeps only one 
instance of this character. An additional data structure is 
needed to store the occurrence of these characters and the 
frequency of its repetition (fig.3). 
 

 
Fig. 3.   RLE data structure 

 
6. Decoding Phase 

The first step of the decoding phase consists of loading the 
extended-ASCII representation. If an RLE data structure is 
used, we would retrace the original representation. 
From this Extended-ASCII encoding, we will get an integer 
number that will be converted into a binary representation. 
This bit stream will allow the building of the original DNA 
sequence (Fig. 4). 

 
Fig. 4.   Conversion to nucleotide representation 

 
The third step consists of loading the additional structure of 
the blocks’ level and retrospecting the original Output file. 
Our example will be as follows: 
 

Output :    0000000111001100011101 
Level:   0     0       1       0     0    0     1       1 
  
  
      
Original:  00   00   0001   11   00   11  0001 1101 

 
Fig. 5.   Additional data structure 

 

The last step is to load the vocabulary table and build the 
original DNA sequence. 

IV. EXPERIMENTAL RESULTS 
A. Evaluation Metrics 

 

In order to measure the performance of our algorithm, we 
use entire genomes. These genomes, having a large number 
of nucleotides, allow us to calculate the contribution of our 
approach in terms of compression ratio. 

 
B. Performance in terms of data compression 

 

To achieve our experimental study, we used the Human 
Globin Gene (HUMHBB), the Human Sequence of Contig 
(HUMHDABCD) the Mitochondrial genome (MPOMTCG) 
and the Vaccinia Virus genome (VACCG) whose sizes 
exceed 180000 nucleotides. 
 As indicated in table III, applying our algorithm increases 
the compression ratio of those genomes. The experimental 
results demonstrate that most of the existing DNA 
compression algorithms have a compression ratio higher 
than 1.7 BpB. Our algorithm provides better results and its 
compression ratio is less than 1 BpB for the compression of 
all genomes used for the experiments.   
 

TABLE III. Comparison with other algorithms 
Sequence Base 

Pair 
DNA 
Pack 

CTW+LZ Hoff 

HUMHBB 73308 1.77 1.810 0.749 
HUMHDABCD 58864 1.74 1.822 0.774 
MPOMTCG 186609 1.89 1.90 0.72 
VACCG 191737 1.76 1.76 0.671 

 
 
By applying the conversion to extended-ASCII 
representation and using the RLE technique, the size of the 
sequence is reduced to less  than 25% of its initial size as 
shown in table IV. 
 
TABLE IV. PERFORMANCE OF OUR ALGORITHM ON DIFFERENT 

DNA SEQUENCES AND GENOMES 
Sequence Name Initial 

size in 
bits 

Size after 
applying the 
compression 
techniques 
in bits 

Size after 
the 
Extended-
ASCII 
Compression 

HUMHBB 146616 54906 6864 
HUMHDABCD 117728 45562 5692 
MPOMTCG 373218 134358 16794 
VACCG 191737 128656 16082 

 
C. Experiments in Time execution 
 

To measure the execution time of our approach, we used a 
computer with an Intel i3-2375M processor cadenced at 1.5 
Ghz and a 4GB Ram memory. 
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Fig. 6.   Execution time comparison between our approach and other 

algorithms 
 
Figure 6 presents the execution time by applying the 
approach on the VACCG genome. It proves that its 
execution time is less than CTW+LZ algorithm and slightly 
higher than DNA Pack and DNA Compress. To further 
reduce our approach’s execution time, it is possible to 
parallelize its execution. 

V. CONCLUSION AND FUTURE WORK 
The main advantage of our approach is that it allows to have 
a compression ratio per base lower than 0.8 BpB thus better 
than all existing compression algorithms. The algorithm is 
also easy to implement and interesting to use as the five 
techniques compress the initial nucleotide representation to 
less than 25%.  
In our future work, we will try to associate our techniques to 
other compression algorithms based on statistical approaches 
to compress the DNA sequences with a rate higher than the 
rate of current existing algorithms. 
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