

Abstract— In this paper, we will introduce a two phases

compression algorithm based on the binary representation of
DNA sequences. In the first phase, we will use an implemented
version of the Hoffman codation to efficiently compress and
convert the DNA sequence into binary representation.
Thereafter, we will compress the resulting DNA using the
Extended-ASCII encoding through which one character can
represent 16 bytes. The remarkable compression ratio and the
easy way to implement our algorithm makes its use interesting.

Index Terms—Extended-ASCII representation, Hoffman
codation, DNA compression, horizontal compression;

I. INTRODUCTION
owadays, a huge quantity of digital content is used,
shared, analyzed and stored. Powerful computers
should be used to properly analyze and store this

content. Consequently, two problems have arisen: the first is
the encoding of the data and the second is the time required
to process them. To reduce data sizes, many data
compression methods have been implemented. Compressors
such as JPEG and MPEG are lossy compressors that try to
remove some information that human being are unable to
notice in images. Lossless compressors, on the other hand,
compress data without any loss of its information. Therefore,
they are used for text compression methods and thus for
DNA sequences.
A DNA sequence is a biomolecule present in all cells. This
biomolecule contains the genetic information required for
the functioning and development of all living beings. Each
nucleotide is composed of a nitrogenous base; adenine (A),
cytosine (C), guanine (G) or thymine (T). Many public
databases (GENBANK, EMBL, etc.) store gigabytes of
DNA sequences. This quantity continues to grow to reach
the double in only 18 months. The DNA sequences are
stored in raw format and this may consequently lead to
redundant data. For this reason, we aim at proposing DNA
sequences compression algorithms that reduce the size of the
DNA sequences and properly analyze and choose which data
to be stored.
In this article, we will start with a review of existing DNA
sequences compression algorithms (Section II). In section
III, we will present our DNA sequences compression
approach and explain how it significantly reduces their sizes.

Manuscript received June 08, 2016; revised July 14, 2016.
Bacem Saada, Ph.D. Student with Harbin Engineering University,

College of Computer Science and Technology, Harbin, China,
(email:basssoum@gmail.com).

Jing Zhang, Professor with Harbin Engineering University, College of
Computer Science and Technology, Harbin, China, (email:
zhangjing@hrbeu.edu.cn).

Finally, in section IV, we will illustrate the experimental
results and we will draw a comparison of ratio between our
algorithm and existing algorithms.

II. EXISTING COMPRESSION ALGORITHMS
The compression of DNA sequences is based on text

compression algorithms. However, researchers proved that
conventional text compression algorithms are insufficient for
DNA sequences compression. Therefore, they proposed
specific compression algorithms. There are two classes of
DNA sequences compression algorithms. The algorithms for
DNA compression in horizontal mode and the algorithms for
DNA Compression in vertical mode. The first class
compresses a single sequence based on its genetic
information. For example, Biocompress [1] seeks repetitions
in a sequence. Biocompress-2[2] uses a Markov model to
compress non-repetitive regions of a sequence. By applying
these algorithms to the standard benchmark data [3], the
compression ratio is 1.85 BpB for Biocompress and 1.78
BPB for biocompress-2.
Some DNA sequences compression algorithms are based on
the binary representation of the nucleotides (e.g. A = 00, C =
01, G = 10, T = 11). For example, GENBIT [4] divides
sequences into 8-bit blocks and makes a 9th bit. If the block
is identical to that above it, the 9th bit is equal to 1, otherwise
to 0. DNABIT [5] divides the sequence into small blocks
and compresses them while taking into consideration
whether they existed previously or not. Saada, B. and Zhang,
J compress the DNA sequence to less than 25% of its initial
size by using the extended-ASCII representation and
applying the RLE technique to compress the similar blocks
and keep only one instance [6].
The second class analyzes the genetic information of a set of
sequences to identify only one sequence that would represent
the whole set. For example, DNAZIP package [7] introduces
a series of techniques dividing a genome into small blocks
and compressing them. LZ77 [8] proposes a compression
technique for a set of genomes belonging to the same genus.
Saada, B. and Zhang, J. introduced some techniques to
convert the DNA sequence to hexadecimal representation
and detect regions of similarities between a set of sequences
[9]. They also introduced an algorithm that detects the
longest common chain for a set of sequences belonging to
the same genus and uses it as representative of the whole set
[10].
Studying the DNA sequences belonging to the same genus
revealed that they contain similar substrings [11]. Besides,
the same DNA sequence contains redundant substrings. For
these reasons, we will present, in this paper, a new DNA
sequences compression algorithm that compress the
redundant substrings of a sequence.

Hoffman Codation for DNA Sequences
Compression

Bacem Saada, Member, IAENG, Jing Zhang

N

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol II
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14048-2-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

III. OUR PROPOSED ALGORITHM
A. Description of the algorithm

Our algorithm is a statistical algorithm which works in
two phases. During the first phase it implements the
Hoffman coding to code the frequencies of the nucleotides
into a binary representation. On the second phase, to reduce
the size of the output data, it converts the bits into Extended
ASCII character.

B. Presentation of the algorithm

The main objective of the first phase of our algorithm is to
assign variable-length that codes the input blocks of the
DNA sequences. The lengths of the assigned codes are based
on the frequencies of the blocks. The most frequent block is
assigned the smallest code and the least frequent block is
assigned the largest code.

1. Extraction Phase

In this phase, our algorithm reads a DNA sequence and
divides it into blocks of four nucleotides. The blocks would
be stored in a vocabulary table associated with their
frequency in the whole DNA sequence. As the length of each
block is four characters, the vocabulary size is 256 words
(44).

Here is an example of this phase of the algorithm is executed
how :

ACGT ACGT GATC TAAC ACGT TAAC GAGA AAAC

the vocabulary table will be illustrated as follows:
Table. 1. Vocabulary table content

Index Word Frequency

0 ACGT 3

1 GATC 1

2 TAAC 2

3 GAGA 1

4 AAAC 1

To prepare the data to be encoded in the second phase, the
content of the vocabulary table is sorted by the frequency
of each block. The content of the vocabulary table is shown
in table 2.

Table. 2. Vocabulary table content after sorting
Index Word Frequency

0 ACGT 3

1 TAAC 2

2 GATC 1

3 GAGA 1

4 AAAC 1

2. Encoding Phase
The second phase of our algorithm encodes the blocks into
binary representation following the procedure below:

• Level 0: the first 20 words of the vocabulary table
that have the most frequency will be coded
respectively by 00 and 0.

• Level 1: the next 21+0 to 22+20 words will be coded
with four bits by adding 00 for the two higher
frequency words and 11 as a prefix for the two
others.

• Level l: In general, for the l level, the next 2l words in
the positions from 2l-1 +(2l-2 +…+0) to 2l+(2l-

1+…+0) will be coded by adding 00 and 11 as a
prefix to the codes generated in the l-1 step.

This procedure is repeated until the N words in the
vocabulary table are encoded.
For our example, the codes generated are as shown in
table 3.

Table. 2. Vocabulary table codes
Index Word Code

0 ACGT 00

1 TAAC 10

2 GATC 0001

3 GAGA 0010

4 AAAC 1101

 The output sequence will be as follows:
00 00 0001 11 00 11 0001 1101

3. Additional Structure for storing the level of codes
The number of bits assigned to each block varies from one
block to another. For this reason, we need to add an extra
table to store the level of coding of each block. This
structure will help us to decode the final output chain and
obtain the original DNA sequence.
Our example will be as follows:

Output : 00 00 0001 11 00 11 0001 1101

Level : 0 0 1 0 0 0 1 1

Fig. 1. Additional data structure

4. Compression of the binary output to extended-
ASCII representation

To better reduce the size of the output result, we will convert
the binary representation to an extended-ASCII
representation. The benefit from the use of this technique is
that one extended-ASCII character encodes 8 binary digits.
This means that the output result will be reduced to 12.5% of
its initial representation (fig.2).

Fig. 2. Conversion to extended-ASCII representation

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol II
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14048-2-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

The output result of our example will be as follows:
Output = 1100110001110100
ASCII = Ìt
In this case, we added the suffix “00” to the end of the
output file to get 8 binary digits and be able to apply the
extended-ASCII coding.
While applying the decoding phase, by referring to the
additional data structure, we will delete those bits.

5. The Use of the Run–Length Encoding algorithm
The extended-ASCII representation may contain some
repeated sequences of nucleotides. To better compress the
sequence, we apply the technique of Run-Length Encoding
that detects similar adjacent characters and keeps only one
instance of this character. An additional data structure is
needed to store the occurrence of these characters and the
frequency of its repetition (fig.3).

Fig. 3. RLE data structure

6. Decoding Phase

The first step of the decoding phase consists of loading the
extended-ASCII representation. If an RLE data structure is
used, we would retrace the original representation.
From this Extended-ASCII encoding, we will get an integer
number that will be converted into a binary representation.
This bit stream will allow the building of the original DNA
sequence (Fig. 4).

Fig. 4. Conversion to nucleotide representation

The third step consists of loading the additional structure of
the blocks’ level and retrospecting the original Output file.
Our example will be as follows:

Output : 0000000111001100011101
Level: 0 0 1 0 0 0 1 1

Original: 00 00 0001 11 00 11 0001 1101

Fig. 5. Additional data structure

The last step is to load the vocabulary table and build the
original DNA sequence.

IV. EXPERIMENTAL RESULTS
A. Evaluation Metrics

In order to measure the performance of our algorithm, we
use entire genomes. These genomes, having a large number
of nucleotides, allow us to calculate the contribution of our
approach in terms of compression ratio.

B. Performance in terms of data compression

To achieve our experimental study, we used the Human
Globin Gene (HUMHBB), the Human Sequence of Contig
(HUMHDABCD) the Mitochondrial genome (MPOMTCG)
and the Vaccinia Virus genome (VACCG) whose sizes
exceed 180000 nucleotides.
 As indicated in table III, applying our algorithm increases
the compression ratio of those genomes. The experimental
results demonstrate that most of the existing DNA
compression algorithms have a compression ratio higher
than 1.7 BpB. Our algorithm provides better results and its
compression ratio is less than 1 BpB for the compression of
all genomes used for the experiments.

TABLE III. Comparison with other algorithms
Sequence Base

Pair
DNA
Pack

CTW+LZ Hoff

HUMHBB 73308 1.77 1.810 0.749
HUMHDABCD 58864 1.74 1.822 0.774
MPOMTCG 186609 1.89 1.90 0.72
VACCG 191737 1.76 1.76 0.671

By applying the conversion to extended-ASCII
representation and using the RLE technique, the size of the
sequence is reduced to less than 25% of its initial size as
shown in table IV.

TABLE IV. PERFORMANCE OF OUR ALGORITHM ON DIFFERENT

DNA SEQUENCES AND GENOMES
Sequence Name Initial

size in
bits

Size after
applying the
compression
techniques
in bits

Size after
the
Extended-
ASCII
Compression

HUMHBB 146616 54906 6864
HUMHDABCD 117728 45562 5692
MPOMTCG 373218 134358 16794
VACCG 191737 128656 16082

C. Experiments in Time execution

To measure the execution time of our approach, we used a
computer with an Intel i3-2375M processor cadenced at 1.5
Ghz and a 4GB Ram memory.

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol II
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14048-2-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

Fig. 6. Execution time comparison between our approach and other

algorithms

Figure 6 presents the execution time by applying the
approach on the VACCG genome. It proves that its
execution time is less than CTW+LZ algorithm and slightly
higher than DNA Pack and DNA Compress. To further
reduce our approach’s execution time, it is possible to
parallelize its execution.

V. CONCLUSION AND FUTURE WORK
The main advantage of our approach is that it allows to have
a compression ratio per base lower than 0.8 BpB thus better
than all existing compression algorithms. The algorithm is
also easy to implement and interesting to use as the five
techniques compress the initial nucleotide representation to
less than 25%.
In our future work, we will try to associate our techniques to
other compression algorithms based on statistical approaches
to compress the DNA sequences with a rate higher than the
rate of current existing algorithms.

ACKNOWLEDGMENT
This paper is funded by the International Exchange Program
of Harbin Engineering University for Innovation-oriented
Talents Cultivation.

REFERENCES
[1] Matsumoto, T., Sadakane, K., Imai, H., et al., 2000, Can General-

Purpose Compression Schemes Really Compress DNA Sequences?,
Computational Molecular Biology, Universal Academy Press, 76–77.

[2] Grumbach S. and Tahi F.: Compression of DNA Sequences. In Data
compression conference, pp 340-350. IEEE Computer Society Press,
1993.

[3] Korodi, G., Tabus, I., Rissanen, J., et al., 2007, DNA Sequence
Compression Based on the normalized maximum likelihood model,
Signal Processing Magazine, IEEE, 24(1), 47-53.

[4] Grumbach, S., Tahi, F.: A new Challenge for compression algorithms:
genetic sequences. Journal of Information Processing and Management
30, 866–875 (1994).

[5]

[6]

A.AppaRao, “DNABIT compress-compression of DNA sequences,” in
Proc. the Bio medical Informatics, 2011.
Saada, B., & Zhang, J. (2015). DNA Sequences Compression
Algorithm Based on Extended-ASCII Representation. In Proceedings
of the World Congress on Engineering and Computer Science (Vol. 2).

[7] Ahmed, S., Brickner, D. G., Light, W. H., Cajigas, I., McDonough,
M., Froyshteter, A. B., ... & Brickner, J. H. (2010). DNA zip codes
control an ancient mechanism for gene targeting to the nuclear
periphery. Nature cell biology, 12(2), 111-118.

[8] Ahmed, S., Brickner, D. G., Light, W. H., Cajigas, I., McDonough,
M., Froyshteter, A. B., ... & Brickner, J. H. (2010). DNA zip codes
control an ancient mechanism for gene targeting to the nuclear
periphery. Nature cell biology, 12(2), 111-118.

[9] Saada, B., & Zhang, J. (2015, November). DNA sequences
compression algorithms based on the two bits codation method. In
Bioinformatics and Biomedicine (BIBM), 2015 IEEE International
Conference on (pp. 1684-1686). IEEE.

[10] Saada, B., & Zhang, J. (2015). Vertical DNA Sequences Compression
Algorithm Based on Hexadecimal Representation. In Proceedings of
the World Congress on Engineering and Computer Science (Vol. 2).

[11] Saada, B., & Zhang, J. (2015). Representation of a DNA Sequence by
a Subchain of its Genetic Information. In Proceedings of the World
Congress on Engineering and Computer Science (Vol. 2).

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol II
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14048-2-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

	I. INTRODUCTION
	II. Existing Compression algorithms
	III. Our proposed algorithm
	The output result of our example will be as follows:
	IV. Experimental results
	V. Conclusion and Future Work

