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Abstract—In this work, Neural Networks (NN) approach 

was proposed to deal with abrasiveness behavior of thermal 

coal. Back-propagation neural network (BPNN) and 

Generalized regression neural network (GRNN) techniques 

were employed to assess the Abrasive index (AI) of coal to 

mineral. The multivariate statistical results revealed that the 

BPNN and GRNN models were successfully developed to 

model the abrasiveness characteristics of thermal coal with the 

coefficient of determination, R
2
 = 0.9003 for BPNN and R

2
 = 

0.937 for GRNN. These good results indicated that the NN 

techniques were capable of accurately modeling the 

abrasiveness characteristics of coal. 

 
Keywords: Abrasive index, back-propagation neural network, 

coal, generalized regression neural network. 

I. INTRODUCTION 

OAL is a combustible, organic rock, which is composed 

mainly of carbon, hydrogen and oxygen. Coal is 

primarily used as a solid fuel to produce electricity and heat 

through combustion. When coal is used for electricity 

generation, it is usually grinded to an efficient burnable size 

in a mill and then burned in a furnace with a boiler. During 

grinding, frictions occur, cause abrasive wear or erosion on 

the critical components and thereby affect the performance 

of power plant. It is therefore important to assess the 

relative abrasion characteristics of thermal coal by selecting 

the right type of materials for grinding and burning of the 

coal [1].To study the abrasion of coals, an index namely 

abrasion index (AI) which has been used to assess the 

abrasive nature of the thermal coal was established first by 

Yancey, Geer and Price (YGP) in 1951 using YGP test rig. 

Over the years there have been some modifications to this 

method by both mining houses and coal users which have 

resulted in inconsistent and conflicting results [2]. AI was 

then measured using different methods, which include the 

AI tester pot using four iron blades as cutting elements [3]. 

Reference [4] revealed that two and three-body abrasive 

wear is not only concerned with hard material, as material of 

less hardness than the concerned metal blades can still cause 

material wear. Reference [3] revealed that the effects of 
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particles that are less hard than the cutting blades are 

inconsistent in comparison to harder minerals. To improve 

the prediction of abrasiveness of thermal coal, it is 

important to understand the nature and properties of the 

mineral matters in a coal that would contribute to abrasive 

wear.  Most of the empirical equations available in literature 

[5]-[9] for predicting AI of coal, are based on linear 

assumptions which may lead to erroneous estimations and 

do not take into consideration most of the relevant factors. 

To achieve this, Neural Network (NN) based predictive 

techniques was suggested to understand the nonlinear 

relationships and thereby achieving ability to predict 

accurately. Reference [10] used non-linear multivariable 

regression and NN to find the correlation between 

Hardgrove grindability index and the proximate analysis of 

chemise coals. Reference [11] also used NN to studies the 

relationship between petrography and grindability for 

Kentucky coals. To our knowledge, this is the first time that 

NN has been used to predict the abrasive index of the coal.  

The objective of this study is to investigate the possibility 

for the prediction of abrasiveness characteristics of thermal 

coal abrasive index using neural network. 

II. MATERIALS AND METHODS 

A. Experimental Data 

The coal samples used in this study was sourced from 

different colliers in South Africa. These samples were 

analyzed for both their chemical and physical characteristics 

based on the premise that they can contribute information 

that can make it possible for this study to adequately reveal 

coal constituents that cause abrasion during grinding. The 

abrasion index tester pot was used to determine AI of the 

coal samples. A Perkin-Elmer simultaneous 

thermogravimetric analyzer (STA 6000) equipped with 

Pyris manager software was used to determine the 

proximate analyses that gives information about moisture 

and ash percentage, and petrographically determined 

minerals in the coal samples. 

A multivariate statistical analysis was conducted, and 

from this analysis it was determined that four variables 

(Ash, Quartz, Pyrite and Moisture) were significant 

contributors to AI models. 

B. Back-Propagation Algorithm (BPNN) 

 In this study, the first step was done to scale the inputs 

and targets within the range 0 and 1 in case the higher 

values would drive the training process and mask the 
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contribution of lower valued inputs, as well as to perform a 

principal component analysis to eliminate redundancy of the 

data set. In the second steps, the data set was divided into 

training, validation and testing subsets. The training set was 

used for updating the network weights and computing the 

gradient. The validation set was used for improving 

generalization. The testing set was used for validating the 

network performance. The data in each subset were selected 

randomly, and then a network was created. A total of ten 

training algorithms were conducted to simulate the test data. 

The performances of the network in each training process 

and the best network with the highest prediction 

performances were recorded. 

C. Generalized Regression Neural Network (GRNN) 

The GRNN falls into the category of probabilistic NN 

that can solve any function approximation problem if 

sufficient data are available [12]. The additional knowledge 

needed to get the fit in a satisfying way is relatively small 

and can be done without additional input by the user. This 

makes GRNN a very useful tool to perform predictions of 

system performance in practice [12]. The expected value of 

the output y given the input vector x is given by:  
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when the density ),( yxf  is not known, it must usually be 

estimated from a sample of observation of x and y. The 

probability estimator ),( yxg in (2) is based on sample 

values xi and yi of the random variables x and y: 
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Where n is the number of sample observations, and p is the 

dimension of the vector variable x. A physical interpretation 

of the probability estimate ),( yxg is that it assigns sample 

probability of width σ (smoothing factor) for each sample xi 

and yi, and the probability estimate is the sum of those 

sample probabilities [12]. The squared distance D between 

the input vector x and the training vector xi is defined as: 
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And the final output is determined by performing the 

integrations in (4). This result is directly applicable to 

problems involving numerical data. 
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The smoothness parameter σ, considered as the size of the 

neuron’s region, is a very important parameter of GRNN 

[12]. When σ is large, the estimated density is forced to be 

smooth and in the limit becomes a multivariate Gaussian 

with covariance σ2I (I = unit matrix), whereas a smaller 

value of σ allows the estimated density to assume non-

Gaussian shapes, but with the hazard that wild points may 

have a great effect on the estimate [12]. Therefore, a range 

of smoothing factors should be tested empirically to 

determine the optimum smoothing factors for the GRNN 

models [12]. In this study, NN toolbox 5.1 in Matlab 7.4 

(R2007a) was used to develop the NN models. 

D. Performance Indicators 

The root mean square error (RMSE), mean absolute error 

(MAE), and coefficient of determination (R2) between the 

modelled output and measures of the training and testing 

data set are the most common indicators to provide a 

numerical description of the goodness of the model 

estimates. They are calculated and defined according to (5), 

(6) and (7), respectively [13]: 
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 where N = number of observations, Oi = observed value, 

Pi = predicted value, A = average value of the explained 

variable on N observations. 

 

RMSE and MAE indicate the residual errors, which give 

a global idea of the difference between the observed and 

predicted values. R2 is the proportion of variability in a data 

set that is accounted for by a model. When the RMSE and 

MAE are at the minimum and R2 is high (R2 ≥ 0.80), a 

model can be judged as very good [14]. 

III. RESULTS AND DISCUSSION 

A. BPNN Model Development 

The development of a good BPNN model depends on 

parameters determined using error methods (RMSE, MAE 

and R2). Three important aspects (number of layers, neurons 

in the hidden layer and the type of activation functions for 

the layers) must be decided on the BPNN structure. A three-

layer BPNN was constructed to determine if its prediction 

performance was superior to a two-layer network. 

Unfortunately, the results were almost the same. It is worth 

noting that the bigger network structure would need more 

computation and could cause overfitting of the data [15]. To 

optimize of the network, two neurons were used as an initial 

guess in the hidden layer. By increasing the number of 

neurons, the network gave several local minimum values 

and different error values were obtained for the training set. 

Table I gives the dependence between the neurons 

numbers in hidden layer and RMSE for the Levenberg-

Marquardt Algorithm selected as the best BP algorithm. 
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TABLE I 

DEPENDENCE BETWEEN THE NEURON NUMBERS AND RMSE 

             Number of Neurons                                          RMSE                                               
___________________________________________________________ 

                                    2                                                                 0.134843 

                                    3                                                                 0.093658 

                                    4                                                                 0.054025 

                                    5                                                                 0.039396 

                                    6                                                                 0.000257 

                                    7                                                                 0.012368           

                                    8                                                                 0.013655 

 

In Table I a gradual decrease was observed in the RMSE. 

With 6 neurons in hidden layer, the MSE reached its                

minimum value of 0.000257. Hence, the neural network 

containing 6 neurons in hidden layer was chosen as the best 

case. When the number of neurons exceeded 6 in hidden 

layer, the MSE showed an increase at 7 and 8 neurons. The 

networks are sensitive to the number of neurons in their 

hidden layers. The optimum number of neurons required is 

problem dependent, being related to the complexity of the 

input and output mapping, the amount of noise in the data, 

and the amount of training data available.  

Sigmoid transfer functions are usually preferable to 

threshold activation functions because with sigmoid units, a 

small change in the weights produces a change in the 

output, which makes it possible to tell whether that change 

in the weights was good or bad. The following sigmoid 

transfer functions are often used for BPNN: Hyperbolic 

tangent sigmoid (tansig), log-sigmoid (logsig) and linear 

(purelin) transfer function. The tansig transfer function, 

which can produce both positive and negative values, 

tended to yield faster training that the logsig transfer 

function, which can produce only positive values. Table II 

summarizes the BPNN performance using different transfer 

functions, 6 neurons were used in the hidden layer for all 

transfer functions. 
TABLE II 

TRANSFER FUNCTION VERSUS R2 

                  Transfer function                                            R2 

___________________________________________________________ 

         Hidden layer                   Output layer                        

___________________________________________________________ 

            logsig                               logsig                              0.9054    

            logsig                               purelin                            0.8609 

            logsig                               tansig                              0.9102 

            tansig                               tansig                              0.8909 

            tansig                               purelin                            0.8346                                         
                                                                               

 

All of the transfer function combination tested, the logsig 

transfer function at hidden layer and tansig transfer 

functions at output layer with the highest R2 (Table 2) were 

used in this work.                                                  

Once the BPNN was constructed, the weights were 

initialized and the network was ready for training. Ten 

different BP training algorithms were compared to select the 

best suited algorithm. For all BP training algorithms, a 

three-layer NN with a lo-sigmoid transfer function at hidden 

layer and a hyperbolic tangent sigmoid transfer function at 

output layer were used. For all BP training algorithms, 6 

neurons were used in the hidden layer. Their characteristics 

deduced from the experiments are shown in Table III. 

 
TABLE III 

RESULTS USING DIFFERENT TRAINING ALGORITHMS 

             BP Training algorithm                                         R2  

________________________________________________________________________ 

                  traingd                                     0.6393 

                  traingdx                                   0.7477 

                  traingda                                   0.7383 

                  trainrp                                     0.8317 

                  trainlm                                     0.9167 

                 trainbfg                                     0.8031 

                 traincg                                      0.8139 

                 trainoss                                     0.7765 

                 traincgf                                     0.7807 

                 traincgp                                    0.8256                                         

                                  

 

The benchmark comparison showed that the traingd 

(gradient descent BP) algorithm had the lowest training 

speed compared to all other algorithms, follow by traingda 

(gradient descent BP with adaptive learning rate) with R2 = 

0.7383, traingdx (gradient descent BP with momentum and 

adaptive learning rate), trainoss (one step secant BP), 

traincgf (conjugate gradient BP with Fletcher-Reeves), 

trainbfg (BFGS quasi-Newton), trainscg (scaled conjugate 

gradient BP), traincgp (conjugate gradient BP with Polak-

Ribiere), trainrp (resilient BP). The trainlm (Levenberg-

Marquardt) with the highest R2 was suitable as BP training 

algorithm. 

The BPNN algorithm trainlm was developed using a 

three layer approach with a logsig transfer function at 

hidden layer and tansig transfer functions at output layer. 

This BPNN have six input neurons (moisture, ash, SiO2 and 

pyrite) and one output neuron (AI) as shown in Fig. 1. 

 

 
 
Fig. 1.  BPNN structure uses in this study 

 

The error rates of proposed network were 2.12, 3.72 and 

1.85 for training, testing and validation data, respectively. 

The coefficient of determination of proposed network was 

0.84, 0.59 and 0.94 for training, testing and validation data 

respectively. All input and output data in the training phase 

were scaled so that they changed in the range of 0 and 1. 

The network was trained to predict the AI using a total of 40 

training dataset, 26 testing datasets and 25 validation 

dataset. Identifying of the optimal NN structure was studies 
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by changing the number of layers, nodes, transfer function, 

and iteration number. The prediction of BPNN versus actual 

measure for all (training, testing and validation) is shown in 

Fig. 2. 

 
Fig. 2.  AI predicted by BPNN in testing process versus actual measured 

 

B. GRNN Model Development 

   The smoothness factor σ is the only parameter which 

affects the GRNN performance by taking several aspects 

into account depending on the application the predicted 

output is used for [12]. For a prediction that is close to one 

of the training sample and a sufficiently small smoothness 

factor the influence of the neighboring training samples is 

minor. The contribution to the prediction is a lot smaller 

than the contribution of the training samples that are further 

away from the point of prediction can be neglected [12]. 

Due to the normalization the prediction therefore yields the 

value of the training sample in the vicinity of the each 

training sample. For a bigger σ the influence of the 

neighboring training samples cannot be neglected. The 

prediction then is influenced by more point and the 

prediction is getting smoother. With even larger σ the 

predicted curve will get flatter more smooth as well. In 

some cases this is desirable. For example when the available 

data include a lot of noise, then the prediction has to 

interpolate the data whereas if the data are correct [12]. 

GRNN has to fit the data more precisely and has to follow 

each little trend the data makes. If the σ approaches infinity 

the predicted value is simply the average of all the sample 

points. Due to the fact that data are not generally without 

measurement errors and that the circumstances change from 

application to application, there cannot be a right or wrong 

way to choose σ. Table IV summarizes the results for 

GRNN model using different σ values. The σ value 0.05 can 

fit data very closely, with higher R2 (0.951) value than when 

using the larger σ, but the larger σ can make the function 

approximation smoother. 

 

 
TABLE IV 

GRNN USING DIFFERENT σ 

                      σ                                                          R2                                              
___________________________________________________________ 

                                 0.05                                                                 0.951 

                                 0.10                                                                 0.908 

                                 0.25                                                                 0.725 

                                 0.50                                                                 0.660 

                                 1.00                                                                 0.523 

 

The prediction of GRNN versus actual measure is shown 

in Fig. 3. 

 
 
Fig. 3. AI predicted by GNNN in training process versus actual 

measured 

 

The proposed GRNN has three layers. To avoid 

overtraining, the spread constant was changed to allow 

testing data error became close the training data error. If a 

smaller smoothness constant is selected, the output of 

network would completely fit on training data, but the 

generalization ability of network might be decreased. The 

larger the smoothness factor, the smoother is the function 

approximation. Smoothness factor is used to fit data very 

closely than the typical distance between input vectors. 

Larger smoothness factor is used to fit data more smoothly. 

Fig. 3 represents the prediction of data using proposed 

GRNN versus actual data.  The coefficient of determination 

(R2) was 0.937 for all (training, testing and validation). 

C. Statistical performance of predicted models 

The statistical performance of the developed predicted 

models using Statistics toolbox 6.1 in Matlab 7.4 (R2007a) 

are given in Table V. The results showed that all the 

methods were quite stable. The values of each performance 

indicator (R2, MAE and RMSE) were within 2% change in 

every case. 
TABLE V 

STATISTICAL PERFORMANCE OF DEVELOPED PREDICTIVE MODELS 

 

                                      GRNN                                   BPNN 

___________________________________________________________ 

Number of data points        R2      MAE   RMSE              R2     MAE    

RMSE                                              
___________________________________________________________ 

                     91                       0.995    1.92     3.10                0.900    2.60        3.58 

D. Parametric Studies 

Abrasiveness refers to the capacity of coal to wear away 

or erode the surface with which it comes into contact. The 

parameters affecting wear rate abrasion rate are not well 

understood. It has been suggested that a high content of 

mineral matter and the presence of hard minerals like quartz 

and pyrite contribute to the abrasive qualities of coal [16]. 

The proposed NN was performed by a set of input 

parameters to study the influence of different parameters on 

the amount of AI. This set of parameters was as follows: 

H2O, ash, SiO2 and pyrite. The network prediction was 

obtained by varying a single parameter each time while 

keeping all other parameters constant.  

Quartz and pyrite are the main components in the coal 
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responsible for the wear and abrasion [17]. Quartz is twice 

more abrasive than pyrite on a weight percent basis in coal 

[17]. This factor was attributed to quartz which is generally 

found as large “excluded” particles, whereas the pyrite is 

often “included” in the soft clays and the coal matrix [5]. 

Fig. 4 illustrates the effects of Quartz on AI. Quartz is the 

hardest common mineral associated with coal [9]. The 

relationship between abrasive index (AI) and quartz in the 

coal is represented in Fig. 6 with R2 = 0.725. 

 

 
Fig. 4.  Effects of Quartz on abrasion index 

 

The relationship between abrasive index (AI) and pyrite 

in the coal is represented in Fig. 5 with R2 = 0.776.  

 

 
Fig. 5. Effects of pyrite on abrasion index 

 

The correlation between abrasive index and ash 

percentage has been reported in literature [9], [18], [19]. A 

linear relationship was found between the two variables, 

with R2 = 0.805 as presented in Fig. 6. The ash yield 

essentially reflects the non-combustible residues of the 

different minerals associated with the coal. 

 
Fig. 6. Effects of ash on abrasion index 

 

High moisture content constituents of coals influenced AI 

of coal as illustrate in Fig. 7. 

 
Fig. 7: Effects of H2O (moisture) abrasion index 

IV. CONCLUSION 

BPNN and GRNN techniques were employed to explore 

the nonlinear relationships between AI and four variables 

(Ash, Quartz, pyrite and moisture) on the abrasiveness 

characteristics of thermal coal. It was found that the 

obtained results of BPNN and GRNN predictions were in 

good agreement with the actual measurements, with 

coefficient of determination, R2 = 0.9003 for BPNN and R2 

= 0.937 for GRNN. The good results indicated the NN 

techniques were capable of accurately modeling AI from 

thermal coal. 
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