
Abstract: Cournot duopoly is one of the most frequently 

discussed models in the literature of mathematical economics. 

Many researchers have used this pioneering work to examine 

and investigate the problems of oligopoly, which represent the 

real world rivalries involving product differentiation and 

multiproduct. This paper uses Stacklberg Model of Duopoly to 

explain how firms achieve equilibrium under dynamic 

condition, with both homogeneous and heterogeneous 

products. Dynamic rivalry combines aspects of supergame 

rivalry with commitment aspects of two-period games. 

The basic super game theory assumes simultaneous price 

and quantity decisions. In this paper, the dynamic 

mathematical model for homogeneous and heterogeneous 

games has been developed, with assumptions of isoelastic 

demand and constant unit production cost for the output of 

two firms. The system can result in periodic or dynamic 

behavior. Stability of Nash equilibrium has been explained and 

analysed with the help of Jacobian matrix. 

 

Index Terms: Homogenous, Heterogeneous Duopoly, 

Equilibrium points   

 

I. LINEAR MODEL 

We have an economy with a monopolistic sector with two 

firms, each one producing a differentiated good, and a 

competitive numeraire sector. There is a continuum of 

consumers of the same type with a utility function separable 

and linear in the numeraire good. Therefore, there are no 

income effects on the monopolistic sector, and we can 

perform partial equilibrium analysis. The representative 

consumer maximizes  
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This utility function gives rise to a linear demand 

structure. Inverse demands are given by 
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in the region of quantity space where prices are positive.  
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(note that ia and jb  are positive because of our 

assumptions), we can write direct demands as 
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provided that these quantities are positive. The goods are 

substitutes, independent, or complements according to 

whether 0



 . Demand for good i is always downward 

sloping in its own price and increases (decreases) with 

increases in the price of the competitor if the goods are 

substitutes (complements).  

When ,2121   and  the goods are 

perfect substitutes.  

When ,
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 and  expresses the degree of 

product differentiation, ranging from zero (when the goods 

are independent) to one (when the goods are perfect 

substitutes). When   is positive and 
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one, we are close to a homogeneous market. 

 

II. DYNAMIC MODEL FOR HOMOGENEOUS AND 

HETEROGENEOUS DUOPOLY 

The study of duopoly model with heterogeneous firms 

depends upon rational expectations because perfect 

knowledge of the market may not be available in real 
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economics. Since firms have incomplete knowledge of the 

market, they have to use partial information based on the 

local market. Each firm increases (decreases) its production 

iq at each period (t + 1) if marginal profit is positive 

(negative). 

 

III. MODEL   

Let the linear demand function be 

  bQaQfp  )(    (1)  

where )()()( tqtqtQ ji   is total supply and  ‟a‟ 

and „b‟ are positive constant of demand function.  

Let the cost function be 
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 iC  is the marginal cost of 
thi  firm. 

Profit function of 
thi firm is given by iiii qcpq 
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Now the marginal profit of 
thi  firm is given by  
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Now at each time period(t) every player must form an 

expectation of the rival‟s output in the next time period(t+1), 

in order to determine the profit maximizing quantities for 

)1t(   period. 
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Where )1(1 tqe
 represents the expectation of firm 1 about 

the production decision of firm 2. 

In Cournot‟s model )()1( 12 tqtqe      

 [Naïve expectations]  

or )()1( 21 tqtqe   
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Where 21 q,q   represents the one period advancement  

The map (6) represent the Duopoly game in the case of 

homogeneous expectations. 

Cournot-Nash equilibrium can be located by the intersection 

of   

 )( 21 qfq   and )( 12 qfq  . 

 

IV. HETEROGENEOUS EXPECTATIONS  

The firms use local information based on the marginal profit 

i

i

q


. At each time period t each firm increases (decreases) 

its production iq  at the period )1( t if the marginal profit 

is positive (negative).  

 Dynamical equation of this type game is of the 

form  
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where  2,1,0i  

where, if 0i  it becomes Cournot naïve expectations and 

i  is a positive parameter which represents the speed of 

adjustment. 

Similarly we can obtained  equations for two or three 

players as follows  
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Using (4) we can find the dynamical equation of the firm 

which is boundedly rational player. i.e., 

])()(2[)()()1( 211111 tbqtbqcatqtqtq    

(8)                                                                                                                                                                        

Similarly we can find the dynamical equation of the second 

firm which is naïve  
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The two dimensional map ),(),( 2121 qqqqT   is 

completely represent heterogeneous duopoly. 

 

V. BOUNDARY EQUILIBRIUM AND NESH EQUILIBRIUM  

When we coupling the dynamic equation we get  
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Using 11 qq   and 22 qq   we can find non-negative 

solution of algebraic equation 
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212 cca   and 122 cca  . 

 

VI. EIGEN VALUES  

The study of local stability of equilibrium solution is based 

on the localization, on the complex plane of the eigen values 

of the Jacobian matrix of the two dimensional map. 

Jacobian matrix  
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This dynamical system for 2)bq( 1   become 

dissipative [In homogeneous].  

 

VII. NASH EQUILIBRIUM BASED ON PARTIAL INFORMATION 

Next study of Nash Equilibrium based on partial 

information or local stability. 
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Characteristic equation of J(E*) is   
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Which is quadratic equation in  with discriminants.  

 acbD 42   

 = 







 *

1

2*

1
2

1
.1.4)21( bqbq   

    = 
*

1

2*

1 2)21( bqbq     

 0D  (always)  

 Eigen values of Nash equilibrium are real.  

   

VIII. CONCLUSION  

Dynamic Models for homogenous and heterogeneous games 

are of great concern for today‟s researchers. Boundary and 

Nash equilibrium points are discussed with homogenous and 

heterogeneous products. During research, it was found that 

the boundary point is unstable and varies according to the 

change in time and that is why the model needed to be 

dynamic. Further Nash equilibrium is located on the partial 

information. Researchers can take the opportunity to 

develop the model for three to five players, which would be 
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really helpful for the industry. Care should be taken as the 

cost function would then become nonlinear in nature. 
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