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Abstract—This paper proposes a highly optimized S-box of 
SM4 algorithm for low-area and high-speed embedded 
application. A novel methodology is adopted for S-box 
implementation based on Composite Field Arithmetic (CFA) 
and mixed basis. The optimization result shows that the S-box 
based on mixed basis has shorter critical path than S-boxes 
based on normal basis and polynomial basis. Compared with 
previous works, the mixed basis based S-box proposed in this 
paper can achieve the shortest critical path. Besides, the 
operations over GF((22)2) and the constant matrix 
multiplications are optimized by Delay-Aware Common 
Sub-expression Elimination (DACSE) algorithm. ASIC 
implementation using static 180 nm @ 1.8 V yield an area 
reduction of 35.57% as compared to direct implementation. 

 
Index Terms—SM4 algorithm, S-box, Composite Field 

Arithmetic (CFA), mixed basis 

 

I. INTRODUCTION 

M4 algorithm is a group symmetric cipher algorithm 
announced by Chinese government in January 2006 and it 

has been widely used in various fields of information security, 
such as wireless local area network (WLAN), Wireless LAN 
Authentication and Privacy Infrastructure (WAPI), storage 
device and the smart card system [1]-[2]. As the SM4 
algorithm is mostly used in high-speed and resource- 
constrained applications, it is very necessary to design and 
implement short-delay and compact circuit of SM4. The 
implementation of S-box is the most expensive part in terms 
of the required hardware. Therefore, the short-delay and 
compact S-box is the key component of the SM4 algorithm. 

The design and optimization of SM4 S-box have been 
studied in detail. The S-box implemented with LUT achieves 
high throughput but acquires large area. In [3], the 
N-dimensional hypercube method was introduced to 
construct S-box. Although the method reduced the area, it is 
difficult to implement in hardware because of complex 
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derivation process. In [4]-[5], S-boxes based on polynomial 
basis and normal basis were introduced. Their optimizations 
for S-box focused on the hardware overhead at the cost of 
throughput. Therefore, when the SM4 algorithm is used for 
high-throughput and area-constrained devices, a short-delay 
and compact S-box is required for SM4 hardware 
implementation.  

This study focuses on the optimization of S-box for SM4 
and the major contributions include: 

  Coalescence design and implementation based on CFA 
technology [6] and mixed basis [7].  

 The MI over GF((2)2)2  and constant matrix 
multiplications are optimized by DACSE algorithm [8]. 

II. BACKGROUND OF SM4 S-BOX ON CFA 

The algebraic expression is shown as (1) and properties of 
the S-box for SM4 algorithm has been analyzed in [9]. 

         ( )S x I x A C A C                                (1) 

where I is the MI over GF(28). A is the affine matrix and C is 

row vector. x is the input of S-box and S(x) is the 
corresponding output. The S-box function involves a 
pre-affine transformation, MI over GF(28) and a post-affine 

transformation. A and C are shown in (2). 
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Since direct calculation of the MI over GF(28) is a 
complicated and difficult task, we adopt the CFA to reduce 
the hardware complexity by mapping  the MI over GF(28) into 
composite field GF(((22)2)2).  

In CFA technology, an isomorphic mapping matrix is 
demanded to map the input vector from the finite field GF(28) 
to the composite field GF(((22)2)2), and its inverse matrix is 
required to revert the computing results to GF(28). So the 
S-box based on CFA technique can be expressed as: 

   1( )S x T I x A C T A C                             (3) 

where T is the isomorphic mapping matrix and T-1 is inverse 

matrix of T. Generally, matrix T-1 and matrix A are merged 
into a single matrix to reduce the hardware resources. The 
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architecture of the S-box using the CFA technique is shown in 
Fig. 1. 

III. SUB-OPERATIONS OVER GF(28) IN MI   

In CFA technology, the MI over GF(2)8 is built iteratively 
from GF(2) by using the following irreducible polynomials: 
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  (4)     

The coefficients {v=(0100)2, λ=(10)2} are used in this 
paper. 

A. MI in Composite Domain 

According to the first irreducible polynomial in (4), the MI 
over GF(28) is decomposed into GF(((22)2)2) as (5). 
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where A can be expressed as A=alγ+ahγ16, al, ah ∈GF((22)2). 

B can be represented as B=bl+bhγ, bl, bh ∈GF((22)2). The 

architecture of MI over GF(((22)2)2) is shown in Fig. 2. 

As shown in Fig. 2, the MI over GF(((22)2)2) includes two 
additions, a MI, a square, a constant multiplication and three 
multiplications. All of the operations are over GF((22)2). The 
addition over GF((22)2) is defined as bitwise XOR gates. The 
square and constant multiplication over GF((22)2) can be 
deduced from multiplication over GF((22)2), and they are 
usually joint into a single block to reduce the number of gates.  

There are two kind multiplications in this paper, mixed 
multiplication and general multiplication. In mixed 
multiplication operation, the input and output are represented 
by polynomial basis and normal basis, respectively. And for 
the general multiplication operation, the input and output are 
all denoted by polynomial basis. 

Derivations of these operations are described in the 
following sections. 
 
a) MI over GF((22)2) 

In GF((22)2) domain, the input of the MI is denoted by the 
normal basis {β, β4} and the output is represented by the 
polynomial basis {1,β}. Its inverse B = A-1 is calculated in (6) 
and architecture of MI is shown in Fig. 3. 
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Where A can be expressed as A=alβ+ahβ4, al,ah∈GF(22). B 

can be represented as B=bl+bhβ, bl, bh ∈GF(22). By using the 

third irreducible polynomial in (4), the MI over GF((22)2) is 
further decomposed into GF((2)2) as (7). 
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(7) 
Where al=a0α+a1α2,ah=a2α+a3α2, a0, a1, a2, a3∈GF(2). 

 The MI over GF((22)2) is optimized by the DACSE 
algorithm, and the optimized result includes 13 XOR gates 
and 8 AND gates, which needs 51 equivalent gates, with a 
reduction of 44.26% in terms of the total area occupancy 
compared with the direct implementation. 

 
b) Constant Multiplied by Square over GF((22)2) 

The input and output of constant multiplied by square 
operation are denoted by the polynomial basis {1, β} and 
normal basis {β, β4}, respectively. Constant multiplied by 
square is calculated as (8) and its architecture is mentioned in 
Fig. 4. 
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where A can be expressed as A=al+ahβ, al,ah∈GF(22). B can 

be represented as B=blβ+bhβ4, bl, bh ∈GF(22). The constant 

multiplied by square p = a2v is further decomposed into 
GF((2)2) as (9), using the third irreducible polynomial in (4). 
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where al=a0α+a1α2,ah=a2α+a3α2, a0, a1, a2, a3∈GF(2). 
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Fig. 3.  MI over GF((22)2)  
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The optimized result consumes 3XOR gates with an area 
reduction of 25% compared with the direct implementation. 

 
c) Mixed Multiplication over GF((22)2) 

Mixed multiplication operation needs a non–zero input 
represented with the polynomial basis {1, β} and its output is 
expressed by normal basis {β, β4}. Mixed multiplication 

4M̂  

shown in Fig. 5 is calculated as (10). 
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where A can be expressed as A=al+ahβ, al,ah∈GF(22). B can 

be represented in the same way. C can be represented as 

C=clβ+chβ4, cl, ch ∈GF(22). By using the third irreducible 

polynomial in (4), mixed multiplication C=AB is further 
decomposed into GF((2)2) as (11). 
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(11) 
where al=a0α+a1α2,ah=a2α+a3α2, bl=b0α+b1α2, bh=b2α+b3α2, 

a0, a1, a2, a3, b0, b1, b2, b3∈GF(2). 

DACSE algorithm is adopted to optimize the mixed 
multiplication over GF((22)2), and the optimized circuit 
requires 81 equivalent gates. Compared with the direct 
implementation, which needs 21 XOR gates and 27 AND 
gates, it makes 61.5(43.16%) gates reduction in total area 
cost. 
 
d) General Multiplication over GF((22)2) 

 The input and output of general multiplication are all 
denoted by the polynomial basis {1, β}. General 

multiplication M4 which is constructed as Fig. 6 is calculated 
in (12). 
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where A can be expressed as A=al+ahβ, al,ah∈GF(22). B and 

C can be represented in the same way. By using the third 
irreducible polynomial in (4), general multiplication C=AB is 
further decomposed into GF((2)2) as (13). 
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(13) 
where al=a0α+a1α2,ah=a2α+a3α2, bl=b0α+b1α2, bh=b2α+b3α2, 

a0, a1, a2, a3, b0, b1, b2, b3∈GF(2). 

The general multiplication optimized by DACSE occupies 
75 equivalent gates, with a reduction of 33.33% as compared 
with the direct implementation. 

B. Calculation for Mapping Matrix 

The calculation procedure of the mapping matrix is shown 
in Fig. 7 and specific steps are described as follows: 

1) Determine the irreducible polynomial coefficients υ and 
find the minimum root w of P28(w)=0. 

2) Calculate other seven roots from the smallest root β0=w 
in accordance with (14). 

3) Generate a mapping matrix Ti according to (15). 
2
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The mapping matrix T can be calculated only when 
operations over GF(((22)2)2), GF((22)2) and GF(22) are 
represented by normal basis, polynomial basis and normal 
basis, respectively. Since the output of MI over GF(((22)2)2) 
based on mixed basis is  expressed by polynomial basis, it is 
necessary to convert polynomial basis into normal basis. 

Therefore, we need to multiply the matrix T' before 
performing the post-affine operation. So (3) is converted to 
(16). 
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One group of constant matrices is shown as (17) and (18). 
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(18)  

Optimized by DACSE algorithm, the required hardware 
resources for optimized matrices are 58 XOR gates, with an 
area reduction of 34.09% compared with the direct 
implementation. 

IV. IMPLEMENT RESULTS AND ANALYSIS 

In this paper, the S-box for SM4 algorithm is designed by 
CFA technology and mixed basis. The critical path of S-box 
based on different basis are shown in Table I. 

In Table I, the implementations of SM4 S-boxes based on 
polynomial basis and normal basis are realized according to 
[4] and [5], respectively. From the delay shown in Table I, the 
optimized S-boxes has been reduced by 22.5% and 17.05% in 

the terms of total delay, as compared to S-box based on 
polynomial basis and normal basis, respectively.  

The critical path of MIs over GF(((22)2)2) have a decisive 
effect on the critical path of whole S-box, because the critical 
path of mapping matrices of SM4 S-box are 3 XOR gates with 
no further optimization. Therefore, the comparison of critical 
path of MI can explain the performance of the whole S-box. 
Because of the MIs of AES S-box and SM4 S-box over 
GF(((22)2)2) have the same structure, their critical path can be 
compared directly. Comparisons of the critical path between 
our works and selected previous works are summarized in 
Table II. Compared with these works, the S-box based on 
mixed basis in this paper has the shortest critical path. 

 

 
In order to reduce the area cost of S-box, the designed 

S-box is optimized by DACSE algorithm. The type and 
quantity of logic gates as well as the total number of 
transistors in the direct implementation and optimization by 
DACSE are listed in Table III, respectively. 

TABLE I 
THE CRITICAL PATH OF S-BOX IN COMPOSITE DOMAIN 

Basis Used Construction 
Critical Path 

AND XOR 

Polynomial 

T× — 3 

AT-1× — 3 

MI over GF(((22)2)2) 4 17 

S-box 4 28 

Normal 

T× — 3 

AT-1× — 3 

MI over GF(((22)2)2) 4 15 

S-box 4 26 

ours 

T× — 3 

AT-1T’× — 3 

MI over GF(((22)2)2) 4 10 

S-box 4 21 

 TABLE II 
THE CRITICAL PATH OF MI OVER GF(((22)2)2)  

Works Basis Used 
Critical Path 

AND XOR 

[10] Polynomial  4 13 

[11] Polynomial 4 17 

[12] case I Polynomial 4 14 

[13] Polynomial 4 14 

[12] case II Normal  4 12 

[14] Normal 4 14 

[15] Normal 4 14 

[16] Normal 3 14 

[7] Mixed  
Mixed 

4 14 

ours 4 10 

 

TABLE III 
THE AREA COST AND CRITICAL PATH BY EACH PART OF THE CFA-BASED S-BOX 

Module 
Direct Optimized by DACSE 

AND XOR Gates Critical Path AND XOR Gates(Reduction) Critical Path 

A —— 32 96 3 TXOR —— 21 63(34.38%) 3 TXOR 

T —— 19 57 3 TXOR —— 14 43(26.32%) 3 TXOR 

AT-1T’ —— 27 81 3 TXOR —— 13 39(51.85%) 3 TXOR 

C —— 10 30 2 TXOR —— 10 30 2 TXOR 

MI over 
GF(((22)2)2) 

114 108 495 10 TXOR+4 TAND 50 80 315(36.36%) 10 TXOR+4 TAND 

s-box 114 196 759 21 TXOR+4 TAND 50 138 489(35.57%) 21 TXOR+4 TAND 

 

P28(w)==0?

N

Y

w=1

Calculate the root of P28(x)=0
,i=0,1,...7

w=w+1

According to βi ,calculate the mapping matrix Ti 
Ti=[1,βi,βi

2,βi
3,βi

4,βi
5,βi

6,βi
7]

 
Fig. 7.  Algorithm flowchart of mapping matrix 
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 In Table III, TXOR and TAND denote the delays of XOR 
gates and AND gates, respectively. As shown in Table III, the 
optimized circuit of MI over GF(((22)2)2) is reduced by 
36.36%. The area reduction for S-box is up to 35.57%. 

V. CONCLUSIONS 

This paper proposed a highly optimized S-box based on 
CFA and mixed basis for SM4 algorithm. Compared with 
S-boxes based on polynomial basis and normal basis, the 
proposed S-box has shortest critical path of 21 XOR gates and 
4 AND gates. The MI over GF(((22)2)2) has the shortest delay 
compared with previous works that based on the normal basis, 
polynomial basis or mixed basis. Besides, the designed S-box 
was optimized by DACSE algorithm to reduce the area cost. 
As compared to the direct implementation, the area reduction 
of MI over GF(((22)2)2) and the optimized S-box are up to 
36.36% and 35.57% using 180 nm 1.8 V COMS technology. 
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