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Source Enumeration with Random Matrix Theory
in the Low SNR Regime
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Abstract—Source enumeration is a critical step in array
processing in communication, radar, and so on. Many existing
methods are proposed under the assumption that the number
of array is fixed while the number of snapshots tends to infinity.
Their performances degrade in the case of small sample sizes
and low signal-to-noise ratios (SNRs). In this paper, we employ
random matrix theory to obtain the asymptotic distributions
of eigenvalues and the Frobenius norm of observed data. By
using Bayes formula, we derive a method that combines the
information of eigenvalues distributions and the Frobenius
norm together to get the estimation of the number of sources
which outperforms other methods at low SNRs. Simulation
results illustrate the proposed method is capable of correctly
detecting the number of sources in the low SNR regime.

Index Terms—array processing, source enumeration, random
matrix theory, information theoretic criteria.

I. INTRODUCTION

N array processing, the observation vector can be modeled

as a superposition of a finite number of signals corrupted
by additive noise. Estimation of the signal parameters some-
times requires the knowledge of the number of sources. As
signal numbers may be unknown, source enumeration is a
key issue and has received considerable attention in array
processing during these years.

The conventional source enumeration methodologies vary
from hypothesis testing to the information theoretic crite-
rion (ITC). The hypothesis testing method is a subjective
judgment as it requires for deciding on the threshold levels.
Unlike the hypothesis testing, the ITCs [1], such as Akaikes
information criterion (AIC), Bayesian information criterion
(BIC), and minimum description length (MDL) criterion,
which are proposed in [2], [3], are based on the application of
the information theoretic criteria for model selection. These
methods minimize the Kullback-Leibler distance between the
hypothesized model and the observed data to measure how
well the model fits the observed data. The number of sources
is determined by computing any one of these criteria for all
candidate models and choosing the model with the smallest
description [4]. As the best trade-off is achieved when the
score is minimized, the ITCs need no subjective judgment to
estimate the source number. However, the statistical method
based on the AIC and MDL proposed by Wax and Kailath
have drawbacks. The AIC is not consistent and tends to
asymptotically overestimate the number of signal sources,
and its probability of error cannot reach zero even at a
high signal-to-noise ratio (SNR) [5]. The MDL criterion is
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consistent but it performs poorly at low SNR and usually
underestimates the number of signal sources [5].

Most of the aforementioned methods are proposed under
the assumption that the number of array M is fixed while the
number of snapshots N tends to infinity, which is referred to
as the classical asymptotic regime. However, when the num-
ber of array elements and the number of snapshots are finite
and comparable in magnitude, i.e., M/N — ¢ € (0,00),
which is referred to as the general asymptotic regime, ITCs
cannot properly work. To solve this problem, Nadakuditi and
Edelman have devised the RMT-AIC criterion [6]. Lu and
Zoubir proposed a two-step test [7] for source enumeration
by employing random matrix theory which is capable of cor-
rectly determining the number of sources in the case of small
sample sizes. We now prefer a source enumerator that always
selects the true source number for the general asymptotic
regime even at low SNRs. As the two-step test only uses
the information of the extreme eigenvalues of signals, the
performance of the algorithm is not good enough at low
SNRs because of the loss information of other eigenvalues.
In this paper, we are intended to improve the performance of
the second-step test of two-step test by adding the Frobenius
norm information of received data to the enumerator. Some
results of the singular values and singular vectors in random
matrix theory are used to derive the estimator. Simulations
show that the proposed method outperforms many existing
approaches under low SNRs.

The remainder of the paper is organized as follows. The
observation data model is given in section II. The new
method for source enumeration with general asymptotic
regime using random matrix theory is described in detail
in Section III. Simulation results that illustrate the superior
performance of the new method are presented in Section IV.
Finally, conclusions are drawn in Section V.

II. ARRAY SIGNAL MODEL

Consider an array of M sensors of uniform linear receiving
P(P < M) uncorrelated narrowband source signals from far
field located in distinct directions, the array received vector
can be written as

x=A(f)s+n (1
where X = [11, T2, ..., T M}T is the observed signal vector, 6;
refers to as the direction-of-arrival (DOA) of the jth source,
a (0;) represents the M x 1 array steering vector, A (0) =
[a(6) a(fp) | is the M x P array manifold matrix
of the uniform linear array (ULA), s = [51,32,...,SP]T
is the source sjignal vector, and the noise vector is n =
[n1,m2, ... npg]

We handle the P signals s1, s2, ..., Sp as being determin-
istic. The noise vector is assumed to be a complex, stationary
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and ergodic Gaussian vector process, independent of the
signals, with zero mean and covariance matrix oI , where
o? is an unknown scalar constant and I is the identity matrix.
The matrix A is of rank P.

In practice, only a finite set of observations is available.
The received N snapshots of independent and identically

distributed (i.i.d.) complex data can be expressed as
X =A(6)S+N 2)

where X = [x(t1),....x(tn)]", S = [s(t1),...,s (tn)]",
and N =[n(t),...n(ty)]".

The population covariance matrix of the received data is
given by

Rx =E [XX"] = ARsA" + 071y, (3)

where Rg = E [SS¥] is the signal covariance, E (-) and

()H denote expectation and Hermitian transpose, I is a
M x M identity matrix. Denoting the eigenvalues of Rx by

/\12/\22.../\p>/\p+1=...=/\M=O'2 (@)

where the first P eigenvalues are contributed by the sources
and noise, while the smallest M — P eigenvalues of Ry are
contributed by noise only.

As we do not have access to the population covariance
matrix in practice, we can only obtain the sample covariance
matrix, which is calculated by

N
~ 1 H i H
Ry = N;x(tl)x(tl) = XX (5)

The corresponding sample eigenvalues of ﬁx are given
by
l1>l2>...>lp>lp+1...>l]\/[ (6)

which are all distinct with probability one, when N > M.
If N > M, the smallest M — P eigenvalues are 0.

To make an estimation of source number, most existing
algorithms concentrate on the distribution of the sample
eigenvalues which suffers significant performance degrada-
tions in the case of low SNRs and finite sample sizes. We are
now focus on developing a new approach under low SNRs
and short snapshots using random matrix theory.

IIT. METHOD

As the random matrix theory provides a more accurate
approximation for the distribution of the sample eigenvalues
in the case of low SNRs and finite sample sizes, it has been
used in the source enumeration of small sample sizes recent-
ly. In this section, we present an approach of two steps using
some results of random matrix theory and singular values and
vectors of low rank perturbations of large rectangular random
matrices which are given in Appendix A.

A. First Step

As we learn from Theorem A.l, b = o%(1+ ﬁ)Q is
the convergence of the largest noise eigenvalue, and the
detectable signal eigenvalues converge to a limit larger than
b. Thus, the limit value b = o2(1 + ﬁ)Q is the asymptotic
separator between noise eigenvalues and signal eigenvalues,
which can be chosen as the threshold for the hypothesis test
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of the largest noise eigenvalue. The number of signals can
be detected by:

Py = min {k iy <b=02(1+ \/6)2} k=0,1,..,p—1

(N
which is referred to as the first step. According to the
lemma given in [7], the test in (7) can achieve Py = P
with probability one as the sample size N goes to infinity.
However, the test tends to underestimate P in the case of
low SNRs and finite sample sizes, and will underestimate P
by one when underestimate occurs, i.e., Py = P — 1.

As we tend to underestimate the number of source signals
at low SNRs and finite sample sizes, we are supposed to
reduce the underestimation probability or pull up the estimate
Py from P — 1 to P to remedy the underestimation, as
explained in the second step.

B. Second Step

In the first step, we derived an initial estimation Py for
the number of signals. The true value of the source number
P = Py or Py + 1, as we have explained in the first step.
In the second step, we conduct a test between the following
two hypotheses

Hy: Py sources vs. Hi: Py + 1 sources

which can be discriminated using the sample eigenvalues
distributions.

As it is shown in [7], the joint probability density functions
(pdfs) of sample eigenvalues under the hypotheses Hj and
H,, which can be respectively written as f ({1, ..., las|Ho)
and f (I1,...,Ip|H1), depend asymptotically on the eigen-
value [p, 41 only, which is the technical basis of conducting
Roys largest root test [10]. In other words, the eigenvalue
Ip,+1, which is referred to as the extreme eigenvalue, con-
tains the richest statistical information and plays a dominant
role in source number estimation. Thus, the information of
the extreme eigenvalue is implemented to discriminate the
two hypotheses.

However, the extreme eigenvalue [p, 1 is greatly affected
by noise in the case of low SNRs, which may decrease
the accuracy of the estimation. To remedy this, we derive
the Frobenius norm from the observed data and combine it
with the information of the extreme eigenvalue using Bayes
formula.

The second step contains three courses.

1) The information of the extreme eigenvalue: We cal-
culate the prior probability of the hypotheses Hy and H;
using the information of the extreme eigenvalue {p 1. We
use p (Hp) to denote the pdf of the eigenvalue [p, 1 when it
is the noise eigenvalue, and p (H;) denoting the probability
when Ip 4 is the signal eigenvalue.

It follows from the Marcenko-Pastur law that

p(Ho) = fe(lpy+1) ®

where the pdf f. is given in (21) in Theorem A.l.
The expression of p (H;) can be given as

a2
p(H1) = [ fo (Up1lvee+1)f (VPy+1) dvpy41

aq

T ®
= agial f fy (lP0+1|VP0+1)dVPO+1
i
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with the bounds a; = max (02v/¢,lp41 —b) , a2 =
lpy+1 — a and f, (Ip,+1|vp,+1) given in (24) in Theorem
A.2 and a,b given in (22).

2) The Frebenius norm of observed data: We will use the
Frobenius norm of observed data, and combine it with the
information of extreme eigenvalues we have obtained in (8)
and (9) to raise the probability of correct estimation at low
SNRs.

As it is given in (37) Appendix B, the Frobenius norm
of observed data is denoted by A. The value of A contains
richest statistical information of source numbers. A only
contains the information of noise under the hypothesis H,
but contains both of the noise and signal under the hypothesis
H;. Thus A follows different distribution under the hypoth-
esis Hy and H;.

A can be written as

MN
A=1tr (NHN) = an

i=1

(10)

under the hypothesis Hy. As noise is assumed to be uncorre-
lated Gaussian noise with zero mean and variance 1/N, we
have the mean and variance of A

E(AHO) = HH, = M

var (Ap,) = op,? = 24 (b
A under the hypothesis H; is given as
MN
A=tr [(N +upen) (N + UP0+1)} = Z (ni +vpys1)”
i=1
Z (12)
The mean and variance of A is given as follows:
E(Am) = pany = M + NMvp, 4y (13)

2 _ 2M 2
var (Ag,) = on,” = 5 +4Mvp 4

where vp, 41 is the Py + 1 singular value of all signals.

As A is the sum of a large number of the variables n;2,
A follows the Gaussian distribution according to the central
limit theorem. Let p (A|Hy) and H (A|H;) be the pdf of A
under hypothesis I, and ;. We have:

(A B IUHO)2

p(A[Ho) = exp —] (14)

1
\2mo g, 20m,°
where pp, and op, is given in (11).

As the exact singular value vp, 1 of signals in (13) cannot
be calculated at low SNRs when 6g;*> < \/c, p(A|Hy) is
supposed to be written as an integration of a conditional
probability p (A|Hy,vp,+1) under the hypothesis Hy and a
prior density p (vp,+1|H1) which is chosen for vp, 1, which
is given by

p(A|H1) :fp(A|’UP()+17H1)p (UP()+1|H1)dUPu+1 (15)
with
1 (A — p,)*
AH v =——— exp | —— 16
p( | 1 P0+1) \/W p[ 20H12 (16)

where p g, and oy, is given in (13).
For simplicity, we assume vp,+1 to have uniform distri-
bution in the interval (g1, €2), that is

€1 < VUpy+1 < €2

otherwise an

_1
plonal) = { 757
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Then the pdf p (A|H;) can be expressed as

17
P(A|H1):7/p(A\H1,UPO+1)dUPO+1 (18)
E9—Eq

€1

where p (A|Hy,vp,+1) is given in (16). The bound ¢; and e
are the range of the smallest signal amplitude vp, 41, which
we choose them to be ¢ = 0 and &5 = 02,/c.

3) Combination: Finally, to integrate the information of
extreme eigenvalues and the Frobenius norm of observations,
we use Bayes formula to get the combination tests p (Ho|A)
and p (H1|A) under the two hypotheses. They are given as

p(HolA) = p(Au;O/)\p(HO)

A|Hy)p(H,
P (Hi|A) = PR

19)

where p (Hy) is given in (8), p (H;) is given in (9), p (A|Hop)
is given in (14) and p (A|Hy) is given in (18). As p (Hp|A)
and p (H1|A) has the same denominator p (A), it can be
neglected.
Thus, the two hypotheses in (19) can be discriminated
using the test
p(HIA) 1 o0)
p (HolA) H,

IV. SIMULATIONS

In this section, simulation results are presented to validate
the proposed method and to demonstrate its performance.

In our simulations, we employ an array with M = 50
sensors and P = 5 source signals with directions-of-arrivals
20°,22°,25°,27° and 30° .The case of uncorrelated complex
deterministic signals contaminated by white Gaussian noise
was considered. All simulation results were obtained based
on 500 Monte Carlo runs. We denote the AIC method in
[2] by “AIC”. Denote by “TwoStepTest-1” the first-step of
the two-step test, by “TwoStepTest-2” the second-step of the
two-step test. The first step of our proposed method is the
same as “TwoStepTest-17, and the second step of our method
is denoted by “Proposed Method”. We will evaluate these
methods in different experimental settings.

In the first set of simulations, we focus on the case that
sample size N varied around array number M. We now have
the SNRs for all sources are set as -10dB. The number of
snapshots N is varied from 10 to 100.

As it is shown in Fig. 1, the method “AIC” only works
when N is larger than M. The proposed method “Proposed
Method” can get the estimation more accurately than the
other methods in the case of short snapshots, even when
N is much smaller than M. As the eigenvalues informa-
tion loss appears when the sample size is relatively small,
the probability of correct determination of two-step test
“TwoStepTest-2” is not as high as the proposed method
“Proposed Method”. It is proved in our simulation that the
performance of algorithm gets significant improvement at
short snapshots when we add the Frobenius norm information
in our detection.

In the other set of simulations, we focus on the case
that sample size N closed to the array number M when
the SNRs for all sources are varied from -20dB to OdB.
The number of snapshots N is set as 40. The direction of
arrivals and number of sensors are the same as that in the
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Fig. 1: Probability of correct estimation versus number of
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Fig. 2: Probability of correct estimation versus SNR

first simulation. It is seen in Fig. 2 that the proposed method
“Proposed Method” shows obvious improvement of detecting
the number of sources at a relatively short snapshots and low
SNRs compared to the other methods. It is validated that
the performance of algorithm gets significant improvement at
low SNRs when we add the Frobenius norm of observations
in our detection.

V. CONCLUSION

In this paper, we have proposed an approach for source
enumeration in asymptotic regime under large-array con-
dition at low SNRs by employing random matrix theory.
We exploit the information from the distributions of the
eigenvalues and the Frobenius norm of observations to get a
better detection of number of signals. By using the threshold
of the extreme eigenvalues of signals, we tend to under-
estimate the number of sources by one at low SNRs and
short snapshots. Simulations have validated that the second-
step in our proposed method does significant improvement
in pulling up the estimation to the correct one. The proposed
method outperforms some popular approaches at low SNRs
and small sample size in the case that M, N — oo and
M/N — ¢ > 0. Nevertheless, the proposed method estimates
the noise variance using noise data received from the array.
It still remains a question to find an appropriate estimator
to directly detect the noise variance using the observed data
containing noise. And how to relax the assumption of i.i.d.
Gaussian noise structure could be a part of future work.
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APPENDIX A
MATHEMATICAL PRELIMINARIES OF RANDOM MATRIX
THEORY

Here we review some mathematical theories relevant to
the problem at hand, in particular results from random matrix
theory, and results about singular values and vectors of low
rank perturbations of large rectangular random matrices.

Theorem A.1:[8] Let N be a M x N matrix with entries n;;
that are i.i.d. with mean zero and variance o'2. Let R ~ denote
the sample covariance matrix of N with corresponding
eigenvalues [;,7 = 1, ..., M. The density of the signal sample
eigenvalue /; converges w.p.1 to the MarCenko-Pastur density

fe(l)=max <0711> 5(l)+; V(l=a)(b—1)1la<i<p

2mco?l
2n

where ¢ = M /N and

a=0*(1-e)
b=c%(1++/c)

The indicator function 1,<;<p = 1 for a < < b and zero
otherwise, d (1) is the Dirac delta function.

The largest and smallest non-zero eigenvalues converge
w.p.1 to the edges of the support of f.:

(22)

llﬁb

23
lmin(M,N) —a 23)

Theorem A.2:[7] Let ﬁx denote a sample covariance
matrix estimated from the M x N matrix of Gaussian
observations with columns that are i.i.d. with mean zero and
population covariance matrix Rx. The eigenvalues of Rx
and of Rx are respectively denoted by Ay > Ay > ... >
Ap > )\p+1 = .= Ay = o2 and l1,12,...,15;. Denote
the ith signal strength by v; = \; — o2, In the joint limit
M,N — oo with M/N — ¢ > 0. For the ith signal strength

v; = A\ — 02 > 02y/c, the density of the corresponding
signal sample eigenvalue [; converges w.p.1 to the normal
density
1 (i-r1)?

o () = exp § — 24
with

7= (v+ o2 (1 + i)

0?14 o

5= (v+0%) /3 (1- %)

where = 2 for complex-valued observations.

Theorem A.3:[9] Let N be a M x N complex matrix with
independent, zero mean and normally distributed entries with
variance 1/N. Py; = A (0)S be a M x N deterministic
matrix with P non-zero singular values fg, > ... > fg, ( P

is independent of M, N ). Let X=A (§)S+ N and Py, =
P
3" 0s,us,vs, . For any Py, and for any fixed i > 1, we

=1

have
(1460s,.2)(c+0s2) . 1
9X1(PM+N) a.s. T Z§P7951 >c1
1++/c otherwise
(26)
where ¢ = M /N, 0x, is the ith singular value of X .
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The relationship of the singular vectors can be expressed
as follow:

. 2 a.s. st 931‘ > Cl/4
[(ui, us,)| { 0 otherwise @D
o pas. [y s, >ctt
|(vi, vs,) —>{ 0 otherwise 8
L eres?) _po (eest)
where 7, = 1 75,7 (c+05.7) and 7o =1 0s,2(1+6s,2)
APPENDIX B

THE FROBENIUS NORM OF OBSERVED DATA

As the formulas in Theorem A.3 will be applied in the
following calculation, the variance of X are supposed to be
1/N. To normalize the variance, X is handled by

X' = X/VNo? = (AS+N) /VNo2 = AS' + N’ (29)

The dimension of X’ is M x N . And the rank of X’ is
min (M, N) . Then by singular value decomposition (SVD),
X'’ can be expressed by

min(M,N)

H
E Ox;Ux; V%

=1

X' = (30)
where 6x; is the singular value of X', ux; and vx; are left
and right singular vector.

The dimension of S’ is P x N. As the P signals are
uncorrelated and the rank of A is P, the rank of AS’ is
P, that is, there are min (M, N) — P singular values that
are zero. Then using SVD and only considering non-zero
singular values, AS’ can be expressed by

P
AS' = bsiusivg; (31)
i=1
where fg; is the singular value of AS’, ug; and vg; are left
and right singular vector.

Using the result in the first step, the observation data can
be expressed as

Py
/I _ / 1 __ X o H H i
X' =AS + N = E Osiusivg; + 93Pa+1“SP0+1”Sp“+1 1, +N

= (32)
where P, is the initial estimation derived in the first step
indicating the number of eigenvalues that are larger than the
threshold b = o2(1 + \ﬁ)z The indicator function 1y, =1
for the hypothesis H; and zero otherwise.

To obtain the Frobenius norm of Sp, 11, + N’, we have

2
||SP0+11H1 + N’”F
=tr (SP()+11H1 + N,)H (SPO+11H1 + N,):|

= 1r (X'~ $p)" (X'~ Sp)] &9
H H
—tr (XX 4 81 85— XTSp, - Sﬁ)X’]
where
& H H
SPOZ ’L; GSiUSiUs“ SPo—H = HSP0+1 uSpm,l vSp()+1 (34)
Putting (34) into (33) and wusing A to denote

ISp,+11p, + N’ ||% under the estimation Py, we have

min(M,N)

A=y

0
i=1 i=1

(35)
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According to (26) in Theorem A.3, when 6x; > 1+ /¢,
0s;> can be solved approximately by equation

0si* + (1+c—0x:°) 0si® +c=0 (36)

Using the result in (27), (28) and the solution of (36), A
can be calculated by

min(M,N) Py
A= 3 0x*+ Y [0s®— Az (08:0s: + 080x:)] (37)
=1 =

where v; and 7. are given in (27) and (28).
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