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Abstract— In the field of probability and statistics, the 

quantile function and the quantile density function which is the 

derivative of the quantile function are one of the important 

ways of characterizing probability distributions and as well, 

can serve as a viable alternative to the probability mass 

function or probability density function. The quantile function 

(QF) and the cumulative distribution function (CDF) of the 

chi-square distribution do not have closed form 

representations except at degrees of freedom equals to two and 

as such researchers devise some methods for their 

approximations. One of the available methods is the quantile 

mechanics approach.        The paper is focused on using the 

quantile mechanics approach to obtain the quantile density 

function and their corresponding quartiles or percentage 

points. The outcome of the method is second order nonlinear 

ordinary differential equation (ODE) which was solved using 

the traditional power series method. The quantile density 

function was transformed to obtain the respective percentage 

points (quartiles) which were represented on a table. The 

results compared favorably with known results at high 

quartiles. A very clear application of this method will help in 

modeling and simulation of physical processes.       

         

Index Terms— Quantile, Quantile density function, Quantile 

mechanics, percentage points, Chi-square, approximation.  

              

I. INTRODUCTION 

N statistics, In statistics, quantile function is very 

important in prescribing probability distributions. It is 

indispensable in determining the location and spread of any 

given distribution, especially the median which is resistant 

to extreme values or outliers [1] [2]. Quantile function is 

used extensively in the simulation of non-uniform random 

variables [3] and also can be seen as an alternative to the 

CDF in analysis of lifetime probability models with heavy 

tails. Details on and the use of the quantile function in 

modeling, statistical, reliability and survival analysis can be 

found in: [4], [5].                   

 It should be noted that probability distributions whose 

statistical reliability measures do not have a close or explicit 

form can be conveniently represented through the QF. Chi 

square distribution is one of such distribution whose CDF  
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does not have closed form.                                                                   

The search for analytic expression of quantile functions 

has been a subject of intense research due to the importance 

of quantile functions. Several approximations are available 

in literature which can be categorized into four, namely 

functional approximations, series expansions; numerical 

algorithms and closed form written in terms of a quantile 

function of another probability distribution which can also 

be refer to quantile normalization.  

 The use of ordinary differential equations in 

approximating the quantile has been studied by Ulrich and 

Watson [6] and Leobacher and Pillichshammer [7]. The 

series solution to the ordinary differential equations used for 

the approximation of the quantile function was pioneered by 

Cornish and Fisher [8], Fisher and Cornish [9] and 

generalized as Quantile mechanics approach by 

Steinbrecher and Shaw [10]. The approach was inspired by 

the works of Hill and Davis [11].                                                 

   Few researches done on the approximations of the 

quantile functions of Chi-square distribution were done by 

[12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], 

[23]. 

 

II. FORMULATION 

 The probability density function of the chi-square 

distribution and the cumulative distribution function are 

given by;       
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where (.,.)   incomplete gamma functions and 

(.,.)P  regularized gamma function. 

The quantile mechanics (QM) approach was used to obtain 

the second order nonlinear differential equation. QM is 

applied to distributions whose CDF is monotone increasing 

and absolutely continuous. Chi-square distribution is one of 

such distributions. That is;       

 
1( ) ( )Q p F p                                          (3)    

Where the function 
1( )F p

is the compositional inverse of 
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the CDF. Suppose the PDF f(x) is known and the 

differentiation exists. The first order quantile equation is 

obtained from the differentiation of equation (3) to obtain; 
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Since the probability density function is the derivative of the 

cumulative distribution function. The solution to equation 

(4) is often cumbersome as noted by Ulrich and Watson [6]. 

This is due to the nonlinearity of terms introduced by the 

density function f. Some algebraic operations are required to 

find the solution of equation (4).                                     

Moreover, equation (4) can be written as;  

 ( ( )) ( ) 1f Q p Q p                                                  (5) 

Applying the traditional product rule of differentiation to 

obtain;         

 
2( ) ( ( ))( ( ))Q p V Q p Q p                                      (6) 

Where the nonlinear term;          

 ( ) (ln ( ))
d

V x f x
dx

                                              (7) 

These were the results of [10].                                                                                                     

It can be deduced that the further differentiation enables 

researchers to apply some known techniques to finding the 

solution of equation (6).            

The reciprocal of the probability density function of the chi-

square distribution is transformed as a function of the 

quantile function.         
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Differentiate again to obtain;           
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Factorization is carried out;          
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The second order nonlinear ordinary differential equations 

is given as;     
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With the boundary conditions;     (0) 0,  (0) 1Q Q  .     

           

III. POWER SERIES SOLUTION 

 The cumulative distribution function and its inverse 

(quantile function) of the chi- square distribution do not 

have closed form. The power series method was used to 

find the solution of the Chi-square quantile differential 

equation (equation (12)) for different degrees of freedom. It 

was observed that the series solution takes the form of 

equation (13) 

The equations formed a series which can be used to predict 

p for any given degree of freedom k.      
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For very large k,             

 ( )Q p p                                            (14) 

In order to get a very close convergence approximations of 

the probability p, equation (13) is used for all the degrees of 

freedom. For examples the values of degrees of freedom 

from one to twelve is given in Tables 1a and 1b.       

Table 1a: Quantile density function table for the Chi-square 

distribution for degrees of freedom  from 1 to 6.    

p k = 1 k= 2 k= 3 

0.001 0.001001 0.00100025 0.001000125 

0.01 0.0101 0.010025 0.0100125 

0.025 0.025625 0.02515625 0.025078125 

0.05 0.0525 0.050625 0.0503125 

0.10 0.11 0.1025 0.10125 

0.25 0.3125 0.265625 0.2578125 

0.50 0.75 0.5625 0.53125 

0.75 1.3125 0.890625 0.8203125 

0.90 1.71 1.1025 1.00125 

0.95 1.8525 1.175625 1.0628125 

0.975 1.925625 1.21265625 1.093828125 

p k= 4 k = 5 k= 6 

0.001 0.001000083 0.001000063 0.00100005 

0.01 0.010008333 0.01000625 0.010005 

0.025 0.025052083 0.025039063 0.02503125 

0.05 0.050208333 0.05015625 0.050125 

0.10 0.100833333 0.100625 0.1005 

0.25 0.255208333 0.25390625 0.253125 

0.50 0.520833333 0.515625 0.5125 

0.75 0.796875 0.78515625 0.778125 

0.90 0.9675 0.950625 0.9405 

0.95 1.025208333 1.00640625 0.995125 

0.975 1.05421875 1.034414063 1.02253125 
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Table 1b: Quantile density function table for the Chi-square 

distribution for degrees of freedom  from 7 to 12.   

P k= 7 k= 8 k = 9 

0.001 0.001000042 0.001000036 0.001000031 

0.01 0.010004167 0.010003571 0.010003125 

0.025 0.025026042 0.025022321 0.025019531 

0.05 0.050104167 0.050089286 0.050078125 

0.10 0.100416667 0.100357143 0.1003125 

0.25 0.252604167 0.252232143 0.251953125 

0.50 0.510416667 0.508928571 0.5078125 

0.75 0.7734375 0.770089286 0.767578125 

0.90 0.93375 0.928928571 0.9253125 

0.95 0.987604167 0.982232143 0.978203125 

0.975 1.014609375 1.008950893 1.004707031 

P k= 10 k= 11 k= 12 

0.001 0.001000028 0.001000025 0.001000023 

0.01 0.010002778 0.0100025 0.010002273 

0.025 0.025017361 0.025015625 0.025014205 

0.05 0.050069444 0.0500625 0.050056818 

0.10 0.100277778 0.10025 0.100227273 

0.25 0.251736111 0.2515625 0.251420455 

0.50 0.506944444 0.50625 0.505681818 

0.75 0.765625 0.7640625 0.762784091 

0.90 0.9225 0.92025 0.918409091 

0.95 0.975069444 0.9725625 0.970511364 

0.975 1.00140625 0.998765625 0.996605114 

 

These values are the extent to which the Quantile Mechanics 

was able to approach the probability.  

 

IV. TRANSFORMATION AND COMPARISON 

  Transformation to the percentage points and comparison 

with the exact was done here.  

The probability p obtained is transformed using the 

definition.  

Definition                                                                                      

Given a probability p which lies between 0 and 1, the 

percentage points or quartiles or quantile of the chi-square 

distribution with the non-negative k degrees of freedom is 

the value 
2

1 ( )p k 
 such that the area under the curve and to 

the right of 
2

1 ( )p k 
is equals to the value 1 – p.                            

The quantile in Table 1 are computed and compared with 

the exact values. The readers are refer the r software given 

as for example          

 

(0.95,3)

[1]7.814728

(0.95,4)

[2]9.48773

qchisq

qchisq




 

The comparisons are presented in Tables 2 for degrees of 

freedom ranges from 1 to 12. The Quantile mechanics 

method compares favorably at the following: low 

probability, high percentage points and higher degrees of 

freedom. However the methods perform fairly well at the 

following: high probability, low percentage points and low 

degrees of freedom.   

V. PERCENTAGE POINTS FOR THE CHI-SQUARE 

DISTRIBUTION 

 The final table for the percentage points or quantile of the 

chi-square distribution is shown on Table 3. The table of 

the quantile (percentage points) is quite similar to the one 

summarized by Goldberg and Levine [24], which includes 

the results of Fisher [25], Wilson and Hilferty [26], Peiser 

[27] and Cornish and Fisher [8]. In addition, the result is 

similar to the works of Thompson [28], Hoaglin [29], Zar 

[30], Johnson et al. [31] [32] and Ittrich et al. [33].  

 

The same outcome was obtained when compared with the 

result of Severo and Zelen [15]. This can be seen in Table 

4. 

In particular, the QM method performs better at higher 

percentiles and degrees of freedom when compared with 

others. The summary is in Table 5.                    

                                        

VI.   CONCLUDING REMARKS 

   The quantile mechanics has been used to obtain the 

approximations of the percentage points of the chi-square 

distribution. The method is very efficient at high degrees of 

freedom, higher percentage points and lower probabilities. 

However the method performed fairly in the lower degrees 

of freedom, lower percentiles and high probabilities. This 

was a part of points noted by [34] that approximation 

efficiency decreases with the degrees of freedom.  
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Table 2: Comparison between the exact and quantile mechanics for degrees of freedom from 1 to 12 

 

p k = 1  k = 2  k = 3  k= 4  

 Exact QM Exact QM Exact QM Exact QM 

0.001 10.82757 10.82572 13.81551 13.81501 16.26624 16.26597 18.46683 18.46664 

0.01 6.63490 6.61717 9.21034 9.20535 11.34487 11.34216 13.27670 13.27479 

0.025 5.02389 4.98115 7.3776 7.36530 9.34840 9.34155 11.14329 11.14132 

0.05 3.84146 3.75976 5.99146 5.96662 7.81473 7.80082 9.48773 9.47766 

0.10 2.70554 2.55422 4.60517 4.55578 6.25139 6.22302 7.77944 7.75857 

0.25 1.32330 1.02008 2.77259 2.65134 4.10835 4.03403 5.38527 5.32863 

0.50 0.45494 0.101531 1.38629 1.15073 2.36597 2.20355 3.35669 3.22545 

0.75 0.10153 - 0.57536 0.23166 1.21253 0.92119 1.92256 1.66605 

0.90 0.005 - 0.2000 - 0.58437 - 1.06362 0.55908 

0.95 0.004 - 0.103 - 0.35185 - 0.71072 - 

0.975 0.001 - 0.051 - 0.21580 - 0.48442 - 

p k = 5 - k= 6  k = 7  k= 8  

 Exact QM Exact QM Exact QM Exact QM 

0.001 20.51501 20.51486 22.45774 22.45763 24.32189 24.32178 26.12448 26.12439 

0.01 15.08627 15.08476 16.81189 16.81063 18.47531 18.47421 20.09024 20.08926 

0.025 12.83250 12.82860 14.44938 14.44609 16.01276 16.00990 17.53455 17.53200 

0.05 11.07050 11.06242 12.59159 12.58475 14.06714 14.06117 15.50731 15.50196 

0.10 9.23636 9.21944 10.64464 10.63021 12.01704 12.00435 13.36157 13.35013 

0.25 6.62568 6.57868 7.84080 7.80000 9.03715 9.00072 10.21885 10.18572 

0.50 4.35146 4.23842 5.34812 5.24737 6.34581 6.25407 7.34412 7.25934 

0.75 2.67460 2.44232 3.45460 3.24040 4.25485 4.05486 5.07064 4.88220 

0.90 1.61031 1.13866 2.20413 1.75870 2.83311 2.40959 3.48954 3.08473 

0.95 1.14548 - 1.63538 0.66954 2.16735 1.33055 2.73264 1.95937 

0.975 0.83121 - 1.23734 - 1.68987 - 2.17973 - 

p k = 9  k= 10  k = 11  k= 12  

 Exact QM Exact QM Exact QM Exact QM 

0.001 27.87716 27.87708 29.58830 29.58822 31.26413 31.26407 32.90949 32.90943 

0.01 21.66599 21.66511 23.20925 23.20845 24.72497 24.72423 26.21697 26.21627 

0.025 19.02277 19.02046 20.48318 20.48105 21.92005 21.91808 23.33666 23.33482 

0.05 16.91898 16.91411 18.30704 18.30255 19.67514 19.67097 21.02607 21.02216 

0.10 14.68366 14.67321 15.98718 15.97755 17.27501 17.26600 18.54935 18.54088 

0.25 11.38875 11.35819 12.54886 12.52040 13.70069 13.67396 14.84540 14.82014 

0.50 8.34283 8.26363 9.34182 9.26728 10.34100 10.27030 11.34032 11.27299 

0.75 5.89883 5.72004 6.73720 6.56664 7.58414 7.42072 8.43842 8.28129 

0.90 4.16816 3.77957 4.86518 4.49085 5.57778 5.21611 6.30380 5.95366 

0.95 3.32511 2.59553 3.94030 3.24454 4.57481 3.90687 5.22603 4.58180 

0.975 2.70039 - 3.24697 - 3.81575 1.91767 4.40379 2.83518 
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Table 3: The percentage points of the Chi-square Distribution 

 
%ile 2.5 5 10 25 50 75 90 95 97.5 99 99.99 

k            

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

40 

50 

60 

70 

80 

90 

100 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

1.91767 

2.83518 

3.59246 

4.31155 

5.01771 

5.72045 

6.42400 

7.13041 

7.84071 

8.55540 

9.27470 

9.99865 

10.72722 

11.46031 

12.19779 

12.93953 

13.68537 

14.43517 

15.18877 

15.94604 

23.69227 

31.68651 

39.86265 

48.17900 

56.60758 

65.12859 

73.72743 

- 

- 

- 

- 

- 

0.66954 

1.33055 

1.95937 

2.59553 

3.24454 

3.90687 

4.58180 

5.26830 

5.96541 

6.67220 

7.38784 

8.11161 

8.84287 

9.58106 

10.32567 

11.07625 

11.83241 

12.59380 

13.36008 

14.13098 

14.90623 

15.68559 

16.46884 

17.25578 

18.04624 

26.11237 

34.40245 

42.85288 

51.42548 

60.09517 

68.84444 

77.66051 

- 

- 

- 

0.55908 

1.13866 

1.75870 

2.40959 

3.08473 

3.77957 

4.49085 

5.21611 

5.95366 

6.70144 

7.45880 

8.22456 

8.99790 

9.77811 

10.56460 

11.35686 

12.15443 

12.95693 

13.76401 

14.57536 

15.39070 

16.20980 

17.03243 

17.85839 

18.68749 

19.51958 

20.35450 

28.83341 

37.49117 

46.27634 

55.15825 

64.11690 

73.13833 

82.21238 

- 

0.23166 

0.92119 

1.66605 

2.44232 

3.24040 

4.05486 

4.88220 

5.72004 

6.56664 

7.42072 

8.28129 

9.14744 

10.01867 

10.89439 

11.77415 

12.65759 

13.54439 

14.43427 

15.32699 

16.22234 

17.12014 

18.02021 

18.92242 

19.82663 

20.73273 

21.64060 

22.55015 

23.46129 

24.37394 

33.56952 

42.86025 

52.21867 

61.62842 

71.07886 

80.56257 

90.07415 

0.101531 

1.15073 

2.20355 

3.22545 

4.23842 

5.24737 

6.25407 

7.25934 

8.26363 

9.26728 

10.27030 

11.27299 

12.27531 

13.27739 

14.27925 

15.28094 

16.28247 

17.28387 

18.28516 

19.28635 

20.28745 

21.28848 

22.28944 

23.29033 

24.29118 

25.29197 

26.29273 

27.29344 

28.29411 

29.29475 

39.29978 

49.30322 

59.30577 

69.30776 

79.30937 

89.31071 

99.31184 

1.02008 

2.65134 

4.03403 

5.32863 

6.57868 

7.80000 

9.00072 

10.18572 

11.35819 

12.52040 

13.67396 

14.82014 

15.95990 

17.09402 

18.22314 

19.34778 

20.46836 

21.58527 

22.69882 

23.80928 

24.91690 

26.02187 

27.12440 

28.22463 

29.32272 

30.41880 

31.51299 

32.60540 

33.69611 

34.78524 

45.60370 

56.32274 

66.97163 

77.56762 

88.12186 

98.64205 

109.1337

9 

2.55422 

4.55578 

6.22302 

7.75857 

9.21944 

10.63021 

12.00435 

13.35013 

14.67321 

15.97755 

17.26600 

18.54088 

19.80393 

21.05654 

22.29988 

23.53489 

24.76237 

25.98301 

27.19738 

28.40600 

29.60929 

30.80766 

32.00143 

33.19092 

34.37640 

35.55811 

36.73628 

37.91109 

39.08275 

40.25140 

51.80118 

63.16373 

74.39395 

85.52425 

96.57562 

107.5625

9 

118.4957

3 

3.75976 

5.96662 

7.80082 

9.47766 

11.06242 

12.58475 

14.06117 

15.50196 

16.91411 

18.30255 

19.67097 

21.02216 

22.35835 

23.68130 

24.99247 

26.29306 

27.58407 

28.86638 

30.14071 

31.40772 

32.66794 

33.92189 

35.16999 

36.41262 

37.65014 

38.88286 

40.11105 

41.33497 

42.55484 

43.77089 

55.75675 

67.50330 

79.08059 

90.52999 

101.87834 

113.14421 

124.34111 

4.98115 

7.36530 

9.34155 

11.14132 

12.82860 

14.44609 

16.00990 

17.53200 

19.02046 

20.48105 

21.91808 

23.33482 

24.73387 

26.11731 

27.48684 

28.84387 

30.18959 

31.52502 

32.85102 

34.16834 

35.47765 

36.77953 

38.07448 

39.36296 

40.64538 

41.92211 

43.19348 

44.45979 

45.72130 

46.97828 

59.34091 

71.41950 

83.29706 

95.02262 

106.62805 

118.13541 

129.56074 

6.61717 

9.20535 

11.34216 

13.27479 

15.08476 

16.81063 

18.47421 

20.08926 

21.66511 

23.20845 

24.72423 

26.21627 

27.68760 

29.14062 

30.57733 

31.99937 

33.40813 

34.80480 

36.19038 

37.56576 

38.93172 

40.28892 

41.63797 

42.97941 

44.31370 

45.64129 

46.96256 

48.27786 

49.58752 

50.89183 

63.69045 

76.15364 

88.37919 

100.42498 

112.32860 

124.11614 

135.80656 

10.82572 

13.81501 

16.26597 

18.46664 

20.51486 

22.45763 

24.32178 

26.12439 

27.87708 

29.58822 

31.26407 

32.90943 

34.52812 

36.12322 

37.69725 

39.25230 

40.79017 

42.31235 

43.82015 

45.31471 

46.79700 

48.26790 

49.72820 

51.17856 

52.61962 

54.05193 

55.47599 

56.89225 

58.30114 

59.70303 

73.40193 

86.66079 

99.60721 

112.31691 

124.83921 

137.20834 

149.44924 

 

 

Table 4: Comparison with known results A 

 

Probability  0.250 0.050 0.005  0.250 0.050 0.005 

Percentage points k 75 95 99.95 k 75 95 99.95 

Exact Value 
Severo and Zelen 
Quantile Mechanics 
 
Exact Value 
Severo and Zelen 
Quantile Mechanics 
 
Exact Value 
Severo and Zelen 
Quantile Mechanics 

10 
 
 
 
20 
 
 
 
30 
 
 

12.549 
12.550 
12.520 
 
23.828 
23.827 
23.809 
 
34.908 
34.799 
34.785 

18.307 
18.313 
18.302 
 
31.410 
31.415 
31.408 
 
43.787 
43.772 
43.771 

25.188 
25.178 
25.186 
 
39.997 
40.002 
39.997 
 
52.603 
52.665 
52.603 

40 
 
 
 
50 
 
 
 
100 
 
 

45.616 
45.722 
45.604 
 
56.334 
56.439 
56.323 
 
109.141 
109.242 
109.138 

55.758 
55.473 
55.757 
 
67.505 
67.219 
67.503 
 
124.342 
124.056 
124.341 

66.766 
65.712 
66.766 
 
78.488 
78.447 
78.488 
 
140.169 
139.154 
140.169 
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Table 5: Comparison with known results B 

 
Percentage Points K Exact 

Value 

Cornish-

Fisher 

Peiser Wilson and 

Hilferty 

Fisher Quantile 

Mechanics 

75 

90 

95 

99 

99.95 

 

75 

90 

95 

99 

99.95 

 

75 

90 

95 

99 

99.95 

 

75 

90 

95 

99 

99.95 

 

75 

90 

95 

99 

99.95 

 

75 

90 

95 

99 

99.5 

 

75 

90 

95 

99 

99.5 

 

75 

90 

95 

99 

99.5 

1 

 

 

 

 

 

2 

 

 

 

 

 

10 

 

 

 

 

 

20 

 

 

 

 

 

40 

 

 

 

 

 

60 

 

 

 

 

 

80 

 

 

 

 

 

100 

 

 

 

 

1.3233 

2.7055 

3.8415 

6.6349 

7.8794 

 

2.7726 

4.6052 

5.9915 

9.2103 

10.5966 

 

12.5489 

15.9871 

18.3070 

23.2093 

25.1882 

 

23.8277 

28.4120 

31.4104 

37.5662 

39.9968 

 

45.6160 

51.8050 

55.7585 

63.6907 

66.7659 

 

66.9814 

74.3970 

79.0819 

88.3794 

91.9517 

 

88.1303 

96.5782 

101.879 

112.329 

116.321 

 

109.141 

118.498 

124.342 

135.807 

140.169 

1.2730 

2.6857 

3.8632 

6.8106 

8.1457 

 

2.7595 

4.6018 

6.0004 

9.2632 

10.6749 

 

12.5484 

15.9872 

18.3077 

23.2120 

25.1921 

 

23.8276 

28.4120 

31.4106 

37.5670 

40.0309 

 

45.6160 

51.8051 

55.7585 

63.6909 

66.7896 

 

66.9814 

74.3970 

79.0820 

88.3795 

91.9709 

 

88.1303 

96.5782 

101.879 

112.329 

116.338 

 

109.141 

118.498 

124.342 

135.807 

140.184 

1.2437 

2.7012 

3.9082 

6.9409 

8.3255 

 

2.7403 

4.6099 

6.0343 

9.3887 

10.8560 

 

12.5434 

15.9889 

18.3175 

23.2532 

25.2527 

 

23.8249 

28.4129 

31.4159 

37.5895 

40.0641 

 

45.6146 

51.8055 

55.7613 

63.7029 

66.8072 

 

66.9805 

74.3973 

79.0838 

88.3877 

91.9829 

 

88.1295 

96.5784 

101.881 

112.335 

116.347 

 

109.141 

118.498 

124.343 

135.812 

140.192 

1.3156 

2.6390 

3.7468 

6.5858 

7.9048 

 

2.7628 

4.5590 

5.9369 

9.2205 

10.6729 

 

12.5386 

15.9677 

18.2918 

23.2304 

25.2523 

 

23.8194 

28.3989 

31.4017 

37.5914 

40.0461 

 

45.6097 

51.7963 

55.7534 

63.7104 

66.8024 

 

66.9762 

74.3900 

79.0782 

88.3961 

91.9820 

 

88.1256 

96.5723 

101.876 

112.344 

116.348 

 

109.137 

118.493 

124.340 

135.820 

140.193 

1.4020 

2.6027 

3.4976 

5.5323 

6.3933 

 

2.8957 

4.5409 

5.7017 

8.2353 

9.2789 

 

12.6675 

15.9073 

18.0225 

22.3463 

24.0452 

 

23.9397 

28.3245 

31.1249 

36.7340 

38.9035 

 

45.7225 

51.7119 

55.4726 

62.8830 

65.7119 

 

67.0853 

74.3013 

78.7960 

88.5834 

90.9164 

 

88.2325 

96.4809 

101.594 

111.540 

115.297 

 

109.242 

118.400 

124.056 

135.023 

139.154 

1.0201 

2.5542 

3.7598 

6.6172 

7.8704 
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4.5558 

5.9666 

9.2054 

10.5941 

 

12.5204 

15.9776 
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28.4060 

31.4077 

37.5658 

39.9966 
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74.3940 

79.0806 

88.3792 

91.9516 

 

88.1219 

96.5756 
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118.496 
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135.807 
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