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Classes of Ordinary Differential Equations
Obtained for the Probability Functions of
3-Parameter Weibull Distribution
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Abstract— In this paper, the differential calculus was used to
obtain some classes of ordinary differential equations (ODE)
for the probability density function, quantile function, survival
function, inverse survival function, hazard function and
reversed hazard function of the 3-parameter Weibull
distribution. The stated necessary conditions required for the
existence of the ODEs are consistent with the various
parameters that defined the distribution. Solutions of these
ODEs by using numerous available methods are a new ways of
understanding the nature of the probability functions that
characterize the distribution.

Index Terms—  3-parameter  Weibull distribution,
differential calculus, probability density function, survival
function, quantile function.

I. INTRODUCTION

HE 3-parameter Weibull distribution is a variant of the

Weibull distribution and was obtained to improve the
flexibility of modeling with Weibull distribution [1]. The
distribution has been studied by [2], where they estimated
the shape parameter of the distribution. Cran [3] studied
extensively the properties of moment estimators of the
distribution while [4] proposed the robust estimator for the
3-parameter Weibull distribution. Some other aspects that
have been studied includes: conditional expectation [5],
parameter estimation under defined censoring [6-7],
censoring sampling [8], posterior analysis and reliability [9-
10], minimum and robust minimum distance estimation [11-
12], three-parameter Weibull equations [13], confidence
limits [14], quantile based point estimate of the parameters
[15], percentile estimation [16], methods of estimation of
parameters [17-21]. Strong computational techniques have
now been used in the estimation of parameters of the
distribution such as particle swarm optimization [22],
differential evolution [23]. Li [24] applied the least square
method in the estimation of the parameters of the
distribution. Mahmoud [25] observed that the 3-parameter
inverse Gaussian distribution can be used and apply as an
alternative model for the 3-parameter Weibull distribution.
The distribution has been used in the modeling of real life
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situations such as: fatigue crack growth [26], step-stress
accelerated life test [27], ageing [28], helicopter blade
reliability [29], cost estimation [30], time between failures
of machine tools [31].

The aim of this research is to develop ordinary differential
equations (ODE) for the probability density function (PDF),
Quantile function (QF), survival function (SF), inverse
survival function (ISF), hazard function (HF) and reversed
hazard function (RHF) of 3-parameter Weibull distribution
by the use of differential calculus. Calculus is a very key
tool in the determination of mode of a given probability
distribution and in estimation of parameters of probability
distributions, amongst other uses. The research is an
extension of the ODE to other probability functions other
than the PDF. Similar works done where the PDF of
probability distributions was expressed as ODE whose
solution is the PDF are available. They include: Laplace
distribution [32], beta distribution [33], raised cosine
distribution [34], Lomax distribution [35], beta prime
distribution or inverted beta distribution [36].

Il. PROBABILITY DENSITY FUNCTION

The probability density function of the 3- parameter
Weibull distribution is given as;

f(x)= é[x—_ajﬂ_l ei[%aj
n\ n

with the parametersa €1, #,17,>0,x>0.

To obtain the first order ordinary differential equation for
the probability density function of the 3-parameter Weibull
distribution, differentiate equation (1), to obtain;

ﬂ—l(x—aj”
n n

)

o))

f'(x)= f(x) )
ﬂ[x—a}’“e(*ﬁ
7\ 7
A5
-1
()= f_‘;—g(X;“j f (0 ®
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The condition necessary for the existence of the equation is
X,a, f,n>0

The differential equations can only be obtained for
particular values of &, fand 7.

When £ =1, equation (3) becomes;

1
fa(x) = (——j f.(x) (4)
n
nf,()+f,(x)=0 (5)
When [ =2, equation (3) becomes;
1 2(x—
fb’(x)={ 2 za)}fb(x) (6)
X—« n

n*(x—a) () - (7* =2(x-a)*) f,(x) =0 (7)
When £ =3, equation (3) becomes;

£1(x) = {X 2 - S(X;f) } £.(%) ®)

7’ (x=a) () —(27* =3(x~a)’) f,(x) =0 (9)
Equation (3) is differentiated to obtain;

B-1
f"(x) ={f_‘i—§(x;“] } f'(x) -

ﬂ_l _ﬂ(ﬂ_l)[x_ajﬁ_z f(X)
x-a) 7’ 7

The following equations obtained from (3) are needed to
simplify equation (10);

(10)

f0 p-1 p(x-aY ”
f(X)_X—a n\ n

ﬁ[x—ajﬂlz -1 f'(x) W)
n\ n Xx—a f(x)

n n [ x-a f(x)
BB-D(x-a) " _p-1[p-1_ ')

2 = - (14)
n n X—a| x—a f(x)
Substitute equations (11) and (14) into equation (10);

p-1
f2(x) | (x-a)° f00
f (x) _,3—1[,6—1_ f’(x)}

X—a| X—a f(x)

/%ﬂ;D(X—a]ﬂlzﬂ—l{ﬂ—l_f%@} -
n

f ”(X) —

(15)

ISBN: 978-988-14048-4-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

fr 1700 (A=D1

Zf(X) (x—a)’ 16)
(B f(X)+(ﬂ—1)f'(X)
(x—a)’ X—a
£7(x) = f’z(x)_ﬂ(ﬂ—l)f(x)+([;’—1)f’(x) an
f (x) (x—a)? X—a

The condition necessary for the existence of the equation is
X>20,x—a=0,f(x)>0,8,n7>0

The second order ordinary differential equation for the
probability density function of the 3-parameter Weibull
distribution is given by;

(x=a)* £"(x) = (x=a)* (%)
+A(B-1) T2 (x) - (B-D(x-a) f () f'(x) =0

(18)
1 ( aY
f(O):ﬁ(—zj e(”J (19)
n\ 7n
2(2) et ol e LU
ot g
n\ 7 a n\ 7
(20)

I1l.  QUANTILE FUNCTION

The Quantile function of the 3- parameter Weibull
distribution is given as;

1
Q(p) = —n(=Inl- p))”
The parameters are: #,17>0,0< p<1.

To obtain the first order ordinary differential equation for
the Quantile function of the 3-parameter Weibull
distribution, differentiate equation (21), to obtain;

1
, n 5
Q(p)=- (~In-p))
A1~ p)
The condition necessary for the existence of the equation is
p,n>00<p<l.
Equation (21) can also be written as;

~n(-In(l- p))” =Q(p) -«

(21)

(22)

(23)
Substitute equation (23) into equation (22);
’ Q( p) -
Q'(p) = (24)
BQ-p)(=Ind-p))
Equation (23) can also be simplified as;
B
_ |n(1_ p) — (a_—Q(p)j (25)
n
Substitute equation (25) into equation (24);
, Q(p)-a)y”
Q'(p)= (26)
B~ p)a-Q(p))’
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_(@=Q(p)™n”
p(A-p)

1
Q(0.1) = & —17(~In(0.9))” (28)
The differential equations can only be obtained for
particular values of ¢, Band 7.

When £ =1, equation (27) becomes;

Q'(p)=

(27)

Q(p)=—T— (29)
d-p)
1-p)Qi(p)+7=0 (30)
When £ =2, equation (27) becomes;
2

' n
Q(p)=- (31)

i 21— p)(@ - Q,(P)
2(1- p)(@—-Q,(P)Q;(p) +7° =0 (32)
When £ = 3, equation (27) becomes;

3

' n

Q(p)=- (33)
3(1- p)(e-Q.(p))*
31~ p)e@-Q.(p)*Q(p)+7° =0 (34)
IV. SURVIVAL FUNCTION
The survival function of the 3- parameter Weibull
distribution is given as;
_(t;a]ﬁ

Sit)y=e "’ (35)

To obtain the first order ordinary differential equation for
the survival function of the 3-parameter Weibull
distribution, differentiate equation (35), to obtain;

A1 (taY

, -« 15

S(t):—é(—j e(”]
n\n

The condition necessary for the existence of the equation is

t>0,aell,p,n>0.
B
S'(t)z—é(t_—aJ S(t)
2\ 7

(36)

@37
The differential equations can only be obtained for
particular values of ¢, Band 7.
When £ =1, equation (37) becomes;
S/ =-=5,(1) @)
n
nS,(t)+S,(t) =0 (39)
When £ =2, equation (37) becomes;
, 2(t-«a
Sp(t) = ——(—] Sp(t) (40)
n\n
7°Sy(t) +2(t - )S, (1) =0 (41)

When £ = 3, equation (37) becomes;
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2
, 3(t—a
S((t) = ——(—] S(t) (42)
n\n
17°S.(t) +3(t—a)’S, (t) =0 (43)
Equation (37) is differentiated in order to obtain a simplified
ordinary differential equation;

B-1 B-2
S"(t) = _ﬁ{(t__aJ S'(t) + E[ﬂ] S (t)}
n n n n
(44)
A1 B2
S”(t):_é(t__aJ S'(t)_ﬂ(ﬂz_l)(t_aj S(t)
n\n n n
(45)

The condition necessary for the existence of the equation is
t,a,B,n>0.

The following equations obtained from (37) are needed to
simplify equation (45);

é(t_a]S_(t) )
n\on S(t)
BB [t —aj’“ _(B-D) SO .
n n n S
p-2 ,
_ﬂ(ﬂz—l)(t—a] _(B-s'® )
] 7 (t-a) S()

Substitute equations (46) and (48) into equation (45);
12 '

57y = S0 _(B-DSE
S(t) (t-a)S()

The second order ordinary differential equation for the

survival function of the 3-parameter Weibull distribution is
given by;

(t-a)SM)S"(t) - (t-a)S™(1) - (B-DS'(t) =0

(49)

(50)

S(0) = e_[_%] (51)

S'(0)=-— B (_ ZJ/” e_[_%] (52)
n\ 7

Alternatively, the ordinary differential equations can be
derived using the results obtained from the probability
density function.

Equation (3) can be modified using equation (36) to obtain;

f-1
S"(t)={ﬂ—ﬁ[t‘—“j }S'(t) 3
t-a n\ n
When S =1, equation (53) becomes;
, 1),
Sq(t) = [—;j Sy (1) (54)
nSy(t)+S;(t)=0 (55)
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When £ =2, equation (53) becomes;

SHOE { _1 - Z(tn_z a)}Sé(t) (56)
n*(t-a)S,(t) — (7" —2(t—@)*)S;(t) =0 (57)
When £ = 3, equation (53) becomes;

" 2 3(t— ? '
sf<t)={ JAea) }sf(t) (58)
t—a n
7°(t—a)S}(t)—(2n° -3(t—a)*)S; () =0 (59)

V. INVERSE SURVIVAL FUNCTION

The inverse survival function of the 3- parameter Weibull
distribution is given as;

(60)

Q(p)=a+n(ln%jﬁ

To obtain the first order ordinary differential equation for
the inverse survival function of the 3-parameter Weibull
distribution, differentiate equation (60), to obtain;

(o) =—1|| l]ﬁl
Q) ﬂp[np

1y
n(lnj
Q(p)=-——"

point)

The condition necessary for the existence of the equation is
p,n>00<p<l,

Equation (60) can also be written as;
1

(61)

(62)

1)\s
U['”BJ =Q(p)-«a (63)
nl_Qp)-a) 0
p n
Substitute equations (63) into equation (62);
Q(p)= —Q(p—)_la (65)
£p ( In j
p
Substitute equation (64) into equation (65);
: n”(Q(p)-a)
=— 66
A= Q) —a)’ =
B _ A \B
Q(p) =" Q(p)—a) 67)
Bp
£pQ'(p)+7"(Q(p)~a)” =0 (68)
Q(O.l):a+77(|n10)% (69)

The differential equations can only be obtained for
particular values of &, f#and 77. Some cases are considered
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and shown in Table 1.

Table 1: Some class of ODE for different parameters of the
inverse survival function of the 3-parameter Weibull
distribution

£ | 1 | @ | Ordinary differential equation
11 - | pQ(p)+1=0

112 |- | pQ(p)+2=0

1 |3 |- pQ'(p)+3=0

2 |1 11 1 2pQ(p)-1)Q'(p)-1=0
2 |1 ]2 | 2p@Q(p)-2)Q'(p)-1=0
2 12 |1 | p@Q(p)-)Q'(p)-2=0
2 12 |2 | p(Q(p)-2)Q'(p)-2=0

VI. HAZARD FUNCTION

The hazard function of the 3- parameter Weibull distribution
is given as;

1
h(t) = ﬁ(t__“j
n\n

To obtain the first order ordinary differential equation for
the hazard function of the 3-parameter Weibull distribution,
differentiate equation (70), to obtain;

B-2
i BB-Y)(t-—a
h'(t)=—=
n n
The condition necessary for the existence of the equation is

t,a,f,n>0.

(70)

(71)

(72)

)= L)
n

The first order ordinary differential equation for the hazard
function of the 3-parameter Weibull distribution is given by;

nh'(t) - (B-Dh(t) =0

B-1
73) h(O)zﬁ[—ﬂj
7\ 7

(74) To obtain the second order ordinary differential
equation for the hazard function of the 3-parameter Weibull
distribution, differentiate equation (71);

vy BB-DB-2)(t-a)"
h"(t) = 3
n n
The condition necessary for the existence of the equation is
t,a,f,n>0.

Two ordinary differential equations can be obtained from
the simplification of equation (75);
ODE 1; Use equation (70) in equation (75);

" _ (ﬁ—l)(ﬂ—Z)
- LBy

(75)

(76)
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(t-a)’h"(t) - (B-D(B-2)h(t) =0 (77) p-2 pi [ta
ODE 2; Use equation (71) in equation (75) ,B—l(t—aj ﬁ( _aj e [ g ]
" (B-2),, n n _n\n
h"(t) =-——=h'(t) (78) A1 Y.
(t—a) (t—aj e_[Tj
—a)h'(t)—(B-2)N(t) = ., :
(t-a)h"(t)-(5-2) (t)ﬂ_ZO ) )= 7 ﬁ ﬁ i)
— /-1 t-a t-a
(0) =&2”(—2] ) plt=a )" 5T A5
n n n\ n
To obtain the third order ordinary differential equation for - AR
the hazard function of the 3-parameter Weibull distribution, —(761) a
differentiate equation (75); (1-e )

B4

“)(B-2)(B-3)(t-«

ey = BL=DB=2)(P )( j -
n n

The condition necessary for the existence of the equation is

t,a,,n>0.

Three ordinary differential equations can be obtained from
the simplification of equation (81);
ODE 1; Use equation (70) in equation (81);

hm(t) — (ﬂ_l)(ﬂ_ 2)3(ﬁ_3) h(t) (82)
(t-a)
(t-a)’h"®)-(B-D(B-2)(F-In)=0  (83)

ODE 2; Use equation (71) in equation (81);

ey = LB Dy 8
(t-a)
(t-a)’h"() - (B-2)(B-3)N'(t)=0 (85)
ODE 3; Use equation (75) in equation (81);
mesy (ﬁ_B) "
0=y O )
(t—a)h"(t)-(B-3)h"(t) =0 (87)
(o)~ LB-D(-2) (_z}“ o)
n ]

VIl. REVERSED HAZARD FUNCTION

The reversed hazard function of the 3- parameter Weibull
distribution is given as;

1 (t-a)
ﬁ(t—aj A5
; n\n

0= —

To obtain the first order ordinary differential equation for

the reversed hazard function of the 3-parameter Weibull
distribution, differentiate equation (89), to obtain;

(89)
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(90)
The condition necessary for the existence of the equation is
t,a,f,n>0.

,B—l_ﬁ(t—a -
t—a n\ 7

i't)= ﬁ(t—ajﬁ_l RS0 (1)

_n

U

aoeln)

p-1
j'(t):{ﬁ ‘1—2(““) - j(t)} O
n n

-

The differential equations can only be obtained for
particular values of &, fand 7.

When £ =1, equation (92) becomes;
., 1 . .
L= (—;— Ja(t)J INQ) (93)

75+ i, +7j, ) =0 (94)
When £ =2, equation (92) becomes;
()= {ti —ﬁ[t‘—“j— jb(t>} BO @9
—a n\n
n’(t-a) i () +(B-a) —7°) j, ()

+7°(t-a) j,’ (1) =0
Equation (92) is differentiated to obtain;

-1
"(t) = {ﬂ—‘lﬁ(t‘—“j - j(t)} '(t)
n n

(96)

-«

)
_{ p-1 _ﬁ(ﬂ—l)(t;aj +j,(t)}j(t)

t-a) 7’
97)
The condition necessary for the existence of the equation is
t,a,f,n>0.

The following equations obtained from (92) are needed to
simplify equation (97);
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0w p-1 plt-a) .
0 t—a ol 7 i) (98)
B(t=a)” _p-1_JO)
A7) Ttae fw i® (99)
pB-Y(t-a\"_p-1[p-1 jO
2 . i
n n n Lt-a )
(100)
PB-D(t-a )" _pAlf-1 O
n* n t—alt-a jt)
(101)
Substitute equations (98) and (101) into equation (97);
p-1  p-1
L) |[t-e)? t-a .
') ="—"- i®
i) B-1 jt)
TS - O [+i'®
(102)
i () BB-1jt)
t
I'm= ()+J()J() (o) .

LB-DI0, (B-DI0

-« -

The ODEs can be obtained for the particular values of the
distribution. Several analytic, semi-analytic and numerical
methods can be applied to obtain the solutions of the
respective differential equations [37-51]. Also comparison
with two or more solution methods is useful in
understanding the link between ODEs and the probability
distributions.

VIII.

In this work, differentiation was used to obtain some
classes of ordinary differential equations for the probability
density function (PDF), quantile function (QF), survival
function (SF), inverse survival function (ISF), hazard
function (HF) and reversed hazard function (RHF) of the 3-
parameter Weibull distribution. In all, the parameters that
define the distribution determine the nature of the respective
ODEs and the range determines the existence of the ODEs.

CONCLUDING REMARKS
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