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Abstract—In this paper we present application of degenerate
kernels strategy to solve parametric integral equations system
(PIES) for two-dimensional Laplace equation in order to
improve its computing time. The main purpose of this paper is
to obtain degenerate kernels for PIES based on non-degenerate
kernels and to apply collocation method to solve modified
PIES. We verify this method on two examples, which analytical
solutions are known. The tests are mainly focused on computing
time with respect to accuracy of obtained numerical solutions.

Index Terms—boundary value problems, collocation method,
parametric integral equation system, degenerate kernels

I. INTRODUCTION

Differential equations are used as a tool for modeling
different physical phenomena. Hence, there are a lot of
methods of numerical solving of differential equations. The
most popular methods are: finite element method (FEM) [1]
and boundary element method (BEM) [5]. Both of these
methods possess many advantages (among others: versatility
of application, wide software availability), as well as some
disadvantages. The main drawback is the necessity of the
discretization of the domain (FEM) and the boundary (BEM).
Despite the fact, that the complexity of solving BEM was
reduced (only boundary was divided on elements), discretiza-
tion process is still required. Furthermore, in special cases
(mass forces, nonlinear problems, and other), there is also
necessity of domain discretization in BEM, therefore the
complexity of its solving is equal to FEM.

Considering above mentioned problems many researchers
constantly looking for new methods of solving the boundary
value problems or developing existing methods. We are
developing the method called parametric integral equations
system method (PIES) [3], [16], [15]. This method is an
analytical modification of boundary integral equations (BIE).
The fundamental aspect, that distinguish it from classical
element methods, is that there is no need of discretization. It
has been achieved by inclusion of the shape of boundary
(defined using any parametric function) in mathematical
formalism of PIES. Until now, we successfully applied the
Bézier, Hermite or B-spline [7] curves for modeling the
shape of the boundary. The advantage of these curves is
the simplicity of their using for modeling and modifying the
shape of the boundary. PIES method allow us to separate the
approximation of the shape of boundary from approximation
of boundary functions. It is very important advantage of
PIES method. Therefore, the shape of boundary is effectively
modeled by mentioned curves and it is independent of the
process of solutions approximation. Then, we started looking
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for so-effective method for numerical solving of PIES. In
previous studies we used and tested the collocation method
[9]. We chose this method because of its simplicity connected
with requirement of single integration only. However, there
are also some disadvantages, such as asymmetric matrix in
obtained system of algebraic equations or possible instability
of solutions. Moreover, this method requires proper location
of collocations points, which affects the accuracy of the
results. Despite the fact, that we obtained satisfying results
using collocation method for solving PIES, in case of more
complex problems (especially 3D), we noticed growing time
of computations. Therefore, we decided to develop own
strategy of solving PIES and verify its effectiveness on
fundamental boundary value problems.

The aim of this work is to develop the method of solving
PIES based on degenerate kernels to reduce the time of
computations. Firstly, in this paper, we present the strategy
of obtaining degenerate kernels in PIES (for two-dimensional
Laplace equation) based on non-degenerate (primary) ker-
nels. We test the concept of the method on two examples,
which analytical solutions are known. We compare solutions
obtained using proposed method of degenerate kernels in
PIES with ones from conventional PIES. We check accuracy
of the solutions (by relative errors to exact solutions) and
effectiveness of the method (by the computing time).

II. PIES AND METHODS OF ITS NUMERICAL SOLUTION

Parametric integral equations system (PIES) for two-
dimensional Laplace equation is presented by the following
formula [14]:

0.5ul(s) =
n∑

j=1

sj∫
sj−1

{
U
∗
lj(s, s)pj(s)−

P
∗
lj(s, s)uj(s)

}
Jj(s)ds,

(1)

where sl−1 ≤ s ≤ sl, sj−1 ≤ s ≤ sj , l = 1, 2, ..., n,

Jj(s) =
[(

∂Γ
(1)
j (s)

∂s

)2

+
(

∂Γ
(2)
j (s)

∂s

)2]0.5
, n - is the number

of segments and Γ(s) - any parametric curve modeling the
shape of the boundary. In PIES defined in the parametric
reference system, sl−1 and sj−1 correspond to the beginning
of l-th and j-th segments, while sl and sj to the ends of these
segments. Integrands U

∗
lj(s, s) and P

∗
lj(s, s) (kernels) in (1)

include the shape of the boundary (defined by parametric
curves Γ(s)) in their mathematical formalism, and they are
presented as follow:

U
∗
lj(s, s) =

1

2π
ln

1

{η2
1 + η2

2}0.5
,

P
∗
lj(s, s) =

1

2π

η1n1(s) + η2n2(s)

η2
1 + η2

2

,

(2)
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where η1 = Γ
(1)
1 (s) − Γ

(1)
j (s), η2 = Γ

(2)
1 (s) − Γ

(2)
j (s) and

n1(s), n2(s) are the direction cosines of the external normal
to j-th segment of the boundary.

Solution of PIES (1) is reduced to find unknown functions
uj(s) or pj(s) on segments, which describe boundary of
solving problem. In previous studies, these functions were
approximated by the following approximating expressions
ũj(s) or p̃j(s):

p̃j(s) =
M−1∑
k=0

p
(k)
j T

(k)
j (s), ũj(s) =

M−1∑
k=0

u
(k)
j T

(k)
j (s), (3)

where u
(k)
j , p(k)

j are unknown coefficients. One of these
coefficients (on j-th segment) is obtained by interpolation of
defined boundary condition, then the other one is unknown,
M - is the number of coefficients, T (k)

j (s) - base functions
(we use Chebyshev and Lagrange polynomials). Hence, to
solve the boundary value problem, we need to find unknown
coefficients only. For this purpose, in PIES we applied well
known collocation method [2], [12] and Galerkin method [8],
[13]. Nevertheless, these methods has their advantages and
disadvantages. The aim of this paper is to develop new, more
effective strategy of solving PIES and to carry out tests of
its computing efficiency.

III. INTRODUCTION TO WEIGHTED RESIDUAL METHOD

At first, the solution obtained using approximation series
(3), required to find unknown coefficients u

(k)
j , p(k)

j . For
this purpose, we should obtain the system of algebraic
equations, which will be the approximation of PIES. We can
use many different methods to find the system. Depending
on the efficiency of those methods, the solutions could be
obtained with different accuracy. We should not expect, that
we obtain highly accurate solutions. Therefore, because we
just approximate the unknown functions, then we mark them
as ũj(s), p̃j(s). However, we should apply proper method
to obtain the solutions as close to exact solutions as it is
possible.

It can be achieved using appropriate methods of finding
unknown coefficients in (3) and choosing proper base func-
tion in (3) according to the type of boundary value problem.
Finally, after substituting ũj(s), p̃j(s) (3) into (1), we obtain
solutions with some error R(s) 6= 0.0 defined as follows:

R(s) = 0.5ũl(s)−
n∑

j=1

sj∫
sj−1

{U∗lj(s, s)p̃j(s)−

P
∗
lj(s, s)ũj(s)}Jj(s)ds 6= 0,

(4)

where R(s) is called residue. To minimize this error, it should
be arrange uniformly on boundary and boundary integral
should be equal to zero:∫

Γ

R(s)w(s)ds = 0.0, (5)

where w(s) is a weight function. Selection of the weight
functions gives many versions of weighted residual method.
One of the easiest is the pseudospectral method, also known
as collocation method [9], previously used by the authors.

In collocation method, the weight function w(s) in (5)
is defined as Dirac function w(s) = δ(s − s(c)). After

substitution the approximation series (3) and collocation
points s(c) into (1) we obtain approximation of PIES.
Based on this approximation we can obtain the system of
algebraic equations. In result of solving such system we
obtain unknown coefficients from (3). We should noted,
that collocation points should be properly arrange along the
boundary.

In our studies we have tested mainly two arrangements
of collocation points: uniform and at points corresponding
to the roots of Chebyshev polynomials. The second way
was adopted, because it is known as optimal arrangement
of nodes in one-dimensional interpolation. Therefore, after
process of integration, the system of algebraic equations is
obtained. The main advantage of collocation method is, that
using Dirac function as weight function, we need single
integration only. Unfortunately, we obtain non-symmetric
and dense matrix.

The highest average errors are obtained for uniform ar-
rangement of collocation points [4]. Besides the errors, we
should also deal with instability of solutions. It can be no-
ticed, that depending on the number of terms in the series (3)
we obtain very different error values. Analysing the solutions
obtained by the collocation approach with collocation points
distributed at points corresponding to the roots of Chebyshev
polynomials, we should noticed that they are significantly
better than for the uniform distribution.

IV. CONCEPT OF THE METHOD

The effectiveness of the method can be determine by,
among others: 1) accuracy of obtained solutions, 2) stabil-
ity of the solutions, 3) computing time and 4) computer
memory occupation. Direct application of collocation and
Galerkin methods applied to solve PIES was previously
examined by the authors and described in [3], [4], [16]. We
found that the collocation method is very easy to apply,
but solutions are less accurate than in Galerkin method.
However, solutions obtained by Galerkin method need sig-
nificantly more computing time (especially in more complex
problems). Therefore, we need to develop and test another,
more effective method of solving PIES. Firstly, we decided
to replace kernels, previously used in PIES, by degenerate
kernels to reduce the computing time necessary to solve
PIES. Hence, in this paper we apply degenerate kernels in
PIES before usage of collocation method. In the literature,
we can find different methods of obtaining such kernels, i.e.
Taylor [11] or Fourier [6] series expansion. However, in this
paper we propose own strategy of replacing kernels in (1)
by degenerate kernels.

A. The strategy of interpolation of the kernels using degen-
erate kernels

In this strategy we obtain degenerated kernels using gen-
eralized Lagrange interpolation polynomial of any degree.
Generalization of polynomial means its application for inter-
polation of function of two variables. Lagrange interpolation
is very easy, because kernels U

∗
lj(s, s) and P

∗
lj(s, s) phys-

ically are defined in unit square. The square is defined by
normalized parameters s, s, where 0 ≤ s, s ≤ 1. Interpolation
is applied only for kernels, where l 6= j, it means except the
main diagonal. On the main diagonal (for l = j) kernels
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are singular and will not be interpolated. In calculations, for
l = j the kernels are not changed.

In the next part of paper, kernels U
∗
lj(s, s) and P

∗
lj(s, s)

(2) are interpolated by generalized Lagrange polynomials and
are presented as follow:

U
∗
lj(s, s) =

p−1∑
a=0

m−1∑
b=0

U
(ab)
lj L

(a)
l (s)L

(b)
j (s),

P
∗
lj(s, s) =

p−1∑
a=0

m−1∑
b=0

P
(ab)
lj L

(a)
l (s)L

(b)
j (s),

(6)

where:

L
(a)
l (s) =

p−1∏
k=0,k 6=a

s− s(k)

s(a) − s(k)
,

L
(b)
j (s) =

m−1∏
k=0,k 6=b

s− s(k)

s(b) − s(k)
,

(7)

and U
(ab)
lj = Ulj(s

(a), s(b)), P (ab)
lj = Plj(s

(a), s(b)). U
(ab)
lj

and P
(ab)
lj are the values of kernels, easy to obtain by

substituting specified interpolation points (s(a), s(b)) defined
in unit square 0 ≤ s, s ≤ 1. These points, to avoid the
Runge’s phenomenon, are placed corresponding to the roots
of Chebyshev polynomials.

Proposed way of replacing conventional kernels by degen-
erate kernels is the simplest of other methods, well known in
the literature. There is no derivative calculations, contrary to
the Taylor series expansion, as well as no integral calculation
and solving system of algebraic equations, contrary to least
squares method. Our method requires to calculate values of
functions in interpolation nodes only and to substitute them
into (6). Therefore, an accuracy of interpolation is determined
by the number and the kind of nodes arrangement in unit
square.

B. Accuracy analysis of the kernels interpolation with dif-
ferent number and kind of nodes arrangement

Kernels U
∗
lj(s, s), P

∗
lj(s, s) in PIES are functions of two

normalized parameters s, s defined in unit square 0 ≤
s, s ≤ 1 and contain relationship between corresponding
segments l and j. Accuracy of the solutions obtained by
PIES will be conditioned, among others, by the accuracy
of kernels interpolation. Therefore, we decide to examine,
how the number and kind of nodes arrangement, in square
domain (0 ≤ s, s ≤ 1), influences the interpolation error.
Interpolation accuracy also will be tested in case of different
relationship between segments.

Degenerate kernels can be accurately and easily obtained
by the interpolation of the kernels U

∗
lj(s, s) and P

∗
lj(s, s)

using generalized (into two variables function) Lagrange
polynomials, as presented in (6). The main advantage of such
interpolation is that there is only need to calculate values of
functions U (ab)

lj = Ulj(s
(a), s(b)) and P (ab)

lj = Plj(s
(a), s(b))

(in predefined in square domain nodes 0 ≤ s, s ≤ 1 of
interpolation) and substitute them into generalized interpo-
lation Lagrange polynomials (6). The only problem is that
such interpolation should be obtain for different relationship
between segments. In other word for different indexes l, j.

We have tested two arrangements of nodes: uniform and at
places corresponding to the roots of Chebyshev polynomials
of the first kind. Better solutions are obtained for the second
way of arrangement. On Fig. 1 we presented graphical
visualization of interpolation (5 nodes) of the kernel U

∗
lj(s, s)

for adjacent segments comparing to exact solution.

Fig. 1. Interpolation of kernel U∗
lj(s, s) for adjacent segments

Interpolation of kernel U
∗
lj(s, s) for such nodes arrange-

ment according to its number are presented in Tab. I, where
errors are obtain for 100× 100 measuring points using (8).

||E(f)||2 =
{ 1

n

n∑
i=0

[f(xi)− f∗(xi)]2
}0.5

· 100%, (8)

where f(xi) is the exact solution in points, f∗(xi) is the
solution obtained by interpolation and n is the number
of measuring points. Solutions are obtained for adjacent
segments.

TABLE I
INTERPOLATION ERROR [%] OF KERNEL U

∗
lj(s, s)

5 8 10 13 15 18 20

1.9027 1.1678 0.9272 0.7057 0.6070 0.4996 0.4456

0
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1

1.2
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1.6

1.8

2

5 8 10 13 15 18 20

E
rr

o
r 

[%
]

Number of interpolation nodes

Fig. 2. Interpolation error of kernel U∗
lj(s, s)

As we can see in Tab. I (and Fig 2), increasing number
of nodes (arranged at places corresponding to the roots of
Chebyshev polynomials) results in decreasing interpolation
error of kernel U

∗
lj(s, s).

Similarly, we can obtain graphical visualization of La-
grange interpolation of kernel P

∗
lj(s, s) for different relation-

ship between segments. It is presented in Fig. 3 for adjacent
segments using 5 interpolation nodes.
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Fig. 3. Interpolation of kernel P ∗
lj(s, s) for adjacent segments

In case of solutions located close to points of segments join
(corner points), we have rapid change of values of P

∗
lj(s, s)

(Fig. 3). Therefore, we decided to present in Fig. 4 solutions
only in points located at some distance from the corner
points for better readability of the chart. We present solutions
obtained using 5 (Fig. 4(a)) and 20 (Fig. 4(b)) interpolation
nodes.

(a) 5 interpolation nodes

(b) 20 interpolation nodes

Fig. 4. Interpolation of kernel P ∗
lj(s, s)

Next, we analyse interpolation error of kernel P
∗
lj(s, s)

for adjacent segments and for different number of nodes
arranged at the roots of Chebyshev polynomials. It turns out
that, as shown in Tab. II and Fig. 5, we need greater number
of interpolation nodes comparing to kernel U

∗
lj(s, s) (Tab. I).

TABLE II
INTERPOLATION ERROR [%] OF KERNEL P

∗
lj(s, s)

5 8 10 13 15 18 20 50 90 100

1335 1322 1312 1294 1280 1257 1240 886 199 0

0

200

400
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800

1 000

1 200

1 400

5 8 10 13 15 18 20 50 90 100

E
rr

o
r 

[%
]

Number of interpolation nodes

Fig. 5. Interpolation error of kernel P ∗
lj(s, s)

Furthermore, we test the accuracy of interpolation of the
kernel P

∗
lj(s, s) in case of not adjacent segments. Obtained

solutions using 5 interpolation nodes are presented on Fig.
6.

Fig. 6. Interpolation of kernel P ∗
lj(s, s) for not adjacent segments

It should be noted, that we can use significantly lower
number of nodes comparing to interpolation for adjacent
segments.

V. PIES FOR DEGENERATE KERNELS AND IT SOLUTIONS

Substituting kernels (6) into (1) we obtain PIES with
degenerate kernels for l 6= j in following form:

1

2
ul(s) =

n∑
j=1

{ p−1∑
a=0

m−1∑
b=0

U
(ab)
lj L

(a)
l (s)

1∫
0

L
(b)
j (s)pj(s)

−
p−1∑
a=0

m−1∑
b=0

U
(ab)
lj L

(a)
l (s)

1∫
0

L
(b)
j (s)uj(s)

}
Jj(s)ds,

(9)

where j, l = 1, 2, ..., n and for l = j with non-degenerate
kernels:

0.5uj(s) =

1∫
0

{U∗jj(s, s)pj(s)−

P
∗
jj(s, s)uj(s)}Jj(s)ds,

(10)

It turns out, that in degenerate kernels (for l 6= j) we
can separate variables and finally we can put Lagrange
polynomials L

(a)
l (s) (depend on variable s only) outside

integral. Now, there are only polynomials L(b)
j (s) (depend

on variable s and unknown functions uj(s) or pj(s)) inside
the integrals. Therefore, equations (9) and (10) will be called
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as degenerate parametric integral equations system (DPIES)
in contrast to conventional PIES with non-degenerate kernels
(1).

To solve (9) and (10) we have to find unknown functions
uj(s) or pj(s). We assumed approximation series ũj(s)
or p̃j(s) (3), with application of Lagrange polynomials
as base functions with unknown functions u

(k)
j , p(k)

j . To
find unknown values, we test classical collocation method
discussed in section 2.

In collocation method we substitute so-called collocation
points s(c) (where sl−1 < s(c) < sl) into (9) and (10). We
apply approximation series (3) into (9) and (10) and finally
degenerate PIES for l 6= j is presented as follows:

0.5

M∑
k=0

u
(k)
l T

(k)
l (s(c)) =

n∑
j=1

{
p−1∑
a=0

m−1∑
b=0

U
(ab)
lj L

(a)
l (s(c))

1∫
0

L
(b)
j (s)

M∑
k=0

p
(k)
j T

(k)
j (s)−

p−1∑
a=0

m−1∑
b=0

P
(ab)
lj L

(a)
l (s(c))

1∫
0

L
(b)
j (s)

M∑
k=0

u
(k)
j T

(k)
j (s)

}
Jj(s)ds,

(11)

where j, l = 1, 2, ..., n and for l = j:

0.5

M∑
k=0

u
(k)
j T

(k)
j (s(c)) =

1∫
0

{
U

∗
jj(s

(c), s)

M∑
k=0

p
(k)
j T

(k)
j (s)−

P
∗
jj(s

(c), s)

M∑
k=0

u
(k)
j T

(k)
j (s)

}
Jj(s)ds,

(12)

We can obtain so-define DPIES in collocation points
s(c) in explicit form for particular boundary value problem.
Values outside the integral are calculated on the base of
formulas U (ab)

lj L
(a)
l (s(c)) or P (ab)

lj L
(a)
l (s(c)). These formulas

are the product of the values of Lagrange polynomials in
collocation points s(c) and values U (ab)

lj or P (ab)
lj obtained

substituting the interpolation nodes into base kernels (2).
In this way we obtain vertical n-dimensional vector for

segments l = 1, 2, 3, ..., n (assuming only one collocation
point on each segment). While calculated values of inte-
grals (for j = 1, 2, 3, ..., n) compose horizontal vector, n-
dimensional as well. When we define greater number of
collocation points on segment, dimension of the vector is the
product of the number of collocation points on segment by
the number of segments. We can also set a different number
of collocation points on each segment.

Even from theoretical point of view, that strategy has a
significant advantage over direct application of collocation
method for solving PIES. In conventional PIES we have to
calculate integrals for all of matrix elements. In proposed
strategy only the elements on diagonal are calculated directly
from (12), whilst outside diagonal (l 6= j) they are calcu-
lated as the product of two vectors, obtained in (11). Such
strategy significantly decrease computer memory occupation.
The number of calculations is significantly less than in
conventional PIES. The proposed concept also significantly
reduces the number of integral calculation necessary to obtain
coefficients outside the main diagonal. These coefficients are
calculated by multiplying previously obtained two vectors.
This is less time-consuming operation than integration.

VI. EFFECTIVENESS OF THE PROPOSED METHOD -
EXAMPLES

We considered boundary value problem modeled by
Laplace equation in triangular domain. We should define only
corner points presented on Fig. 7 to model the linear shape of
boundary of the problem. The way of defining the problem
is presented in Fig. 7. There is also marked a cross-section
inside the domain, where solutions are obtained (10 points).

-1 x

y

-1

-2

1 2

1

2

a=3
P

0

P
1

P
2

Fig. 7. Way of defining the shape of the boundary

We defined Dirichlet boundary conditions by the following
formula [10]:

u = 0.5(x2 + y2). (13)

For so-defined boundary conditions, there are an analytical
solutions described by following formula [10]:

ua =
x3 − 3xy2

2a
+

2a3

27
. (14)

We compare solutions obtained by PIES with degenerate
and non-degenerate kernels to analytical ones as is presented
in Tab. III. We analyse the impact of the interpolation accu-
racy of both kernels on solutions accuracy and computing
time. Intel Core i5-4590S (4 cores, 4 threads, 3.0 GHz,
6MB cache memory) with 8 GB RAM is used during tests.
We use Microsoft Visual Studio Professional 2013 (version:
12.0.21005.1 REL) compiler on Windows 8.1 64-bit system.

TABLE III
SOLUTIONS IN DOMAIN (AVERAGE RELATIVE ERROR AND TIME)

PIES
DPIES DPIES

(U-5, P-5) (U-5, P-15)

average relative error [%] 0.01 5.85 0.12

computing time [ms] 1.625 1.5 1.654

As can be seen in Tab. III, application of 5 interpo-
lation nodes (in both kernels) causes a slight reduction
of computing time, however the accuracy of the solutions
decreases a lot. Therefore, we decide to increase accuracy of
interpolation of kernel P (15 interpolation nodes). It results
in a significant improve of accuracy, but increase computing
time. Because presented example is elementary we are not
able to draw unambiguous conclusion. Hence, we decide to
consider an example with more complex shape of boundary
with known analytical solution. The shape will be defined
with different number of boundary points.
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We consider the problem of elliptical domain described by
formula: x2/a2 + y2/b2 = 1 where the following Dirichlet
boundary conditions are defined: u = 0.5(x2 +y2) [10]. The
shape of boundary is modeled using 4 (Fig. 8a) or 8 (Fig. 8b)
boundary points. The number of segments have an impact on
the accuracy of modeled shape of boundary, therefore finally
it have an impact on the accuracy of the solutions.

P0

P1

P2

P3

P4P5

P6

P7

Ω
a=2

b=1

x

y

Ω

b=1

a=2

x

y

P0

P1

P2

P3

a)

b)

Fig. 8. Defining the shape of the boundary using a) 4, b) 8 boundary points

Analytical solution for so-defined problem is presented in
the following form [10]:

ua =
x2 + y2

2
−

a2b2(x
2

a2 + y2

b2
− 1)

a2 + b2
. (15)

Solutions are obtained in cross-section presented in Fig.
8. In Tab. IV we present analytical solutions comparing to
ones obtained using degenerate PIES and PIES with non-
degenerate kernels. Similarly to the previous example, in case
of small number of segments (8a), computing time with a
similar accuracy of the results is almost the same.

TABLE IV
SOLUTIONS IN DOMAIN (AVERAGE RELATIVE ERROR AND TIME)

Fig. 8a Fig. 8b

PIES
DPIES DPIES

PIES
DPIES DPIES

U - 5 U - 5 U - 5 U - 5
P - 5 P - 15 P - 5 P - 15

error [%] 1.34 1.13 1.14 0.09 0.07 0.07

time [ms] 2.282 2.031 2.267 5.734 4.312 5.721

It changes in case of greater number of segments (8b),
what additionally improve the accuracy of modeling, and
hence solutions accuracy also. Then the computing time of
solutions, with similar accuracy, in PIES method is 5.7 ms,
when in DPIES is 4.3 ms. We can also note, that sufficient
accuracy was obtained with just 5 interpolation nodes (for
both kernels).

In conclusion there are many factors that affect the compu-
tation time and the accuracy of the solutions. But presented
examples prove, that the proposed strategy gives hope for the
effective solving of the boundary value problems, however
it requires more detailed studies.

VII. CONCLUSIONS
In this paper, we replaced kernels in conventional PIES by

degenerate kernels and obtained DPIES. To obtain degenerate
kernels we used generalized Lagrange interpolation for two
variables. The accuracy of interpolation of the kernels is
determined by the number of nodes and way of its ar-
rangement in unit square(the domain of kernel definition).
It was noted, that in order to obtain satisfactory solutions,
we need more interpolation points in case of kernel P than
in kernel U . We should also use more interpolation nodes
for adjacent segments. The collocation method, previously
used for solving conventional PIES with non-degenerate
kernels, is used in DPIES, as well. The effectiveness of such
strategy was tested on examples of problems described by
Laplace equation. We solved two examples and we compared
solutions obtained by DPIES, conventional PIES with non-
degenerate kernels and analytical ones. Based on obtained
solutions, we can summarized, that application of degenerate
kernels in PIES reduces the computing time without signifi-
cant loss of solutions accuracy. However, in order to confirm
the reliability of final conclusions, we should conduct tests
on more complex examples. It will be the next step of our
studies.
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