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Abstract—The paper is devoted to theory of classical Young
measures. It focuses on the situation where a sequence of
rapidly oscillating functions has uniform representation in a
sense that is defined in this article. A proposition is stated
which characterises the Young measures generated by such a
class of sequences. This characterisation enables one to find an
explicit formulae for the density functions of these generated
measures as well as the computation of the values of the related
Young functionals. Examples of possible applications of the new
results are presented as well.

Index Terms—Young measures, Young functionals, fast-
oscillating sequences, periodic functions, uniform distribution.

I. INTRODUCTION

NON-convex optimization problems are at the core of
various contemporary engineering applications. They

arise e.g. in optimal control, nonlinear evolution equation,
variational calculus, micromagnetic phenomena in ferro-
magnetic materials as well as in microstructures theory in
continuum mechanics. It appears however that the optimiza-
tion problems may not possess a classical minimizer espe-
cially when the minimizing sequences have rapid oscillations.
Such a behavior of the sequences requires a generalization
of the notion of a solution for such problems. It often can
be achieved by means of Young measures.

Young measures theory has a long history. It starts with
the seminal work [7] of L. C. Young who introduced the
notion ( called by himself “generalized curves”) to provide
extended solutions for some non-convex problems in varia-
tional calculus. He developed these pioneering ideas in [8].

Nowadays we are provided with vast literature where
the Young measures are defined under different assump-
tions about underlying spaces and analysed from different
standpoints. However this paper focuses on the classical
Young measures related to sequences of rapidly oscillating
functions. In the next section we introduce some preliminary
definitions and results. In Section III we define some classes
of fast-oscillating sequences and state new proposition that
allows us to find explicit forms of the density functions
of related classical Young measures in various situations.
Section IV presents some examples that illustrate the possible
applications of the main result stated in Section III. Finally
we make some remarks about possible further extensions and
applications.

II. PRELIMINARY DEFINITIONS AND RESULTS

We now introduce basic notions of the Young measure
theory from the point of view of nonlinear elasticity. Our pre-
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sentation follows the approach taken in [5], where the reader
is referred to for detailed information along with necessary
notions from functional analysis and further bibliography.
Another book treating Young measures thoroughly in the
context the optimization theory and variational calculus is
[6].

Let Ω be a nonempty, open and bounded subset of Rd

with smooth boundary. Denote by L∞(Ω) the Banach space
of essentially bounded functions defined on Ω with values in
a compact set K ⊂ Rl. Let {fn} be a sequence of functions
converging to some function f0 weakly∗ in L∞ and denote
by ϕ a continuous real valued function with domain Rl.
By the continuity of ϕ the sequence {ϕ(fn)} is uniformly
bounded in L∞ norm and Banach-Alaoglu theorem yields
the existence of the (not relabeled) subsequence such that
ϕ(fn) → g weakly∗ in L∞. However, in general g is not
ϕ(f0), moreover, it is not even a function with domain in
Rl. To quote from [5]: ’The Young measure associated with
{fn} furnishes the link among {fn}, f0, g and ϕ.’ We now
state the basic existence theorem for Young measures in its
full generality.

Theorem 2.1: (see Theorem 2.2 in [5]) Let Ω ⊂ Rd be a
measurable set and let zn: Ω→ Rl be measurable functions
such that

sup
n

∫
Ω

h(|zn|)dx <∞,

where h: [0,∞) → [0,∞) is a continuous, nondecreas-
ing function such that limt→∞ h(t) = ∞. There exist
a subsequence, not relabeled, and a family of probability
measures ν = {νx}x∈Ω (the associated Young measure)
depending measurably on x with the property that whenever
the sequence {H(x, zn(x))} is weakly convergent in L1(Ω)
for any Carathéodory function H(x, λ): Ω×Rl → R∪{∞},
the weak limit is the function

H(x) =

∫
Rl

H(x, λ)dνx(λ).

The family of probability measures ν = {νx}x∈Ω is called
the Young measure associated with the sequence {zn}.

Let us recall that the Carathéodory function is a function
that is measurable with respect to the first and continuous
with respect to the second variable.

It often happens that the Young measure ν = {νx}x∈Ω

does not depend on x ∈ Ω. In this case we denote it merely
by ν; such Young measure is called homogeneous.

One may also look at the Young measure as at object asso-
ciated with any measurable function defined on a nonempty,
open, bounded subset Ω of Rd with values in a compact
subset K of Rl. Such a conclusion can be derived from
the theorem 3.6.1 in [6]. Due to this theorem it can be
proved that the Young measure associated with a simple
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function is homogeneous and is the convex combination of
Dirac measures. These Dirac measures are concentrated at
the values of the simple function under consideration while
coefficients of the convex combination are proportional to
the Lebesgue measure of the sets on which the respective
values are taken on by the function; see [4] for details and
more general results concernig simple method of obtaining
explicit form of Young measures associated with oscillating
functions (similar, although mathematically more compli-
cated situation, is met in elasticity when the deformed body
has a laminate structure; see e.g. Section 4.6 in [3]). On
the basis of this concept a more general characterisation of
a Young measure associated with any Borel function was
introduced in [2]. The main result stated there provides direct
link between the Young measure concepts and the probability
theory. Namely, the following theorem holds:

Theorem 2.2: Let f : Rd ⊃ Ω → K ⊂ Rl be a Borel
function with Young measure ν. Then ν is the probability
distribution of the random variable Y = f(U), where U has
a uniform distribution on Ω.

Now, let us recall the notion of classical Young measure
associated with a sequence of oscillating functions {fk}, see
e.g. [6].

Definition 2.1: The classical Young measure generated by
the sequence {fk} is a family of probability measures ν =
{νx}x∈Ω satysfying the condition:

for any Carathéodory function H∫
Ω

H(x, fk(x))dx
k→∞−→

∫
Ω

∫
K

H(x, y)dνx(y)dx (1)

The application that assignes to any Carathéodory function
H the integral given on the right-hand side of the above
equation is called Young functional. Its values on H will be
denoted here as YF(H) while the integrals on the left-hand
side of 1 will be denoted as C(fk, H)

Basically, the above definition presents the original under-
standing of the Young measure, as introduced in his work
[8]. These measures are of our main concern in this paper.

III. MAIN RESULTS

A. Rapidly oscillating sequences with uniform representation

Let function f : [a, b) → K ⊂ R be a Borel function
defined on the interval [a, b), b > a, and let fe:R → K
be the periodic extension of f (with the period equal to
T = b− a).

Let Ω be a given interval. A sequence {fk} of functions
fk: Ω→ K, k = 1, 2, ... defined by the formula

fk(x) = fe(kx), x ∈ Ω (2)

will be called a Rapidly Oscillating Sequence with Uniform
representation f , and denoted as ROSU(f ). In such a case
we will also say that f generates rapidly oscillating sequence
{fk}. Note, that the interval Ω - the domain of elements of
ROSU(f ) - does not have to be the same as [a, b) i.e. the
domain of f .

Example 1 In this example we present illustrative plots
of some elements of ROSU(f ), where

f(x) = 2− 2 sin(x), x ∈ [0, 3π/2) (3)

Its purpose is not only to illustrate the behaviuor of ROSU
(which is quite obvious, in fact) but also to illustrate the
concept of classical Young measure associated with the
sequence {fk}. The plots of the function f given by (3) as
well as of examplary elements of ROSU(f ) with the domain
Ω = [2, 6) are presented in Fig.1. Namely it shows the plots
of f1, f5 and f50.

It can be easilly seen that the graphs of fk are getting
denser when k tends to infinity. Unfortunately, a conventional
weak* cluster point of {fk} loses most of the information
about the fast oscillations in {fk} because, in some sense, it
takes into account only the mean values of {fk} - as integrals
do. That is why we need a new concept of the limit and here
the theory of Young measures helps us. If νx is the Young
measure associated with {fk} then, roughly speaking, for any
measurable set A ⊂ K the intuitive meaning of νx(A) is the
probability that for an infinitesimally small neighbourhood S
of x ∈ Ω and sufficintly large k’s we can ”find” fk(s) in A,
when s changes within S. The ”density” of the values in K
can be observed in the plot (d) (for f50 ) where the ”more
probable values” create darker straps in the figure.

B. Classical Young measures generated by the ROSU(f )

It results directly from the definition of ROSU(f ) that
its behaviour, as k tends to infinity, is exactly the same
in every neighbourhood of any x ∈ Ω. In other words, its
asymptotic behaviour in an arbitrarilly small interval I ⊂ Ω
does not depend on where the interval is placed within the
domain. Consequently, it is obvious that the classical Young
measure generated by the ROSU(f ) is the homogeneous
Young measure (i.e. it does not depend on x ∈ Ω).

Now, let US denote a random variable uniformly dis-
tributed on S. Let us consider two functions g1 : Ω1 → K
and g2 : Ω2 → K. We will say that the two functions identi-
cally transform a uniform distribution if the distributions of
the random variables g1(UΩ1) and g2(UΩ2), are the same.
This fact will be denoted by g1 ≈ g2. Obviously the ”≈” is
the equivalence relation.

Note that if the ROSU(f ) is defined on the same interval as
the generating function f , then any of its elements transform
a uniform distribution identically as the function f , i.e.
fk ≈ f for any k = 1, 2, .... Now let us consider the case
where the ROSU(f ) is defined on interval Ω that is different
than the domain [a, b) of the generating function f . In such
a case it can be seen that fk(UΩ)

D→ f(U[a,b)), where D→
denotes the convergence in distribution, see [1]. In other
words the distribution of f(U[a,b)) is a vague limit of the
distributions of fk(UΩ). Indeed, for k’s large enough so the
length of interval Ω is greater than (b − a)/k we have for
any measurable subset A ⊂ K:

|P (fk(UΩ) ∈ A)− P (f(U[a,b)) ∈ A)| < 1/k

Finally, by Theorem 2.2 we know, that the distribution
of Y = f(U[a,b)) is the Young measure associated with
the function f . Thus we can formulate the following result
concerning classical Young measures.

Proposition 3.1: Classical Young measure generated by
ROSU(f ) is the homogeneous Young measure. This measure
is identical with the distribution of the random variable
Y = f(U[a,b)).
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Fig. 1: A function f given by Eq. (3) and functions f1, f5 and f50 belonging to ROSU(f ) with the domain Ω = [2, 6).
Plots of the functions f, f1, f5 and f50 are labeled as a, b, c, and d, respectively

IV. APPLICATIONS AND EXAMPLES

On the basis of the above general description of the
classical Young measure generated by ROSU(f ) we can
obtain a number of rules which allow one to find an explict
form of the classical Young measure in various specific cases.
For example, let us consider the following situation.

Let [a, b) be the interval-domain of the function f . Let us
consider an open partition of [a, b) into a number of open
intervals I1, I2, . . . , In such that the intervals are pairwise

disjoint and
n⋃
i

Ii = [a, b], where A denotes the closure of

the set A.
Let function f be continuously differentiable on each

interval of the partition and let f ′(x) 6= 0 for all x ∈
n⋃

l=1

Il

Using the well-known probabilistic result concernig the
distributions of such functions of random variables we can
obtain the following corollary of the Proposition 3.1.

Corollary 4.1: The classical Young measure generated by
any ROSU(f ) is a homogeneous one and its density g with
respect to the Lebesgue measure on K is of the following
form

g(y) =
1

b− a

n∑
l=1

|h′l(y)|1Dl
(y) (4)

where hl is the inverse of f on the interval Il, while
Dl = f(Il) is the domain of hl. The symbol 1 stands for the
charactertistic function of the set indicated in its subscript.

To show how Proposition 3.1 works in practice, let us con-
sider a specific function f and an exemplary Carathéodory
function H for which both sides of the Eq. (1) can be
computed precisely.

Example 2
Let us consider a function f(x) = sinx defined on the

interval [0, 2π). Now, let the ROSU(f ) be defined on the
interval [2, 4).

Let us compute the integrals C(fk, H) that appears on the
left-hand side of the Eq. 1 for the exemplary Carathéodory
function H(x, y) = xy2. We get

C(fk, H) =

∫ 4

2

H(x, fk(x))dx =

∫ 4

2

x sin2(kx)dx

=
1

8k2
[cos(4k)− cos(8k) + 4k(6k + sin(4k)− 2 sin(8k))]

The left hand side of the Eq. 1 is a limit of the above
expression when k tends to infinity, so it equals 3.

In order to compute the value of the Young functional
YF(H), i.e. the integral given by right-hand side of the Eq.
1 we need to know the classical Young measure generated by
the ROSU(f ). For this purpose we make use of the Corollary
4.1 and receive the following formula:

g(y) =
1

π
√

1− y2
1(−1,1)(y)

Thus the value of the Young functional in the considered
case is the following (recall that the Young measure νx is
homogeneous in this case, so subscript ”x” is ommited) :

YF(H) =

∫
Ω

∫
K

H(x, y)dν(y)dx =

∫
[2,4)

∫
(−1,1)

H(x, y)g(y)dydx =

4∫
2

1∫
−1

xy2

π
√

1− y2
dydx = 3

As we can see, the ”whole information” about the rapid
oscillations in this case is contained in the clasical Young
measure and - due to the Proposition 3.1 - can be revealed
with the help of the Corollary 4.1. In this example the con-
sidered generating function f has continuously differentiable
extension fe and the integrations needed to compute the
C(fk, H) were easy to perform. But although this example is
intentionally simple, it perfectly shows the benefits resulting
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from our proposition. It is quite clear that even in this
case, where the oscillations have such smooth nature, the
computation of the limit of C(fk, H) for more complex
Carathéodory functions could be much more difficult task
than the calculation of the value of the Young functional
YF(H). Moreover, the problem is getting even more difficult
if the extension fe of the generating function f is piecewise
continuous with countably many discontinuity points. The
next example deals with such a case.

Example 3 (continuation of Example 1)
Let us consider the generating function f given by Eq. 3

and ROSU(f ) introduced in Example 1. Although we use
again sinus function as the ”basis” for the definition of
f , it appears that due to the discontinuity of its extension
fe the general symbolic form for the integrals C(fk, H)
cannot be computed, as long as k is unspecified. They can
be only computed for given values of k (and not for large
values) or approximated numerically, but even this can be
very challenging task for such a functions. Moreover it is cer-
tainly insufficient for calculation of the limiting value, which
is our aim. With the help of Wolfram Mathematica 10.4
software we computed numerically the integrals in the con-
sidered case assuming the Carathéodory functions H(x, y) =
x2y3. The exemplary computed values are as follows (re-
call that the domain of ROSU(f ) is the interval [2, 6)):
C(f5, H) = 941.71, C(f10, H) = 891.05, C(f50, H) =
942.32, C(f100, H) = 956.47, C(f500, H) =
953.92, C(f600, H) = 955.75

As we can see it is not easy to guess what is the limit
value of the sequence {C(fk, H)}.

Now to compute this limit let us make use of the Young
concept. For this purpose we need the density function g
of the classical Young measure genereted by the ROSU(f ).
With the help of Corollary 4.1 in this case we obtain:

g(y) = 4/(3π
√

4− (y − 2)2)1(0,2)(y)

+2/(3π
√

4− (y − 2)2)1[2,4)(y)

Thus the value of the Young functional on H is the following:

YF(H) =

∫
Ω

∫
K

H(x, y)dν(y)dx

=

6∫
2

2∫
0

4x2y3

3π
√

4− (y − 2)2
dydx

+

6∫
2

4∫
2

2x2y3

3π
√

4− (y − 2)2
dydx

=
832(45π − 44)

27π

The above limit value could hardly be guessed on the
basis of the approximately computed values of the elemnents
of {C(fk, H)}. The decimal form of the limit, which is
955.09, differs from the computed numerically value of
C(f600, H) = 955.92. It is worth mentioning at this point
that the numerical integration of C(fk, H) for k > 600 failed
to converge due to highly oscillatory integrand.

V. FINAL REMARKS

The probability theory provides us with a number of
different versions of the theorems concerning the shapes
of distributions of functions of random variables/vectors.
Consequently various other rules for computing explicit
formulae for the density functions of classical Young mea-
sures generated by ROSU(f ) can also be developed on the
basis of the new result stated in Proposition 3.1. We are
also sure that the same approach enables development of
analogous results related to rapidly oscillating sequences
with uniform representation which are defined on open and
bounded subsets of Rd. It is promising direction of future
research.

The possibility of derivation of explicit formulae for the
density functions of classical Young measures is not the
only benefit resulting from our Proposition 3.1. In many
interesting cases explicit formulae for these densities cannot
be found. For instance, if one wants to make use of Corollary
4.1 they have to obtain the inverses of f on particular subin-
tervals of its domain, but it is not always possible. However
in all such cases thanks to Proposition 3.1 one may use
directly Monte Carlo simulations in order to compute values
of the Young functionals. That fact significantly broaden the
range of possible applications of our main result.
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