

Abstract— Implicit requirements (IMRs) in software

requirements specifications (SRS) are subtle and need to be

identified as users may not provide all information upfront. It is

found that successful functioning of a software crucially

depends on addressing its IMRs. This work presents a novel

system called PROMIRAR with an integrated framework of

Natural Language Processing, Ontology and Analogy based

Reasoning for managing Implicit Requirements. It automates

early identification and management of IMRs and is found

helpful in targeted application domain. We present the

PROMIRAR system with its architecture, demo and

evaluation.

Index Terms— analogy-based reasoning, implicit

requirement, natural language processing, ontology,

requirement engineering

I. INTRODUCTION

State-of-the-art: IMR management deals with

identification and handling of implicit requirements. Studies

such as [4, 5, 12] made use of ontology-based approaches

and analogy-based reasoning for IMR identification. [7, 13]

managed implicit requirements by addressing implicit

knowledge. These systems lack the simulation of human

reasoning, e.g., a human software engineer can identify

IMRs from a software requirements specifications (SRS)

document, distinguish them from explicit requirements and

manage them further.

PROMIRAR’s Novelty: We propose a system that

embodies Analogy based reasoning (ABR) for IMR

management in SRS document. ABR facilitates the reuse of

previously documented requirements specifications in the

detection of new IMRs.to simulate human reasoning. We

find ontology imperative here as facilitates formalized

semantic description of relevant domain knowledge for

IMRs. Natural Language Processing entails analyzing text to

extract useful information [8] and is thus significant in SRS

Manuscript received June 04, 2018; revised June 15, 2018. This work

was supported in part by the U.S. Department of State under Fulbright

Grant.

Onyeka Emebo is with Covenant University, Department of Computer

and Information Sciences, Ota, Nigeria (phone: +234 803-687-8407; e-

mail: onye.emebo@covenantuniversity.edu.ng).

Daramola Olawande is with Cape Peninsula University of Technology,

Department of Information Technology, Cape Town, South Africa. (e-mail:

daramolaj@cput.ac.za).

Ayo Charles is with the Department of Computer and Information

Sciences, Covenant University, Ota, Nigeria (e-mail:

charles.ayo@covenantuniversity.edu.ng).

analysis to understand similarities, identify a basis for

analogy and discover knowledge for IMRs. Our proposed

system known as PROMIRAR (PROduct for Managing

Implicit Requirements using Analogy-based Reasoning)

shows significant improvement over the state-of-the-art as

evaluation by software engineers, shows that it enhances

software development by augmenting implementation time

and reducing software bugs.

 Layout of the Paper: The rest of this paper is organized

as follows. Section 2 describes related works while Section 3

discusses the system architecture of PROMIRAR. Section 4

provides the system demo. Evaluation details appear in

Section 5. Section 6 gives conclusions and ongoing work.

II. RELATED WORK

A number of researchers have suggested numerous ways

for IMR identification. While several have developed tools,

others have given conceptual and theoretical frameworks

and other such as software engineers, requirement engineers

have taken on an investigative approach to get real life views

on the reality of the specified theories, ideologies and

concepts.

A two part research is conducted by [3] targeted at

ascertaining the impacts of explicit and tacit knowledge

conveyed throughout the software development process. A

method to authenticate the spectrum of tacit knowledge in

software development is used in the first phase and a

conceptual framework of a model for tacit to explicit

knowledge transfers is part of the second phase.

In MaTREx [14], a literature review on the usefulness of

implicit knowledge for requirement engineering is given.

Systems such as NAI, SR-elicitor and ARUgen were

reviewed. Their focus on is on presenting such developing

techniques and tools that enhances requirements information

management via non-provenance requirements, determining

the existence of tacit knowledge from tracing of

presuppositions, automatic trace recovery, etc.

A few studies has covered Requirements reuse for the

detection and management of IMRs.

In [12], a system that uses semantic case-based reasoning

for managing IMRs is proposed. A tool was modelled,

which aids in the management of IMRs by making use of

analogy-based requirements reuse of earlier known IMRs is

further presented. This approach guarantees the detection,

organized documentation, right prioritization, and

development of IMRs, which overall improves the

PROMIRAR: Tool for Identifying and

Managing Implicit Requirements in SRS

Documents

Onyeka Emebo, Daramola Olawande, Ayo Charles

Proceedings of the World Congress on Engineering and Computer Science 2018 Vol I
WCECS 2018, October 23-25, 2018, San Francisco, USA

ISBN: 978-988-14048-1-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2018

attainment of software development.

Authors in [17] presented a model that computes matches

between requirements specifications in order to support their

analogical reuse. A model based on the concept of semantic

modeling abstractions with generalization, attribution and

classification was formulated.

Based on this study of the literature, our PROMIRAR

system is unique as a result of the fact that it brings together

ABR with natural language processing and ontology for

early identification and management of IMRs. It also

outperforms existing systems as evident from the

experiments conducted.

III. PROMIRAR SYSTEM ARCHITECTURE

In this section we briefly outline the architecture of the

PROMIRAR system. Figure 1 depicts the PROMIRAR

pipeline with its core modules.

Fig 1: The PROMIRAR Pipeline

A. Data Input

The input into PROMIRAR is a preprocessed Software

Requirements Specification (SRS) document. Preprocessing

entails a manual method of extracting boundary sentences

from the requirements document and additionally replacing

tables, images and figures in the correspondent written

format.

B. NL Processor

The NL processor module enables the handling of natural

language requirements for the process that enables the

feature extractor. The essential natural language processing

tasks fulfilled in this architecture are as follows: i) selection

of sentence, ii) Word Tokenization iii) tagging of Parts of

speech (POS) iv) detection of entity v) and Parsing. The

various NLP operations were implemented using Apache

OpenNLP library. The text processing functionality of

PROMIRAR that is a part of its NL Processor is illustrated

in Figure 2. Raw text is input to this module from

requirements documents. It conducts sentence segmentation

to output strings, subject to tokenization. The tokenized

sentences undergo POS (part of speech) tagging. These POS

tagged sentences are then subject to entity detection. This

gives chunked sentences as a list of trees which undergo

relation detection. The ontology library module plays a very

important role in identifying these entities and relations,

using the ontology structure O defined as O= of

concepts, relations and axioms respectively.

Fig 2: Text processing in NL Processor

C. Ontology Library

The Ontology Library (OL) module form the PROMIRAR

backbone, serving as the knowledge representation for

domain ontologies (for specific purposes / general business

rules). Java Protégé 4.1 ontology API was used to build the

ontology library. A part of a Course Management System

(CMS) domain ontology imported is shown in Figure 3. This

constitutes the ontograph of the steps required for

conducting registration.

Fig 3: Ontograph of Steps Needed for Registration

Proceedings of the World Congress on Engineering and Computer Science 2018 Vol I
WCECS 2018, October 23-25, 2018, San Francisco, USA

ISBN: 978-988-14048-1-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2018

D. Feature Extractor

This provides the essential rules for classifying possible

sources of IMR in a requirement document. Some of the

characteristic features that could possibly make a natural

language text implicit are outlined below as documented in

literature [6, 9, 10, 11, 20]. Ambiguity for instance lexical

and structural ambiguity have the following features i)

Existence of vague phrases and words such as “in excessive

magnitude”, ii) imprecise verbs such as “administered”, or

“excluded”, iii) Occurrence of weak phrases for example

“typically”, “commonly” and iv) Incomplete knowledge.

E. Heuristic Classifier

This is responsible for classifying the actual requirements

based on the intermediate outputs of the previous modules,

thus helping to identify the IMRs which are the ultimate

outputs of the PROMIRAR tool. It follows the pipeline of

the previous modules and is the final module to help conduct

the classification.

F. Analogy-based Reasoner

The knowledge reuse capability of the framework is

facilitated by the ABR component according to maiden [19].

The component comprise of three type of knowledge

(domain, solution and goal), which have been reflected in

the creation of the Implicit Requirements Model (IRMM).

In order to manage IMR, a reuse-based IRMM is outlined

below. This formal representation is an extension of the

formalisation presented in [11].

IRMM = < D, S, G, O, Rid, RQi, IMRid, IMRi > where D

is the software project domain description; S depicts the

solution approach the software project implemented; G

depicts the system’s goal under development; O depicts the

Ontology domain of Requirement R; Rid is a description of

the distinct id of the requirement; and RQi is a description of

the requirement statement symbolized by Rid; IMRid

describes the distinct id of the implicit requirements related

with Rid; IMRi depicts the implicit aspects related with the

requirement RQi symbolized as Rid.

The objective of the IRMM is to offer a uniform structure

for describing requirements such that it will be possible to

establish a basis for analogy reasoning. A case-based

representation of requirements will classify the known parts

of IRMM as problem specification of a case at hand, while

the unknown part will constitute the solution part. From our

IRMM, the set {D, S, G} represent the domain, solution and

goal parts of both the source and target project.

An example of a network representing the structural

isomorphism of an analogical match that exist between a

University Smart City Parking System and a Course

Management System is shown in Figure 4. These two

domains are case projects used in this study (domain objects

are denoted in oval shapes, domain terms are represented

using rectangles and lines). The potential reuse that can be

done from this analogy is at the functional and structural

parts for example the processes (e.g., “course placement”

and “sensor car park”), the data stores (e.g., “course place”

and “sensored parking space”) and finally the external

agents (“student” and “driver”). Even though the two

systems are in dissimilar domains, the two of them share

substantial features (e.g., reservations, waiting lists, places)

that aids analogical understanding and recognition.

Fig 4: An Example of a Structural Isomorphism Network

between Two Domains (a) (b).

IV. SYSTEM DEMONSTRATION

We provide a demo of our PROMIRAR system with various

snapshots. A few of these are shown below while more will

be available in a live demo. Figure 5 is a snapshot of the

screen for PROMIRAR Input and Analysis. User interaction

and I/O occur as explained next.

Fig 5: Demo Snapshot of PROMIRAR Input / Analysis Screen

A. User Interaction with the PROMIRAR Tool

The process of using the PROMIRAR tool is as follows.

Preprocess: Source documents are converted to obtain

requirements in textual format (without graphics, images,

and tables).

Proceedings of the World Congress on Engineering and Computer Science 2018 Vol I
WCECS 2018, October 23-25, 2018, San Francisco, USA

ISBN: 978-988-14048-1-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2018

Import: Requirement documents and domain ontology are

transferred to the PROMIRAR environment.

Analyze: Possible sources of IMR are outlined by the feature

extractor.

Identify: Potential IMRs are detected along with suitable

recommendations.

Manage: The recommendations are used to handle IMRs,

this could include expert opinion and then serves as the

output. Each IMR that is approved as well as its explicated

part are then stored in the case base of PROMIRAR.

B. Input/Process/Output of PROMIRAR

The text source for our demo shown here makes use of the

Course Management System (CMS) requirements

specification document [1]. This document was created for

adoption at the University of Twente and is potentially

useful in AI applications such as intelligent tutoring systems.

The requirements describes some basic functionality such as

student course enrollment, course notes and timetable

upload, grades of student and e-mails communication. An

excerpt from a sample requirements specification is as

shown in Figure 6.

Fig 6: Excerpt from CMS Requirements Specification

The process of analysis for identification of implicit

requirements uses the feature extraction module and the

heuristic classifier based on some characteristic features that

could potentially make a natural language text implicit. A

partial snapshot of the output after the analysis, to identify

potential implicit requirements as contained in the

document, appears in Figure 7. This refers to a lexical

ambiguity report pertaining to the IMRs.

Fig 7: Demo Snapshot of Lexical Ambiguity Output

Likewise, many more examples can be depicted in a live

demo to illustrate the detailed functioning of the

PROMIRAR system for identification and management of

IMRs. We would specifically consider examples useful in AI

tools, since implicit requirements are highly critical in such

applications.

V. EXPERIMENTAL EVALUATION

PROMIRAR is evaluated with real data for software

development in course management, smart cities and tactical

control. Ground truth is annotated by experts. Evaluation

metrics used are Recall R = TP/(TP + FN), Precision P =

TP/(TP + FP), F-score F = 2P * R / (P + R) where TP, TN,

FP, FN are true positives, true negatives, false positives,

false negatives respectively (TP: requirements judged by

expert and PROMIRAR as implicit, TN: both as explicit,

FP: requirements judged by PROMIRAR as implicit and

expert as explicit, FN: vice versa). A group of experts were

requested to manually highlight implicitness in the

requirement document as well as make use of the

PROMIRAR tool.

The experts are a collection of computing specialists, which

encompasses software engineers/developers, academics and

research students. Each of this expert were given this set of

instructions: 1) for each itemized requirement, highlight the

kind of implicit nature of that requirement (bearing in mind

that a particular requirement may have more than one kind

of implicitness). 2) For each itemized requirement, on a

scale of 1 to 5, state the degree of criticality of each

requirement’s implicitness. (5 = most critical to 1 = least

critical). The kinds of implicitness comprises i) Ambiguity

(A) ii) Incomplete Knowledge (IK) iii) Vagueness (V) iv)

Others (specify).

The result of the evaluation achieved by making use of the

three requirements documents, the mean precision, recall

and F-score were computed with results R=83.20%,

P=86.16%, and F=84.51% respectively. Since

PROMIRAR perform the role of detecting IMR, the

outcome of its recall is certainly more significant than its

precision. In a best case scenario, recall ought to be 100%,

as it would save human analysts from the ecclesiastical job

of analyzing the document [18]. PROMIRAR with a mean

recall value of 83.20% shows that the tool in reality is

adequate for use, as it clearly highlighted a minimum of six

out of eight IMR discovered by a human expert and this is at

par with best practices. The mean precision of 86.16%

shows that the proportion of IMR detected manually by

experts were also highlighted by the PROMIRAR too and it

is well above average. This is also at par with best practices.

The F-score which is 84.51%, clearly shows that

PROMIRAR is very efficient. Based on manual

examination, IMR highlighted by human evaluators but

missed by PROMIRAR, shows that they denote implicit

factors where PROMIRAR could not recognize the explicit

forms that could help automate the detection of IMR. A

further observation at the evaluation experiment, showed

that the PROMIRAR tool’s performance is highly influenced

by the domain ontology’s quality (i.e. the richness of

vocabulary and coverage of the ontology with respect to a

specific domain increases the accuracy of PROMIRAR).

Comparative assessment of PROMIRAR was conducted

with related tools NAI, SR-Elicitor and ARUgen [15, 20,

21]. The assessment results are summarized in Table I.

Proceedings of the World Congress on Engineering and Computer Science 2018 Vol I
WCECS 2018, October 23-25, 2018, San Francisco, USA

ISBN: 978-988-14048-1-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2018

Table I: Comparative Assessment of PROMIRAR with Other

Tools

Comparison shows that for Lexical Ambiguity and

Structural Ambiguity, PROMIRAR is better than NAI and

SR-Elicitor in Recall and F-Score; and is almost at par in

Precision. For Vagueness, PROMIRAR does better that

ARUgen across all metrics. Hence, we can conclude from

our experimental evaluation that PROMIRAR on the whole

outperforms the state-of-the-art.

VI. CONCLUSION

This paper presents a novel system called PROMIRAR to

automate early identification and management of IMRs in

SRS. A significant aspect is that it embodies commonsense

with ontology and text mining to manage IMRs.

PROMIRAR is evaluated with real data in specific

applications. It overshadows other tools for IMRs. Use of

PROMIRAR can augment implementation, reduce bugs and

enhance software development. As ongoing work, we would

consider replacing the heuristics based classifier with a

neural classifier having LSTM architecture over text. We

would also deploy a softmax layer that classifies

requirements as implicit or explicit. Applications of

PROMIRAR entail AI tools in various areas, e.g., intelligent

tutors, smart cities etc. where implicit requirements are

crucial. PROMIRAR would be very interesting to

professionals in requirements engineering and knowledge

management. It presents interdisciplinary research in these

fields, overlapping artificial intelligence and software

engineering.

ACKNOWLEDGMENT

A part of this work was conducted when Onyeka Emebo

who was a visiting scholar from Covenant University,

Nigeria embarked on Fulbright Scholar at Montclair State

University, USA. The authors greatly appreciates the source

of the Scholarship for this funding.

REFERENCES

[1] Abma, B. J. M., "Evaluation of requirements management tools with

support for traceability-based change impact analysis," Master's

thesis, University of Twente, Enschede 2009.

[2] Douglas B. Lenat, “CYC: A Large-Scale Investment in Knowledge

Infrastructure,” Comm. of the ACM 38(11), pp. 32-38, 1995.

[3] Dreyer, H., Wynn, M. G., & Bown, G. R..., “Tacit and Explicit

Knowledge in Software Development Projects: Towards a Conceptual

Framework for Analysis,” In eKnow 7th International Conference on

Information, Process and Knowledge Management (No. A, pp. 49-

52). ThinkMind, 2015.

[4] Emebo, O.; Olawande, D.; and Charles, A. “An automated tool

support for managing implicit requirements using analogy based

reasoning” In IEEE RCIS, 1–6, 2016.

[5] Emebo, Onyeka, Olawande Daramola, and Charles Ayo. "A survey

on implicit requirements management practices in small and medium-

sized enterprises." Tehnički vjesnik 24.Supplement 1, 219-227, 2017.

[6] Fabbrini, F., Fusani, M., Gnesi, S., & Lami, G, “An automatic quality

evaluation for natural language requirements,” In Proceedings of the

Seventh International Workshop on Requirements Engineering:

Foundation for Software Quality REFSQ, Vol. 1, pp. 4-5, 2001.

[7] Gervasi, V.; Gacitua, R.; Rouncefield, M.; Sawyer, P.; Kof, L.; Ma,

L.; and Nuseibeh, B, “Unpacking tacit knowledge for requirements

engineering,” Managing requirements knowledge 23–47, 2013.

[8] Gharehchopogh, F. S., and Khalifelu, Z. A., “Analysis and evaluation

of unstructured data: text mining versus natural language

processing,” In AICT, 1–4, 2011.

[9] Kamsties, E., Berry, D. M., Paech, B., Kamsties, E., Berry, D. M., &

Paech, B., “Detecting ambiguities in requirements documents using

inspections,” In Proceedings of the first workshop on inspection in

software engineering WISE’01, pp. 68-80, 2001 .

[10] Lami, G., Gnesi, S., Fabbrini, F., Fusani, M., & Trentanni, G., “An

automatic tool for the analysis of natural language requirements,”

Informe técnico, CNR Information Science and Technology Institute,

Pisa, Italia, Setiembre, 2004.

[11] Meyer, B., “On formalism in specifications,” IEEE software, 2(1), 6,

1985.

[12] O. Daramola, T. Moser, G. Sindre, and S. Biffl, “Managing Implicit

Requirements Using Semantic Case-Based Reasoning,” Research

Preview. REFSQ 2012, LNCS 7195, pp. 172–178, Springer-Verlag

Berlin Heidelberg, 2012.

[13] Olmos, K., and Rodas, J., “Kmos-re: knowledge management on a

strategy to requirements engineering,” Requirements Engineering

19(4):421–440, 1993.

[14] R. Gacitua, B. Nuseibeh, , P. Piwek, , A.N. de Roeck, , M.

Rouncefield, , P. Sawyer, , A. Willis, and H. Yang, “Making Tacit

Requirements Explicit”, Second International Workshop on

Managing Requirements Knowledge (MaRK'09) 2009.

[15] Shah, U., and Jinwala, D., “Resolving ambiguities in natural

language software requirements: A comprehensive survey,” ACM

SIGSOFT Software Engineering Notes 40(5):1–7, 2015.

[16] Singh P, Lin T, Mueller E, Lim G, Perkins T, Zhu W. “Open mind

common sense: Knowledge acquisition from the general public,” In

Proc. Conf. Cooperative Information Systems, pp.1223-1237, 2002.

[17] Spanoudakis, G., “Analogical reuse of requirements specifications: A

computational model,” Applied Artificial Intelligence, 10(4), 281-

305, 1996.

[18] Kiyavitskaya, N., Zeni, N., Mich, L., and Berry, D. M.

“Requirements for tools for ambiguity identification and

measurement in natural language requirements specifications,”

Requirements Engineering, 13(3): 207-239, 2008.

[19] Maiden, N. A. M. and Sutcliffe, A. G., “Exploiting Reusable

Specifications through Analogy,” Communications of the ACM,

34(5): 55-64, 1992.

[20] Umber, A., Bajwa, I. S., and Naeem, M. A., “NL-based automated

software requirements elicitation and specification,” In International

Conference on Advances in Computing and Communications (pp.

30-39). Springer Berlin Heidelberg, 2011.

[21] Wilson, W. M., Rosenberg, L. H., & Hyatt, L. E., “Automated

analysis of requirement specifications,” In Proceedings of the 19th

international conference on Software engineering (pp. 161-171).

ACM, 1997.

Proceedings of the World Congress on Engineering and Computer Science 2018 Vol I
WCECS 2018, October 23-25, 2018, San Francisco, USA

ISBN: 978-988-14048-1-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2018

