


Abstract— A system for efficiently running mutually related

virtual processes as a single process is called a multi-context
reasoning system. We focus on its application to automated
proof and discovery of inductive theorems in the framework of
rewriting induction and briefly survey past and current
state-of-the-art technologies of such systems. Then to deal with
lemma discovery in this framework, we present an extension of
MRIt, the multi-context rewriting induction system with
termination tools developed by Sato and Kurihara, and discuss
its effectiveness.

Index Terms— inductive theorem proving, rewriting
induction, multi-context reasoning system, lemma generation
and discovery

I. INTRODUCTION

LGEBRAIC structures often appear in various theories
in computer science as a means of representing systems

and reasoning about their properties such as their correctness.
Related technologies include term rewriting, equational
reasoning, and their application to formal methods in
software engineering.

Executable implementation of these technologies often
involves nondeterministic computation. In nondeterministic
computational processes, users and/or algorithms make a
series of choices (or decisions) at the beginning and
subsequent temporal points (or choice points). We refer to
such a series of choices as a context for such a process.
Naturally, one hopes that the context will lead to success
defined for such a computation, but it is generally not easy to
make a right decision leading to success. Surprisingly,
however, some researchers manage to make their
computation lead to success by setting parameters and
strategies beforehand to ‘appropriately’ control the
nondeterminism. This often involves many handmade
trial-and-errors and/or tricks to suppress the nondeterminism

This work was supported in part by JSPS KAKENHI Grant Numbers

16K00090 and 16K16032.
Masahito Kurihara is with the Graduate School of Information Science

and Technology, Hokkaido University, Sapporo, 060-0814 Japan (e-mail:
kurihara@ist.hokudai.ac.jp).

Haruhiko Sato is with the Department of Engineering, Hokkai-Gakuen
University, Sapporo, 064-0926 Japan (e-mail: h-sato@hgu.jp).

ChengCheng Ji is with the Graduate School of Information Science and
Technology, Hokkaido University, Sapporo, 060-0814 Japan (e-mail:
kisyousei@complex.ist.hokudai.ac.jp).

in their experiments. However, we believe that most
researchers would admit that there was a fair amount of
inappropriate settings and failures before their ‘successes’.
Thus, we should develop a highly universal technology to
solve this problem for actual successful nondeterministic
computation.

In a simple computational system, what is necessary is just
backtracking, going back to the previous choice point when
there was a failure. In a complex system with an unlimited
search space, however, backtracking is often impossible
because the system may be run indefinitely without success
or failure. Therefore, a concurrent computation (or a
sequential computation simulating concurrency) is
necessary. However, a naïve implementation of such a
concurrency often learns the hard way, facing the reality in
which the number of processes exponentially grows too large
to be practical.

To solve this problem, we have been developing a
computational system in which a large amount of
computation and reasoning can be done efficiently in a single
process. This idea is based on empirical knowledge that
processes with ‘similar’ contexts often have many mutually
related computational tasks that can be carried out
simultaneously since they involve common computation.
Though the average computational complexity may still be
exponential even in such a system, one can handle larger
problems in practice by suppressing the base of the
exponential function with a special mechanism implementing
the idea described above.

Such a system for efficiently running mutually related
virtual processes as a single process is called a multi-context
reasoning system [1]. Focusing our attention on its
application to automated proof and discovery of inductive
theorems in the framework of rewriting induction [2], we
briefly survey past and current state-of-the-art technologies
of such systems. Then to deal with lemma discovery in this
framework, we present an extension of MRIt, the
multi-context rewriting induction system with termination
tools developed by Sato and Kurihara [1], and discuss its
effectiveness.

In Section 2, we describe the general idea of a
multi-context reasoning system and its past development. In
Section 3, we discuss three types of lemma-discovery
methods necessary for powerful inductive theorem proving.
In Section 4, we discuss the new ideas being developed on

Automated Proof and Discovery of Inductive
Theorems with Rewriting Induction over

Multi-Context Reasoning Systems:
State-of-the-Art Technologies and Perspectives

Masahito Kurihara, Haruhiko Sato, and ChengCheng Ji

A

Proceedings of the World Congress on Engineering and Computer Science 2018 Vol I
WCECS 2018, October 23-25, 2018, San Francisco, USA

ISBN: 978-988-14048-1-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2018

multi-context lemma discovery. In Section 5, we provide
discussion and give concluding remarks.

II. MULTI-CONTEXT REASONING SYSTEMS FOR ALGEBRAIC

STRUCTURES

A. Multi-completion

The purpose of multi-context reasoning systems for
algebraic structures is to effectively and efficiently handle
equations in the form s = t and rewrite rules in the form
s t , where the latter can be obtained by directing the
former from left to right (or from right to left). The equations
and rewrite rules consist of two terms s (the left-hand side)
and t (the right-hand side). A term is either a variable or
function symbol followed by n terms as arguments, where the
nonnegative integer n denotes the arity of this function
symbol. A set of rewrite rules is called a term rewriting
system.

With the common ideas and technologies of multi-context
reasoning, one can develop various special-purpose
reasoning systems, such as equational theorem provers,
termination verifiers, and equational completion systems. For
example, multi-completion (multi-context completion),
which extends the Knuth-Bendix procedure (a
semi-algorithm) to transform the given set of equations into a
complete (i.e., terminating and confluent) term rewriting
system, associates each context of its computation with a
partial order over the set of terms to use this structure for
directing equations such that their left-hand sides are greater
than the corresponding right-hand sides in that order.

In fact, various multi-context reasoning systems stem from
the study by Kurihara and Kondo [3] on multi-completion in
1999. The basic idea is to introduce a data structure (called a
node) represented by 1 2: , ,s t R R E   where :s t is an

ordered pair of terms, and 1R , 2R  and E are sets of

contexts (called labels).
Each context implicitly specifies partial orders on the set

of terms and is associated with a virtual computational
process running a standard (Knuth-Bendix) completion
procedure [4]. The multi-completion system simulates those
procedures running in parallel, maintaining a set of nodes.

In such a system, the node structure is interpreted as
follows. For each context in 1R (2R), the associated

Knuth-Bendix process contains a rewrite rule s t (t s)
in its database because s is greater than t (t is greater than
s) in the associated partial order; and for each context in E ,
the associated process contains an equation s t . Based on
this semantics, the node is identified with 2 1: , ,t s R R E  

For example, suppose that we have the following two
nodes:

0 2 1 3 5: (),{ , },{ },{ , }b f a C C C C C  ,

0 1 2 3 4 5: ,{ , , , },{ , },a c C C C C C C   .

We can see that for contexts 0C and 2 ,C the associated

processes have rewrite rules ()b f a and ;a c thus,

they can create a new rewrite rule ().b f c

Similarly, for context 1,C we see two rules ()f a b and

.a c In this case, the completion procedure is designed to

create the equation () .f c b

Finally, for context 3 ,C we see ()b f a and a c to

create ().b f c Combining these three inferences, the

multi-completion system applies an inference rule (called
‘REWRITE-2’) to create a new node

0 2 1 3: (),{ , }, ,{ , }b f c C C C C 

clearly consistent with our interpretation. Note that in any
case, : ()b f a is rewritten to : ()b f c and no longer exists in

contexts 0 ,C 1,C 2 ,C and 3.C Therefore, the system

modifies the first node to

5: (), , ,{ }b f a C   ,

meaning that ()b f a can only exist in the process

associated with 5C .

Based on this idea, the multi-completion procedure is
formally defined as a meta-inference system (on the set of
nodes) in which the base-level inference (on the set of
equations and rewrite rules) is combined with set operations,
such as union, intersection, and difference, over the family of
labels.

Implementation of multi-completion was improved in
2004 and 2006, where each label (a set of contexts, i.e., a set
of partial orders) was represented as a Boolean function
combining atomic propositions such as f g [5]. Such a

function was compactly represented as a type of direct
acyclic graph called a binary decision diagram. An empirical
study showed that even if the number of contexts grew
exponentially by 1,000%, the execution time grew only by
1% [6].

In 2009, multi-completion was extended in a new
framework, in which contexts could be dynamically
generated and updated (rather than statically specified and
maintained) so that an arbitrary termination checker could be
dynamically invoked to determine the right context defined
by the direction of equations. This idea greatly improved the
functionality and performance of the system [7], [8].

In 2012, the implementation scheme of termination
checkers used in multi-completion was improved [9]. Before
this study, the termination checker had involved a
performance bottleneck that prevented multi-context
reasoning from working efficiently when trying to prove the
termination of multiple term rewriting systems. However,
that study proposed the implementation of termination
checkers over multi-core CPUs and the resultant parallel
execution resulted in a tenfold improvement in performance.

In 2013, Winkler et al. [10] refined the multi-completion
procedure with ‘critical pair criteria’ and isomorphisms,
giving the full proof of its correctness. They implemented
their approach in the tool mkbTT. Another improvement in
implementation was seen in 2015 in the study by Ji et al. [11],
where they exploited ‘lazy evaluation’ schemes to improve
efficiency without increasing the structural complexity of the
program reimplemented in Scala, a modern object-oriented
functional programming language.

B. Multi-context inductive theorem proving

An inductive theorem is a proposition that holds on an
algebraic model consisting of a (possibly infinite) set of

Proceedings of the World Congress on Engineering and Computer Science 2018 Vol I
WCECS 2018, October 23-25, 2018, San Francisco, USA

ISBN: 978-988-14048-1-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2018

elements (such as natural numbers, lists, and trees) and a set
of associated operations. Inductive theorems are often proved
by mathematical induction and its extension. Induction is a
critical notion in software science and engineering, directly
relating to program structures such as recursion and iteration.
Its application includes a formal verification of program
properties. For example, suppose we have two functional
programs: (),f x a readable but inefficient program, and

(),g x an efficient but hard-to-read one. Then we may want

to verify the equivalence of the two by proving the inductive
theorem () ().f x g x When proved, the theorem ensures the

correctness of the hard-to-read but efficient program (),g x if

()f x is clearly correct from its readability.

In 2010, Sato and Kurihara [1] presented an application of
multi-context reasoning to inductive theorem proving. They
reported that within practical computation time using their
implementation, they solved 35 out of 69 standard
benchmark problems without giving any information suitable
for directing equations. Such information had been
practically a ‘must’ in previous implementations.

In the following years, the 34 unsolved problems were
analyzed, and it was found that the failures were caused by
the system’s inability to generate lemmas. A lemma (or an
auxiliary theorem) is an auxiliary proposition necessary for
proving a main theorem. Lemmas are normally created by
humans or machines heuristically as hypotheses then proved
and used in the proof of the main theorem. In the following
section, we discuss the classification of automated
procedures for lemma generation proposed in the literature.

III. AUTOMATED LEMMA DISCOVERY

As discussed in the previous section, lemmas are
hypotheses which, if once proved as theorems, can be used to
prove the main theorem. For example, some common
subexpressions (representing some object) contained in the
main theorem may be replaced with a variable (representing
an arbitrary object) to generalize the main theorem to a more
general hypothesis.

Basically, lemma-discovery processes in an inductive
theorem prover involve two phases: generation and test. In
the generation phase, hypotheses are generated as candidate
lemmas according to certain heuristic algorithms. Then in the
test phase, the validity of the candidates is tested by the
inductive theorem prover (recursively). Those hypotheses
that have been proved successfully become lemmas, which
may be used for proving the main theorem. In this case, we
may say that those lemmas have been discovered. In this
section, we discuss basic automated methods for lemma
discovery, classifying them into top-down and bottom-up
ones.

A. Top-down lemma discovery

Given a main theorem to be proved, top-down
lemma-discovery methods attempt to transform the theorem
into inductive hypotheses, which may be useful as lemmas
for proving the main theorem. The task involves various
processes such as syntactical extension and logical analysis
of the main theorem. Such methods are goal oriented in the
sense that their basis is placed on the main theorem to be

proved. These methods are classified into the following two
categories based on their soundness.

Sound lemma-discovery methods generate only ‘correct’
hypotheses in the sense that they are inductive theorems if the
main theorem is an inductive theorem. Since such methods
tend to create only a small number of hypotheses, their ability
to discover useful lemmas is not high, but the burden of
proving the resultant hypotheses can be light. An example of
a top-down sound method is presented by Pascal and
Emmanuel [12].

By contrast, unsound lemma-discovery methods are used
to attempt to generate useful hypotheses, even though most
may be incorrect. Since incorrect hypotheses can never be
proved, they put a heavy burden on the system. However,
combined with the ‘filtering’ technique for removing the
hypotheses a random instance of which has turned out to be
incorrect, these methods can be improved in terms of
efficiency in practice. In that case, such methods can be very
useful because their ability of discovering useful lemmas is
generally high. An example of a top-down unsound method
is presented by Walsh [13].

B. Bottom-up lemma generation

Given a theory (or background knowledge) represented by
a set of axioms, a bottom-up lemma-discovery method is used
to attempt to generate various inductive hypotheses that are
true on the theory, irrespective of the main theorem.
Hypotheses that have turned out to be incorrect in the
filtering process (described in the previous section) are
removed. The hypotheses that have been proved true are
stored as established theorems in the database. When given a
main theorem to be proved, the system can use some
established theorems as lemmas.

In some traditional logical systems (such as first-order
predicate logic), one can generate, in principle, all the
theorems by systematically applying a ‘complete’ set of
inference rules to the initial set of axioms. However, this is
not the case in inductive theorem proving, where application
of heuristic methods is essential. Bottom-up methods are
often referred to as automated discovery of inductive
theorems (rather than lemmas). Examples of bottom-up
lemma discovery method are given by Johansson et al. [14],
McCasland et al. [15], and Sato et al. [16].

IV. MULTI-CONTEXT LEMMA DISCOVERY

In the previous section, we discussed sound top-down,
unsound top-down, and bottom-up methods for automated
lemma discovery. Then the natural question is: which is the
best? However, the natural answer is neither. We believe that
a sophisticated combination of these methods is the best. In
this section, we discuss how multi-context reasoning systems
can be useful for providing such a combination.

A. Rewriting induction and lemma postulation

Before discussing multi-context lemma discovery, we
need to review the underlying rewriting induction with
termination tools. The theoretical basis was developed based
on the work of term rewriting induction by Reddy [17]. Later,
this work was slightly modified and augmented in a simpler
setting of rewriting induction (RI) by Aoto [2] and further

Proceedings of the World Congress on Engineering and Computer Science 2018 Vol I
WCECS 2018, October 23-25, 2018, San Francisco, USA

ISBN: 978-988-14048-1-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2018

extended to rewriting induction with termination tools (RIt)
by Aoto [18].

In RIt, the system is initially given a set R of axioms (as a
term rewriting system) and a set 0E of conjectures (in the

form of equations), which represent inductive theorems to be
proved.

 The system starts its computation from state

0 0,E H  (where 0H is the empty set of inductive

hypotheses) and generates a sequence of states derived by the
inference rules, where the new state derived from the
previous state ,i iE H  is denoted by 1 1,i iE H  

The inference rules generally work on a pair of conjectures
E (in the form of equations) and inductive hypotheses H
(in the form of rewrite rules), i.e., ,E H  . There are four

inference rules. Their formal description is given by Sato et al.
[1] and Aoto [18]. We give only an informal account below.

1) Suppose E contains a trivial equation (with identical
left- and right-hand sides). Then the DELETE rule removes
such an equation to generate a new state.

2) Suppose E contains an equation s t such that s can
be rewritten to another term s by using a rewrite rule of

.R H Then in the new state, the SIMPLIFY rule replaces
s t with new equation .s t 

Before discussing the third inference rule, we need to
define some notions. The root symbol of a term ()f  is the

function symbol .f The function symbols appearing as the

root symbol of the left-hand side of at least one of the rewrite
rules of R are defined symbols. The function symbols other
than defined symbols are constructors. A term is basic if its
root symbol is a defined symbol and its arguments contain no
defined symbols. The rewriting induction assumes that R is
a so-called constructor system so that the left-hand side of
every rewrite rule of R is basic (More precisely, R must be
‘ground-reducible’ and ‘convergent,’ but this condition is not
important in our discussion of this paper). A substitution 
is a function that maps a variable to a term, and ()t

represents the term obtained by replacing every variable x in t
with ()x . Now we can proceed to the third inference rule.

3) Suppose E contains s t such that s contains a basic
subterm u unifiable with the left-hand side l of a rewrite
rule l r of .R Then we can obtain an equation by first
replacing u with r then applying the most general unifier
 of u and l to both sides. Thus, the resultant equation can
be formally represented as

([]) (),s u r t  

where []s u r represents s in which u is replaced with

.r If there are more than one l r with l unifiable with ,u

we may obtain more than one such resultant equation. Given
,s ,t and ,u let Expd (,)u s t denote the set of all such

resultant equations. Then in the new state, the EXPAND rule
replaces s t with those equations of Expd (,)u s t and adds

a new rewrite rule s t to H (as an inductive hypothesis)
only if the term rewriting system { }R H s t   is

terminating, i.e., there are no infinite rewrite sequences using
those rules. The property of termination may be checked

using automated termination tools (termination checkers) for
term rewriting systems.

4) Finally, the POSTULATE rule allows us to add arbitrary
equations to E as hypotheses (candidate lemmas) in the new
state. Note that this inference rule is not incorporated in the
systems proposed by Sato and Kurihara [1] and Aoto [18],
because lemma discovery is out of the scope of their
discussions.

Starting from the initial 0 0,E H  the system derives a

sequence of states ,i iE H  (0,1, 2,)i   and stops its

derivation when we obtain nE  for some .n In this case,

the derivation is successful, meaning that it is ensured that the
equations given in 0E is inductive theorems of .R Note that

such a derivation can be infinite, meaning that the
computation will continue indefinitely, never stopping. In
such a case, we say that the system is diverging.

B. Multi-context rewriting induction and lemma discovery

Let us see how the rewriting induction with termination
tools can be incorporated into the framework of multi-context
reasoning. Inference rules other than POSTULATE are already
incorporated into the MRIt system [1]. We briefly and only
informally describe this system below.

Basically, MRIt consists of five inference rules working on
a set of nodes of the form

1 2: , ,s t H H E  

where :s t is an ordered pair of terms, and 1,H 2 ,H and E

are sets of process indices called labels. Intuitively, 1H (2H)

represents a set of processes that contain the inductive
hypothesis s t (t s) in the H part of the current state

,E H  , whereas E represents a set of processes that

contain the conjecture s t in the E part.
Given a set of nodes ,N the set of conjectures (equations)

contained in the E part of the state of the process p is

denoted by [,].N p Similarly, the set of inductive

hypotheses (rewrite rules) contained in the H part of the
state of p is denoted by [,].N p These two notions

provide the theoretical tool for formally discussing the
correspondence between MRIt and its underlying RIt
processes [1].

The first inference rule of MRIt is DELETE, which removes
a node 1 2: , ,s t H H E   in which s and t are identical. It

simulates the DELETE rule of RIt, removing the trivial
equation s s from appropriate processes.

The second rule EXPAND simulates the counterpart of RIt
in a slightly complicated manner. Suppose we have a node

1 2: , ,s t H H E E   

in which the last element can be split into two disjoint sets E
and E such that the EXPAND rule of RIt can be applied to the
conjecture s t contained in the processes of (),E  

generating a new inductive hypothesis s t and new
conjectures Expd (,)u s t for some fixed ,u whereas in the

processes of ,E the rule fails to be applied. Then the EXPAND

rule of MRIt removes this node from ,N adding the node

1 2: , ,s t H E H E   

Proceedings of the World Congress on Engineering and Computer Science 2018 Vol I
WCECS 2018, October 23-25, 2018, San Francisco, USA

ISBN: 978-988-14048-1-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2018

and nodes
: , ,s t E     

for all () Expd (,).us t s t  

The third rule SIMPLIFY-R simulates the SIMPLIFY rule of
RIt when the simplification is carried out using a rewrite rule
of .R Suppose we have a node 1 2: , ,s t H H E   such that

E  and s can be simplified into s by a rewrite rule of

.R Then the SIMPLIFY-R rule removes this node from ,N

adding two nodes

1 2: , ,s t H H   

and
: , ,s t E   

The fourth rule SIMPLIFY-H is almost the same as
SIMPLIFY-R except that it is used when the simplification is
carried out using an inductive hypothesis. Suppose we have
two nodes

1 2: , ,s t H H E  

and
: , ,l r H   

such that E H   and s can be simplified into s by the

inductive hypothesis l r contained in the processes of .H
Then the SIMPLIFY-H rule removes the former node from ,N

adding two nodes

1 2: , , \s t H H E H  

and
: , ,s t E H    

where \E H represents subtraction of the set H from E.
The role of the fifth rule FORK is to fork a process into

several processes. Suppose several choices should be made in
a process p. Then this rule replaces the process index of p
contained in all the labels of the current node set N with k
process indices 1, , ,kp p where k is the number of those

choices.
We add a new inference to MRIt for incorporating the

POSTULATE rule of RIt, i.e., the functionality of lemma
discovery, as follows. Suppose that we have now a set of
processes P in which the POSTULATE rule can generate k
conjectures i il r (1, ,)i k  that can be added to the E

part of the ,E H  of each process .p P Then we have

each p fork into k+1 processes p.i (which represents the
process index of the i-th process generated by the fork, where
0 i k ), letting the E part of p.i contain the i-th conjecture

i il r for 1 i k  and letting the process p.0 continue its

computation without any of those k conjectures. This means
that we have a strategy that accepts at most one conjecture at
each opportunity. Note that p.0, which accepts no conjectures,
is important because no such conjectures may be true. Based
on this idea, our new inference rule for MRIt,
MULTI-CONTEXT POSTULATE, will first modify all current
nodes so that every p of P will be forked into (k+1) processes
p.i (0)i k  then add new k nodes

: , ,i i il r P    1 ,i k 

to the current set of nodes, where iP denotes the set

. | }p i p P  consisting of | |P process indices.

Given 0 ,E an initial set of conjectures, and ,R a set of

axioms in the form of ‘ground-reducible’ and ‘convergent’
rewrite rules, MRIt starts its reasoning with the initial set of
nodes

0 0{ : , , ,{ } | () },N s t s t E      

where  denotes the ‘root’ process. Then the inference rules
of MRIt will be applied to the set of nodes to generate a
sequence 0 1 2, , ,N N N  of node sets. If the system has

reached some cN containing in its labels a process p such

that the set [,]cN p of conjectures held in the E part of p is

empty, then the system can conclude that the conjectures
initially given in 0E are inductive theorems of .R

V. DISCUSSION AND CONCLUSION

We presented an extension of MRIt, the multi-context
rewriting induction system with termination tools,
incorporating the lemma postulation inference rules of RIt.
We believe that this framework is general enough to
incorporate various lemma-discovery methods. However,
more important is what concrete methods we should
incorporate. Several methods have been proposed in the
literature [12] – [15], but they are not necessarily appropriate
for the induction framework of RIt [2], [17]. To partially
solve this problem, an idea to adapt a known method for RIt
is presented [19], where a procedure called ‘modification’ for
generating a conjecture is given and formally presented as an
inference rule called POSTULATE BY JOINING [20].

Another method for generating conjectures has recently
been developed [20], where a new inference rule called
POSTULATE BY PERIPHERAL SCULPTURE was developed
based on the idea of splitting an ‘annotated’ term into
‘peripheral’ and ‘calm’ parts, both defined in terms of
well-known notions of ‘term difference’ and ‘annotation’
[21], [22].

Those two inference rules have been incorporated into the
multi-context inductive reasoning system and their
experimental results indicated its effectiveness [20].
However, we should say that this is the first step to a more
effective method of combining the underlying induction
systems with multi-context reasoning systems. Extension of
this step is one of the most general future research topics in
this field.

Other research topics include problems in discovering
useful but syntactically complex lemmas [23], improvement
of implementation technique exploiting lazy evaluation in a
functional programming language [24], [25], and extensive
analysis of the relation between inductive theorem proving
and tree automata [26].

REFERENCES
[1] H. Sato and M. Kurihara, “Multi-context rewriting induction with

termination checkers,” IEICE Trans. Information and Systems, vol.
E93-D, no. 5, 2010, pp. 942–952.

[2] T. Aoto, “Dealing with non-orientable equations in rewriting
induction,” in Lecture Notes in Computer Science 4098: Proc. 17th Int.
Conf. Rewriting Techniques and Applications, 2006, pp. 242–256.

[3] M. Kurihara and H. Kondo, “Completion for multiple reduction
orderings,” Journal of Automated Reasoning, vol. 23, no. 1, 1999, pp.
25–42.

[4] D. E. Knuth and P. Bendix, “Simple word problems in universal
algebras,” in J. Leech, Ed., Computational Problems in Abstract
Algebra, Pergamon Press, 1970, pp. 263–297.

Proceedings of the World Congress on Engineering and Computer Science 2018 Vol I
WCECS 2018, October 23-25, 2018, San Francisco, USA

ISBN: 978-988-14048-1-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2018

[5] I. Yokoyama and M. Kurihara, “Completion for multiple path
orderings based on precedence and binary decision diagrams,” Trans.
the Japanese Society for Artificial Intelligence, vol. 19, no. 6, 2004, pp.
472–482. (in Japanese)

[6] H. Sato and M. Kurihara, “Implementation and performance evaluation
of multi-completion procedures for term rewriting systems with
recursive path orderings with status,” IEICE Trans. Information and
Systems, vol. J89-D, no. 4, 2006, pp. 624–631. (in Japanese)

[7] H. Sato, S. Winkler, M. Kurihara, and A. Middeldorp,
“Multi-completion with termination tools (system description),” in
Lecture Notes in Artificial Intelligence 5195: Proc. 4th Int. Joint Conf.
Automated Reasoning, 2008, pp. 306–312.

[8] H. Sato, M. Kurihara, S. Winkler, and A. Middeldorp,
“Constraint-based multi-completion procedures for term rewriting
systems,” IEICE Trans. Information and Systems, vol. E92-D, no. 2,
2009, pp. 220–234.

[9] R. Ding, H. Sato, and M. Kurihara, “Parallelization of termination
checkers for algebraic software,” Trans. Machine Learning and
Artificial Intelligence, vol. 2, no. 4, 2014, pp. 102–114.

[10] S. Winkler, H. Sato, A. Middeldorp, and M. Kurihara,
“Multi-completion with termination tools,” Journal of Automated
Reasoning, vol. 50, no. 3, 2013, pp. 317–354.

[11] C. Ji, H. Sato, and M. Kurihara, “Lazy evaluation schemes for efficient
implementation of multi-context algebraic completion system,” IAENG
International Journal of Computer Science, vol. 42, no. 3, 2015, pp.
282–287.

[12] U. Pascal and K. Emmanuel, “Sound generalizations in mathematical
induction,” Theoretical Computer Science 323, 2004, pp. 443–471.

[13] T. Walsh, “A divergence critic for inductive proof,” Journal of
Artificial Intelligence Research, vol. 4, 1996, pp. 209–235.

[14] M. Johansson, L. Dixon, and A. Bundy, “Conjecture synthesis for
inductive theories,” Journal of Automated Reasoning, vol. 47, no. 3,
2011, pp. 251–289.

[15] R. McCasland, A. Bundy, and S. Autexier, “Automated discovery of
inductive theorems,” Studies in Logic, Grammar and Rhetoric, vol. 10,
no. 23, 2007, pp. 135–149.

[16] H. Sato and M. Kurihara, “Discovering inductive theorems using
rewriting induction,” in Proc. IEEE Int. Conf. Systems, Man, and
Cybernetics, 2016, pp. 989–993.

[17] U. Reddy, “Term rewriting induction,” in Lecture Notes in Computer
Science 449: Proc. 10th Int. Conf. Automated Deduction, 1990, pp.
162–177.

[18] T. Aoto, “Rewriting induction using termination checker,” in Proc.
JSSST 24th Annual Conference, 3C-3, 2007. (in Japanese)

[19] S. Shimazu, T. Aoto, and Y. Toyama, “Automated lemma generation
for rewriting induction with disproof,” Computer Software, vol. 26, no.
2, 2009, pp. 41–55. (in Japanese)

[20] C. Ji, M. Kurihara, and H. Sato, “Multi-context automated lemma
generation for term rewriting induction with divergence detection,”
submitted for publication.

[21] D. Basin and T. Walsh, “Difference matching,” in Proc. 13th Int. Joint
Conf. of Artificial Intelligence, 1993, pp. 116–122.

[22] A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Amaill,
“Rippling: a heuristic for guiding inductive proofs,” Artificial
Intelligence, vol. 62, 1993, pp. 185–253.

[23] H. Sato and M. Kurihara, “On usefulness of syntactically complex
lemmas in theory exploration for inductive theorems,” in Lecture Notes
in Engineering and Computer Science: Proc. Int. MultiConference of
Engineers and Computer Scientists, 2018, pp. 489–492.

[24] C. Ji, H. Sato, and M. Kurihara, “An efficient implementation of
multi-context algebraic reasoning systems with lazy evaluation,” in
Lecture Notes in Engineering and Computer Science: Proc. Int.
MultiConference of Engineers and Computer Scientists, 2015, pp.
201–205.

[25] C. Ji, H. Sato, and M. Kurihara, “A new implementation of
multi-context algebraic inductive theorem prover,” in Lecture Notes in
Engineering and Computer Science: Proc. World Congress on
Engineering and Computer Scientists, 2015, pp. 109–114.

[26] H. Sato and M. Kurihara, “Recognition of normal forms with tree
automata for inductive theorem proving,” in Proc. Science and
Information Conference, 2013, pp. 524–528.

Proceedings of the World Congress on Engineering and Computer Science 2018 Vol I
WCECS 2018, October 23-25, 2018, San Francisco, USA

ISBN: 978-988-14048-1-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2018

