
 

 
Abstract— A system for efficiently running mutually related 

virtual processes as a single process is called a multi-context 
reasoning system. We focus on its application to automated 
proof and discovery of inductive theorems in the framework of 
rewriting induction and briefly survey past and current 
state-of-the-art technologies of such systems. Then to deal with 
lemma discovery in this framework, we present an extension of 
MRIt, the multi-context rewriting induction system with 
termination tools developed by Sato and Kurihara, and discuss 
its effectiveness. 
 

Index Terms— inductive theorem proving, rewriting 
induction, multi-context reasoning system, lemma generation 
and discovery  
 

I. INTRODUCTION 

LGEBRAIC structures often appear in various theories 
in computer science as a means of representing systems 

and reasoning about their properties such as their correctness. 
Related technologies include term rewriting, equational 
reasoning, and their application to formal methods in 
software engineering. 

Executable implementation of these technologies often 
involves nondeterministic computation. In nondeterministic 
computational processes, users and/or algorithms make a 
series of choices (or decisions) at the beginning and 
subsequent temporal points (or choice points). We refer to 
such a series of choices as a context for such a process. 
Naturally, one hopes that the context will lead to success 
defined for such a computation, but it is generally not easy to 
make a right decision leading to success. Surprisingly, 
however, some researchers manage to make their 
computation lead to success by setting parameters and 
strategies beforehand to ‘appropriately’ control the 
nondeterminism. This often involves many handmade 
trial-and-errors and/or tricks to suppress the nondeterminism 
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in their experiments. However, we believe that most 
researchers would admit that there was a fair amount of 
inappropriate settings and failures before their ‘successes’. 
Thus, we should develop a highly universal technology to 
solve this problem for actual successful nondeterministic 
computation. 

In a simple computational system, what is necessary is just 
backtracking, going back to the previous choice point when 
there was a failure. In a complex system with an unlimited 
search space, however, backtracking is often impossible 
because the system may be run indefinitely without success 
or failure. Therefore, a concurrent computation (or a 
sequential computation simulating concurrency) is 
necessary. However, a naïve implementation of such a 
concurrency often learns the hard way, facing the reality in 
which the number of processes exponentially grows too large 
to be practical.  

To solve this problem, we have been developing a 
computational system in which a large amount of 
computation and reasoning can be done efficiently in a single 
process. This idea is based on empirical knowledge that 
processes with ‘similar’ contexts often have many mutually 
related computational tasks that can be carried out 
simultaneously since they involve common computation. 
Though the average computational complexity may still be 
exponential even in such a system, one can handle larger 
problems in practice by suppressing the base of the 
exponential function with a special mechanism implementing 
the idea described above.  

Such a system for efficiently running mutually related 
virtual processes as a single process is called a multi-context 
reasoning system [1]. Focusing our attention on its 
application to automated proof and discovery of inductive 
theorems in the framework of rewriting induction [2], we 
briefly survey past and current state-of-the-art technologies 
of such systems. Then to deal with lemma discovery in this 
framework, we present an extension of MRIt, the 
multi-context rewriting induction system with termination 
tools developed by Sato and Kurihara [1], and discuss its 
effectiveness. 

In Section 2, we describe the general idea of a 
multi-context reasoning system and its past development. In 
Section 3, we discuss three types of lemma-discovery 
methods necessary for powerful inductive theorem proving. 
In Section 4, we discuss the new ideas being developed on 
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multi-context lemma discovery. In Section 5, we provide 
discussion and give concluding remarks. 

II. MULTI-CONTEXT REASONING SYSTEMS FOR ALGEBRAIC 

STRUCTURES 

A. Multi-completion 

The purpose of multi-context reasoning systems for 
algebraic structures is to effectively and efficiently handle 
equations in the form s = t and rewrite rules in the form 
s t , where the latter can be obtained by directing the 
former from left to right (or from right to left). The equations 
and rewrite rules consist of two terms s (the left-hand side) 
and t (the right-hand side). A term is either a variable or 
function symbol followed by n terms as arguments, where the 
nonnegative integer n denotes the arity of this function 
symbol. A set of rewrite rules is called a term rewriting 
system. 

With the common ideas and technologies of multi-context 
reasoning, one can develop various special-purpose 
reasoning systems, such as equational theorem provers, 
termination verifiers, and equational completion systems. For 
example, multi-completion (multi-context completion), 
which extends the Knuth-Bendix procedure (a 
semi-algorithm) to transform the given set of equations into a 
complete (i.e., terminating and confluent) term rewriting 
system, associates each context of its computation with a 
partial order over the set of terms to use this structure for 
directing equations such that their left-hand sides are greater 
than the corresponding right-hand sides in that order. 

In fact, various multi-context reasoning systems stem from 
the study by Kurihara and Kondo [3] on multi-completion in 
1999. The basic idea is to introduce a data structure (called a 
node) represented by 1 2: , ,s t R R E    where :s t  is an 

ordered pair of terms, and 1R , 2R   and E  are sets of 

contexts (called labels).  
Each context implicitly specifies partial orders on the set 

of terms and is associated with a virtual computational 
process running a standard (Knuth-Bendix) completion 
procedure [4]. The multi-completion system simulates those 
procedures running in parallel, maintaining a set of nodes.  

In such a system, the node structure is interpreted as 
follows. For each context in 1R  ( 2R ), the associated 

Knuth-Bendix process contains a rewrite rule s t ( t s ) 
in its database because s  is greater than t ( t  is greater than 
s ) in the associated partial order; and for each context in E , 
the associated process contains an equation s t . Based on 
this semantics, the node is identified with 2 1: , ,t s R R E    

For example, suppose that we have the following two 
nodes: 

0 2 1 3 5: ( ),{ , },{ },{ , }b f a C C C C C  , 

0 1 2 3 4 5: ,{ , , , },{ , },a c C C C C C C   . 

We can see that for contexts 0C and 2 ,C  the associated 

processes have rewrite rules ( )b f a and ;a c  thus, 

they can create a new rewrite rule ( ).b f c  

Similarly, for context 1,C we see two rules ( )f a b  and 

.a c  In this case, the completion procedure is designed to 

create the equation ( ) .f c b  

Finally, for context 3 ,C  we see ( )b f a  and a c  to 

create ( ).b f c  Combining these three inferences, the 

multi-completion system applies an inference rule (called 
‘REWRITE-2’) to create a new node 

0 2 1 3: ( ),{ , }, ,{ , }b f c C C C C   

clearly consistent with our interpretation. Note that in any 
case, : ( )b f a  is rewritten to : ( )b f c  and no longer exists in 

contexts 0 ,C 1,C 2 ,C and 3.C  Therefore, the system 

modifies the first node to  

5: ( ), , ,{ }b f a C   , 

meaning that ( )b f a  can only exist in the process 

associated with 5C . 

Based on this idea, the multi-completion procedure is 
formally defined as a meta-inference system (on the set of 
nodes) in which the base-level inference (on the set of 
equations and rewrite rules) is combined with set operations, 
such as union, intersection, and difference, over the family of 
labels. 

Implementation of multi-completion was improved in 
2004 and 2006, where each label (a set of contexts, i.e., a set 
of partial orders) was represented as a Boolean function 
combining atomic propositions such as f g  [5]. Such a 

function was compactly represented as a type of direct 
acyclic graph called a binary decision diagram. An empirical 
study showed that even if the number of contexts grew 
exponentially by 1,000%, the execution time grew only by 
1% [6]. 

In 2009, multi-completion was extended in a new 
framework, in which contexts could be dynamically 
generated and updated (rather than statically specified and 
maintained) so that an arbitrary termination checker could be 
dynamically invoked to determine the right context defined 
by the direction of equations. This idea greatly improved the 
functionality and performance of the system [7], [8]. 

In 2012, the implementation scheme of termination 
checkers used in multi-completion was improved [9]. Before 
this study, the termination checker had involved a 
performance bottleneck that prevented multi-context 
reasoning from working efficiently when trying to prove the 
termination of multiple term rewriting systems. However, 
that study proposed the implementation of termination 
checkers over multi-core CPUs and the resultant parallel 
execution resulted in a tenfold improvement in performance. 

In 2013, Winkler et al. [10] refined the multi-completion 
procedure with ‘critical pair criteria’ and isomorphisms, 
giving the full proof of its correctness. They implemented 
their approach in the tool mkbTT. Another improvement in 
implementation was seen in 2015 in the study by Ji et al. [11], 
where they exploited ‘lazy evaluation’ schemes to improve 
efficiency without increasing the structural complexity of the 
program reimplemented in Scala, a modern object-oriented 
functional programming language. 

B. Multi-context inductive theorem proving 

An inductive theorem is a proposition that holds on an 
algebraic model consisting of a (possibly infinite) set of 
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elements (such as natural numbers, lists, and trees) and a set 
of associated operations. Inductive theorems are often proved 
by mathematical induction and its extension. Induction is a 
critical notion in software science and engineering, directly 
relating to program structures such as recursion and iteration. 
Its application includes a formal verification of program 
properties. For example, suppose we have two functional 
programs: ( ),f x  a readable but inefficient program, and 

( ),g x  an efficient but hard-to-read one. Then we may want 

to verify the equivalence of the two by proving the inductive 
theorem ( ) ( ).f x g x  When proved, the theorem ensures the 

correctness of the hard-to-read but efficient program ( ),g x  if 

( )f x  is clearly correct from its readability. 

In 2010, Sato and Kurihara [1] presented an application of 
multi-context reasoning to inductive theorem proving. They 
reported that within practical computation time using their 
implementation, they solved 35 out of 69 standard 
benchmark problems without giving any information suitable 
for directing equations. Such information had been 
practically a ‘must’ in previous implementations. 

In the following years, the 34 unsolved problems were 
analyzed, and it was found that the failures were caused by 
the system’s inability to generate lemmas. A lemma (or an 
auxiliary theorem) is an auxiliary proposition necessary for 
proving a main theorem. Lemmas are normally created by 
humans or machines heuristically as hypotheses then proved 
and used in the proof of the main theorem. In the following 
section, we discuss the classification of automated 
procedures for lemma generation proposed in the literature.  

III. AUTOMATED LEMMA DISCOVERY 

As discussed in the previous section, lemmas are 
hypotheses which, if once proved as theorems, can be used to 
prove the main theorem. For example, some common 
subexpressions (representing some object) contained in the 
main theorem may be replaced with a variable (representing 
an arbitrary object) to generalize the main theorem to a more 
general hypothesis.  

Basically, lemma-discovery processes in an inductive 
theorem prover involve two phases: generation and test. In 
the generation phase, hypotheses are generated as candidate 
lemmas according to certain heuristic algorithms. Then in the 
test phase, the validity of the candidates is tested by the 
inductive theorem prover (recursively). Those hypotheses 
that have been proved successfully become lemmas, which 
may be used for proving the main theorem. In this case, we 
may say that those lemmas have been discovered. In this 
section, we discuss basic automated methods for lemma 
discovery, classifying them into top-down and bottom-up 
ones.  

A. Top-down lemma discovery 

Given a main theorem to be proved, top-down 
lemma-discovery methods attempt to transform the theorem 
into inductive hypotheses, which may be useful as lemmas 
for proving the main theorem. The task involves various 
processes such as syntactical extension and logical analysis 
of the main theorem. Such methods are goal oriented in the 
sense that their basis is placed on the main theorem to be 

proved. These methods are classified into the following two 
categories based on their soundness. 

Sound lemma-discovery methods generate only ‘correct’ 
hypotheses in the sense that they are inductive theorems if the 
main theorem is an inductive theorem. Since such methods 
tend to create only a small number of hypotheses, their ability 
to discover useful lemmas is not high, but the burden of 
proving the resultant hypotheses can be light. An example of 
a top-down sound method is presented by Pascal and 
Emmanuel [12]. 

By contrast, unsound lemma-discovery methods are used 
to attempt to generate useful hypotheses, even though most 
may be incorrect. Since incorrect hypotheses can never be 
proved, they put a heavy burden on the system. However, 
combined with the ‘filtering’ technique for removing the 
hypotheses a random instance of which has turned out to be 
incorrect, these methods can be improved in terms of 
efficiency in practice. In that case, such methods can be very 
useful because their ability of discovering useful lemmas is 
generally high. An example of a top-down unsound method 
is presented by Walsh [13]. 

B. Bottom-up lemma generation 

Given a theory (or background knowledge) represented by 
a set of axioms, a bottom-up lemma-discovery method is used 
to attempt to generate various inductive hypotheses that are 
true on the theory, irrespective of the main theorem. 
Hypotheses that have turned out to be incorrect in the 
filtering process (described in the previous section) are 
removed. The hypotheses that have been proved true are 
stored as established theorems in the database. When given a 
main theorem to be proved, the system can use some 
established theorems as lemmas. 

In some traditional logical systems (such as first-order 
predicate logic), one can generate, in principle, all the 
theorems by systematically applying a ‘complete’ set of 
inference rules to the initial set of axioms. However, this is 
not the case in inductive theorem proving, where application 
of heuristic methods is essential. Bottom-up methods are 
often referred to as automated discovery of inductive 
theorems (rather than lemmas). Examples of bottom-up 
lemma discovery method are given by Johansson et al. [14], 
McCasland et al. [15], and Sato et al. [16]. 

IV. MULTI-CONTEXT LEMMA DISCOVERY 

In the previous section, we discussed sound top-down, 
unsound top-down, and bottom-up methods for automated 
lemma discovery. Then the natural question is: which is the 
best? However, the natural answer is neither. We believe that 
a sophisticated combination of these methods is the best. In 
this section, we discuss how multi-context reasoning systems 
can be useful for providing such a combination. 

A. Rewriting induction and lemma postulation 

Before discussing multi-context lemma discovery, we 
need to review the underlying rewriting induction with 
termination tools. The theoretical basis was developed based 
on the work of term rewriting induction by Reddy [17]. Later, 
this work was slightly modified and augmented in a simpler 
setting of rewriting induction (RI) by Aoto [2] and further 
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extended to rewriting induction with termination tools (RIt) 
by Aoto [18]. 

In RIt, the system is initially given a set R  of axioms (as a 
term rewriting system) and a set 0E  of conjectures (in the 

form of equations), which represent inductive theorems to be 
proved.  

 The system starts its computation from state 

0 0,E H  (where 0H  is the empty set of inductive 

hypotheses) and generates a sequence of states derived by the 
inference rules, where the new state derived from the 
previous state ,i iE H   is denoted by 1 1,i iE H    

The inference rules generally work on a pair of conjectures 
E  (in the form of equations) and inductive hypotheses H  
(in the form of rewrite rules), i.e., ,E H  . There are four 

inference rules. Their formal description is given by Sato et al. 
[1] and Aoto [18]. We give only an informal account below. 

1) Suppose E  contains a trivial equation (with identical 
left- and right-hand sides). Then the DELETE rule removes 
such an equation to generate a new state. 

2) Suppose E contains an equation s t   such that s  can 
be rewritten to another term s  by using a rewrite rule of 

.R H  Then in the new state, the SIMPLIFY rule replaces 
s t  with new equation .s t   

Before discussing the third inference rule, we need to 
define some notions. The root symbol of a term ( )f   is the 

function symbol .f  The function symbols appearing as the 

root symbol of the left-hand side of at least one of the rewrite 
rules of R are defined symbols. The function symbols other 
than defined symbols are constructors.  A term is basic if its 
root symbol is a defined symbol and its arguments contain no 
defined symbols. The rewriting induction assumes that R  is 
a so-called constructor system so that the left-hand side of 
every rewrite rule of R  is basic (More precisely, R  must be 
‘ground-reducible’ and ‘convergent,’ but this condition is not 
important in our discussion of this paper). A substitution   
is a function that maps a variable to a term, and ( )t  

represents the term obtained by replacing every variable x in t 
with ( )x . Now we can proceed to the third inference rule. 

3) Suppose E contains s t  such that s  contains a basic 
subterm u  unifiable with the left-hand side l  of a rewrite 
rule l r  of .R  Then we can obtain an equation by first 
replacing u  with r  then applying the most general unifier 
  of u  and l  to both sides. Thus, the resultant equation can 
be formally represented as  

( [ ]) ( ),s u r t    

where [ ]s u r  represents s  in which u  is replaced with 

.r  If there are more than one l r  with l  unifiable with ,u  

we may obtain more than one such resultant equation. Given 
,s  ,t and ,u  let Expd ( , )u s t  denote the set of all such 

resultant equations. Then in the new state, the EXPAND rule 
replaces s t  with those equations of Expd ( , )u s t  and adds 

a new rewrite rule s t  to H  (as an inductive hypothesis) 
only if the term rewriting system { }R H s t    is 

terminating, i.e., there are no infinite rewrite sequences using 
those rules. The property of termination may be checked 

using automated termination tools (termination checkers) for 
term rewriting systems. 

4) Finally, the POSTULATE rule allows us to add arbitrary 
equations to E  as hypotheses (candidate lemmas) in the new 
state. Note that this inference rule is not incorporated in the 
systems proposed by Sato and Kurihara [1] and Aoto [18], 
because lemma discovery is out of the scope of their 
discussions. 

Starting from the initial 0 0,E H   the system derives a 

sequence of states ,i iE H   ( 0,1, 2, )i    and stops its 

derivation when we obtain nE   for some .n  In this case, 

the derivation is successful, meaning that it is ensured that the 
equations given in 0E  is inductive theorems of .R  Note that 

such a derivation can be infinite, meaning that the 
computation will continue indefinitely, never stopping. In 
such a case, we say that the system is diverging. 

B. Multi-context rewriting induction and lemma discovery 

Let us see how the rewriting induction with termination 
tools can be incorporated into the framework of multi-context 
reasoning. Inference rules other than POSTULATE are already 
incorporated into the MRIt system [1]. We briefly and only 
informally describe this system below. 

Basically, MRIt consists of five inference rules working on 
a set of nodes of the form 

1 2: , ,s t H H E    

where :s t  is an ordered pair of terms, and 1,H 2 ,H  and E  

are sets of process indices called labels. Intuitively, 1H  ( 2H ) 

represents a set of processes that contain the inductive 
hypothesis s t  ( t s ) in the H  part of the current state 

,E H  , whereas E  represents a set of processes that 

contain the conjecture s t  in the E  part. 
Given a set of nodes ,N  the set of conjectures (equations) 

contained in the E  part of the state of the process p  is 

denoted by [ , ].N p  Similarly, the set of inductive 

hypotheses (rewrite rules) contained in the H  part of the 
state of p  is denoted by [ , ].N p  These two notions 

provide the theoretical tool for formally discussing the 
correspondence between MRIt and its underlying RIt 
processes [1]. 

The first inference rule of MRIt is DELETE, which removes 
a node 1 2: , ,s t H H E    in which s  and t  are identical. It 

simulates the DELETE rule of RIt, removing the trivial 
equation s s  from appropriate processes.  

The second rule EXPAND simulates the counterpart of RIt 
in a slightly complicated manner. Suppose we have a node  

1 2: , ,s t H H E E     

in which the last element can be split into two disjoint sets E  
and E  such that the EXPAND rule of RIt can be applied to the 
conjecture s t  contained in the processes of ( ),E    

generating a new inductive hypothesis s t  and new 
conjectures Expd ( , )u s t  for some fixed ,u  whereas in the 

processes of ,E  the rule fails to be applied. Then the EXPAND 

rule of MRIt removes this node from ,N  adding the node  

1 2: , ,s t H E H E     
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and nodes  
: , ,s t E       

for all ( ) Expd ( , ).us t s t    

The third rule SIMPLIFY-R simulates the SIMPLIFY rule of 
RIt when the simplification is carried out using a rewrite rule 
of .R  Suppose we have a node 1 2: , ,s t H H E    such that 

E   and s  can be simplified into s  by a rewrite rule of 

.R  Then the SIMPLIFY-R rule removes this node from ,N  

adding two nodes  

1 2: , ,s t H H     

and  
: , ,s t E     

The fourth rule SIMPLIFY-H is almost the same as 
SIMPLIFY-R except that it is used when the simplification is 
carried out using an inductive hypothesis. Suppose we have 
two nodes  

1 2: , ,s t H H E    

and  
: , ,l r H     

such that E H    and s  can be simplified into s  by the 

inductive hypothesis l r  contained in the processes of .H  
Then the SIMPLIFY-H rule removes the former node from ,N  

adding two nodes  

1 2: , , \s t H H E H    

and  
: , ,s t E H      

where \E H  represents subtraction of the set H from E. 
The role of the fifth rule FORK is to fork a process into 

several processes. Suppose several choices should be made in 
a process p. Then this rule replaces the process index of p 
contained in all the labels of the current node set N with k 
process indices 1, , ,kp p  where k is the number of those 

choices.  
We add a new inference to MRIt for incorporating the 

POSTULATE rule of RIt, i.e., the functionality of lemma 
discovery, as follows. Suppose that we have now a set of 
processes P in which the POSTULATE rule can generate k 
conjectures  i il r ( 1, , )i k   that can be added to the E 

part of the ,E H   of each process .p P  Then we have 

each p fork into k+1 processes p.i (which represents the 
process index of the i-th process generated by the fork, where 
0 i k  ), letting the E part of p.i contain the i-th conjecture 

i il r  for 1 i k   and letting the process p.0 continue its 

computation without any of those k conjectures. This means 
that we have a strategy that accepts at most one conjecture at 
each opportunity. Note that p.0, which accepts no conjectures, 
is important because no such conjectures may be true.  Based 
on this idea, our new inference rule for MRIt, 
MULTI-CONTEXT POSTULATE, will first modify all current 
nodes so that every p of P will be forked into (k+1) processes 
p.i (0 )i k   then add new k nodes 

: , ,i i il r P    1 ,i k   

to the current set of nodes, where iP  denotes the set 

. | }p i p P   consisting of | |P  process indices.  

Given 0 ,E  an initial set of conjectures, and ,R  a set of 

axioms in the form of ‘ground-reducible’ and ‘convergent’ 
rewrite rules, MRIt starts its reasoning with the initial set of 
nodes  

0 0{ : , , ,{ } | ( ) },N s t s t E        

where   denotes the ‘root’ process. Then the inference rules 
of MRIt will be applied to the set of nodes to generate a 
sequence 0 1 2, , ,N N N   of node sets. If the system has 

reached some cN  containing in its labels a process p such 

that the set [ , ]cN p  of conjectures held in the E part of p is 

empty, then the system can conclude that the conjectures 
initially given in 0E  are inductive theorems of .R  

V. DISCUSSION AND CONCLUSION 

We presented an extension of MRIt, the multi-context 
rewriting induction system with termination tools, 
incorporating the lemma postulation inference rules of RIt. 
We believe that this framework is general enough to 
incorporate various lemma-discovery methods. However, 
more important is what concrete methods we should 
incorporate. Several methods have been proposed in the 
literature [12] – [15], but they are not necessarily appropriate 
for the induction framework of RIt [2], [17]. To partially 
solve this problem, an idea to adapt a known method for RIt 
is presented [19], where a procedure called ‘modification’ for 
generating a conjecture is given and formally presented as an 
inference rule called POSTULATE BY JOINING [20].  

Another method for generating conjectures has recently 
been developed [20], where a new inference rule called 
POSTULATE BY PERIPHERAL SCULPTURE was developed 
based on the idea of splitting an ‘annotated’ term into 
‘peripheral’ and ‘calm’ parts, both defined in terms of 
well-known notions of ‘term difference’ and ‘annotation’ 
[21], [22].  

Those two inference rules have been incorporated into the 
multi-context inductive reasoning system and their 
experimental results indicated its effectiveness [20]. 
However, we should say that this is the first step to a more 
effective method of combining the underlying induction 
systems with multi-context reasoning systems. Extension of 
this step is one of the most general future research topics in 
this field. 

Other research topics include problems in discovering 
useful but syntactically complex lemmas [23], improvement 
of implementation technique exploiting lazy evaluation in a 
functional programming language [24], [25], and extensive 
analysis of the relation between inductive theorem proving 
and tree automata [26].  
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