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Abstract— Differential calculus was used in this paper to 

obtain the ordinary differential equations (ODE) of the 

probability functions of the Laplace distribution. The 

parameters and support that characterized Laplace 

distribution inevitably determine the behavior, existence, 

uniqueness and solution of the ODEs. The method is 

recommended to be applied to other probability distributions 

and probability functions not considered in this paper. 

Computer codes and programs can be used for the 

implementation.      

              

Index Terms— Differential calculus, quantile function, 

hazard function, reversed hazard function, survival function, 

inverse survival function, probability density function, 

Laplace.  

 

I. INTRODUCTION 

ALCULUS in general and differential calculus in 

particular is often used in statistics in parameter and 

modal estimations. The method of maximum likelihood is 

an example.   

Differential equations often arise from the understanding 

and modeling of real life problems or some observed 

physical phenomena. Approximations of probability 

functions are one of the major areas of application of 

calculus and ordinary differential equations in mathematical 

statistics. The approximations are helpful in the recovery of 

the probability functions of complex distributions [1-10]. 

                                                 

Apart from mode estimation, parameter estimation and 

approximation, probability density function (PDF) of 

distributions can be transformed as ODE whose solution 

yields the respective PDF. Some of which are available: see 

[11-15]. 

The aim of this paper is to obtain homogenous ODE for 

the probability density function (PDF), Quantile function 

(QF), survival function (SF), inverse survival function 

(ISF), hazard function (HF) and reversed hazard function 

(RHF) of the Laplace distribution. This will also help to 

provide the answers as to whether there are discrepancies 

between the support of the distribution and the conditions 

necessary for the existence of the various ODE. Similar 
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results for other distributions have been proposed, see [16-

29] for details.                                                                                                                                  

 

Laplace distribution is sometimes refers to as the double 

exponential distribution because of its identical nature to the 

exponential distribution. Earlier studied by [30] and 

extended to the multivariate Laplace distribution by [31] 

and multivariate generalized Laplace distribution by [32].                                                                                                                                                       

Some of the other modifications and extensions of the 

distribution include: three-parameter asymmetric Laplace 

distribution [33], skew Laplace distribution [34], beta 

Laplace distribution [35], truncated skew-Laplace 

distribution [36], alpha–Skew–Laplace distribution [37]. 

Others are: normal-Laplace distribution [38] and Semi-α-

Laplace distributions [39].                                                                                                                          

Some of the areas of the distribution have been explored 

such as: goodness of fit tests and other statistical tests [40-

43]; estimation of parameters [44-45].                                                                                                                         

An important variant of the distribution is the log-Laplace 

distribution whose logarithm is the Laplace distribution. 

Notable among the applications are the works of [46] that 

applied the distribution to the analysis of financial data 

while [47] applied it to regression analysis.                                                                                                                     

Differential calculus was used to obtain the results. 

   

II. PROBABILITY DENSITY FUNCTION 

The PDF of the Laplace distribution is given by;     
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Differentiate equation (2), to obtain the first order ODE;                                                                                                                      

Case I, x  :            
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The equation can only exists for 0.b                                                                                                       

The first order ODE for the PDF of the Laplace distribution 

for case I is given as;       

 ( ) ( ) 0  bf x f x                                  (5) 
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Case II, x  :           
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The equation can only exists for 0.b                                                 

The first order ODE for the PDF of the Laplace distribution 

for case II is given as;       

 ( ) ( ) 0  bf x f x                                  (9) 
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Differentiate equations (4) and (8), to obtain the second 

order ODE;                                                                                  

Case I, x  :            
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The equation can only exists for 0.b                                                                                                          

Two ODEs can be acquired from the further breaking down 

of equation (11). These are listed as follows; ODE 1;     
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2 ( ) ( ) 0  b f x f x                            (14)                                            

ODE 2;            
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Case II, x  :           
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The equation can only exists for 0.b                                                                                                     

Two ODEs can be acquired from the further breaking down 

of equation (19). These are listed as follows;  

ODE 1;              
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ODE 2;            
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Differentiate equations (11) and (19) to obtain the third 

order ODE;                                                                                                           

Case I, x  :            
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The equation can only exists for 0.b                                                                                                                         

Three ODEs can be acquired from the further breaking 

down of equation (27). These are listed as follows;    

        ODE 1;            

 

4

3

1
( ) exp

2

1 1
           = exp   

2

x
f x

b b

x

b b b





 
   

 

    
    

    

                (28)          

 
3

1
( ) ( )f x f x

b
                             (29)    

 
3 ( ) ( ) 0  b f x f x                            (30)                                            

ODE 2;            

 

4

2 2

1
( ) exp

2

1 1
           = exp   

2

x
f x

b b

x

b b b





 
   

 

    
    

    

              (31)      

 
2

1
( ) ( )f x f x

b
                             (32)    

 
2 ( ) ( ) 0  b f x f x                            (33)     

Proceedings of the World Congress on Engineering and Computer Science 2018 Vol I 
WCECS 2018, October 23-25, 2018, San Francisco, USA

ISBN: 978-988-14048-1-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2018



 

ODE 3;            
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Case II, x  :           
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The equation can only exists for 0.b                                                                                                                                                                   

Three ODEs can be acquired from the breaking down of 

equation (39). These are listed as follows; ODE 1;      
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ODE 2;            
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ODE 3;           
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The result from first order to fifth order ODE are listed in 

Table (1); 

Table 1: First to fifth order ODE for the PDF   

Case I, x  :  Case II, x  : 

( ) ( ) 0  bf x f x    ( ) ( ) 0  bf x f x    
2 ( ) ( ) 0  b f x f x    
2 ( ) ( ) 0  b f x f x    

2 ( ) ( ) 0  b f x f x    
2 ( ) ( ) 0  b f x f x    

3 ( ) ( ) 0  b f x f x    
2 ( ) ( ) 0  b f x f x    

( ) ( ) 0  bf x f x    

3 ( ) ( ) 0  b f x f x    
2 ( ) ( ) 0  b f x f x    

( ) ( ) 0  bf x f x    
4 ( ) ( ) 0  vb f x f x    
3 ( ) ( ) 0  vb f x f x    
2 ( ) ( ) 0  vb f x f x    

( ) ( ) 0  vbf x f x    

4 ( ) ( ) 0  vb f x f x    
3 ( ) ( ) 0  vb f x f x    
2 ( ) ( ) 0  vb f x f x    

( ) ( ) 0  vbf x f x    
5 ( ) ( ) 0  vb f x f x   
4 ( ) ( ) 0  vb f x f x   
3 ( ) ( ) 0  vb f x f x   
2 ( ) ( ) 0  vb f x f x   

( ) ( ) 0  v vbf x f x   

5 ( ) ( ) 0  vb f x f x   
4 ( ) ( ) 0  vb f x f x   
3 ( ) ( ) 0  vb f x f x   
2 ( ) ( ) 0  vb f x f x   

( ) ( ) 0  v vbf x f x   

 

The results are similar to the ones proposed in [16-29].             

                  

III. QUANTILE FUNCTION 

  The QF of the Laplace distribution is given by;   
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Differentiate equation (49), to obtain the first order ODE;                                                                                                                      

Case I, x  :            
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The equation can only exists for is 0,0 1.b p                                                                                       

The first order ODE for the QF of the Laplace distribution 

for case I is given as;        

 ( ) 0pQ p b                                    (52) 

 (0.1) 1.60944Q b                       (53)          

Case II, x  :           

 ( ) ln(2(1 ))Q p b p                    (54) 
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The equation can only exists for is 0,0 1.b p                                                                                                        

The first order ODE for the QF of the Laplace distribution 

for case II is given as;      

 (1 ) ( ) 0p Q p b                            (56) 

 (0.1) 0.5878Q b                           (57) 
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Differentiate equations (51) and (55), to obtain the second 

order ODEs;                                                                                

Case I, x  :            
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The equation can only exists for 0,0 1.b p  
 
                                                                                              

The second order ODE for the QF of the Laplace 

distribution for case I is given as; 
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Case II, x  :           
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The equation can only exists for 0,0 1.b p                                                                                                     

The second order ODE for the QF of the Laplace 

distribution for case II is given as;  

 (1 ) ( ) ( ) 0p Q p Q p                     (64) 
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Differentiate equations (58) and (62), to obtain the third 

order ODEs;                                                                       

Case I, x  :            
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Two ODEs can be acquired from the further breaking down 

of equation (66). These are listed as follows;                                          
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Case II, x  :           
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    
             (78)          

 
2

( ) ( )
(1 )

Q p Q p
p

 


                  (79)    

 (1 ) ( ) 2 ( ) 0p Q p Q p                     (80)          

 
100

(0.1)
81

b
Q                                   (81)                             

The result from first order to fifth order ODEs re listed in 

Table (2); 

Table 2: First to fifth order ODE for the QF                                                                                            

Case I, x  :  

( ) ( ) 0  pQ p Q p    

2 ( ) 2 ( ) 0  p Q p Q p  
 

( ) 2 ( ) 0  pQ p Q p    

3 ( ) 6 ( ) 0  vp Q p Q p  
 

2 ( ) 6 ( ) 0  vp Q p Q p  
 

( ) 3 ( ) 0  vpQ p Q p    

4 ( ) 24 ( ) 0  vp Q p Q p 
 

3 ( ) 24 ( ) 0  vp Q p Q p 
 

2 ( ) 12 ( ) 0  vp Q p Q p 
 

( ) 4 ( ) 0  v vpQ p Q p   

Case II, x  :  

(1 ) ( ) ( ) 0  p Q p Q p     

2(1 ) ( ) 2 ( ) 0  p Q p Q p   
 

(1 ) ( ) 2 ( ) 0  p Q p Q p     

3(1 ) ( ) 6 ( ) 0  vp Q p Q p   
 

2(1 ) ( ) 6 ( ) 0  vp Q p Q p   
 

(1 ) ( ) 3 ( ) 0  vp Q p Q p     

Proceedings of the World Congress on Engineering and Computer Science 2018 Vol I 
WCECS 2018, October 23-25, 2018, San Francisco, USA

ISBN: 978-988-14048-1-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2018



 

4(1 ) ( ) 24 ( ) 0  vp Q p Q p  
 

3(1 ) ( ) 24 ( ) 0  vp Q p Q p  
 

2(1 ) ( ) 12 ( ) 0  vp Q p Q p  
 

(1 ) ( ) 4 ( ) 0  v vp Q p Q p    

                                                                                                   

The results are similar to the ones proposed in [16-29]. 

IV. SURVIVAL FUNCTION 

  The SF of the Laplace distribution is given by;   

 

1
1 exp           if t

2
( )

1
exp             if t

2

t

b
S t

t

b







  
  

  
 

      

           (82)               

Differentiate equation (82), to obtain the first order ODE;                                                                                                                     

Case I, t  :            

 
1

( ) 1 exp  
2

t
S t

b

 
   

 
                 (83) 

 
1

( ) exp  
2

t
S t

b b

 
    

 
                 (84)             

The equation can only exists for 0.b                                                                                                

Equation (83) can also be written as;         

 
1

exp =1 ( ) 
2

t
S t

b

 
 

 
                 (85)                                        

Simplify equation (84) using equation (85) to obtain;   

  
1

( ) (1 ( )) S t S t
b

                             

(86)       The first order ODE for the SF of the Laplace 

distribution for case I is given as;       

 ( ) ( ) 1 0 bS t S t                             (87) 

 
1

(0) 1 exp  
2

S
b

 
   

 
                  (88)          

Case II, t  :           

 
1

( ) exp  
2

t
S t

b

 
  

 
                 (89) 

 
1

( ) exp  
2

t
S t

b b

 
    

 
             (90)                

The equation can only exists for 0.b                                                

 
1

( ) ( )S t S t
b

                                    (91) 

The first order ODE for the SF of the Laplace distribution 

for case II is given as;        

 ( ) ( ) 0bS t S t                                    (92) 

 
1

( ) exp  
2

S t
b

 
  

 
                       (93) 

Differentiate equations (84) and (90), to obtain the second 

order ODE;                                                                       

Case I, t  :            

 
2

1
( ) exp  

2

t
S t

b b

 
    

 
             (94)         

The equation can only exists for is 0.b                                                                                                        

Two ODEs can be acquired from the further breaking down 

of equation (94). These are listed as follows; 

ODE 1;                                                          

Using equation (85) in equation (94);         

 
2

1
( ) (1 ( )) S t S t

b
                  (95)          

 
2 ( ) ( ) 1 0 b S t S t                             (96)                                            

ODE 2;          

 

2

1 1 1
( ) exp exp  

2 2

t t
S t

b b b b b

        
          

      
                                                                                         (97)          

 
1

( ) ( )S t S t
b

                                 (98)    

 ( ) ( ) 0bS t S t                                    (99)  

 
1

(0) exp  
2

S
b b

 
    

 
               (100)           

Case II, t  :            

 
2

1
( ) exp  

2

t
S t

b b

 
   

 
           (101)          

The equation can only exists for 0.b                                                                                                                

Two ODEs can be acquired from the further breaking down 

of equation (94). These are listed as follows;                                        

ODE 1;                                                                      

2 2

1 1 1
( ) exp exp  

2 2

t t
S t

b b b b

        
          

      
                                                                                       (102)          

 
2

1
( ) ( )S t S t

b
                               (103)    

 
2 ( ) ( ) 0b S t S t                                  (104)              

ODE 2;                                                                  

 

2

1
( ) exp

2

1 1
       exp  

2

t
S t

b b

t

b b b





 
   

 

    
       
    

               (105)          

 
1

( ) ( )S t S t
b

                                (106)    

 ( ) ( ) 0bS t S t                                  (107) 

 
1

(0) exp  
2

S
b b

 
    

 
  

                 (108) 

The result from first order to fifth order is listed in Table 

(3);   
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Table 3: First to fifth order ODE for the SF                                                                                            

Case I, x  :  Case II, x  : 

( ) ( ) 1 0  bS t S t     ( ) ( ) 0  bS t S t    

2 ( ) ( ) 1 0  b S t S t   
 

( ) ( ) 0  bS t S t    

2 ( ) ( ) 0  b S t S t  
 

( ) ( ) 0  bS t S t    

3 ( ) ( ) 1 0  b S t S t   
 

2 ( ) ( ) 0  b S t S t  
 

( ) ( ) 0  bS t S t    

3 ( ) ( ) 0  b S t S t  
 

2 ( ) ( ) 0  b S t S t  
 

( ) ( ) 0  bS t S t    

4 ( ) ( ) 1 0  vb S t S t   
 

3 ( ) ( ) 0  vb S t S t  
 

2 ( ) ( ) 0  vb S t S t  
 

( ) ( ) 0  vbS t S t    

4 ( ) ( ) 0  vb S t S t  
 

3 ( ) ( ) 0  vb S t S t  
 

2 ( ) ( ) 0  vb S t S t  
 

( ) ( ) 0  vbS t S t    

5 ( ) ( ) 1 0  vb S t S t  
 

4 ( ) ( ) 0  vb S t S t 
 

3 ( ) ( ) 0  vb S t S t 
 

2 ( ) ( ) 0  vb S t S t 
 

( ) ( ) 0  v vbS t S t   

5 ( ) ( ) 0  vb S t S t 
 

4 ( ) ( ) 0  vb S t S t 
 

3 ( ) ( ) 0  vb S t S t 
 

2 ( ) ( ) 0  vb S t S t 
 

( ) ( ) 0  v vbS t S t   

                                                                                                        

The results are similar to the ones proposed in [16-29]. 

V. INVERSE SURVIVAL FUNCTION 

  The ISF of the Laplace distribution is given by;  

  

 
+  ln(2(1 ))          derived if 

( )
 ln(2 )                 derived if 

b p x
Q p

b p x

 

 

 
 

 
 

                                                                                    (109)               

Differentiate equation (109), to obtain the first order ODE;                                                                                                                      

Case I, x  :            

 ( ) ln(2(1 ))Q p b p                  (110) 

 ( )
1

b
Q p

p
  


                               (111)                    

The equation can only exists for 0,0 1.b p  
 
                                                                                                

The first order ODE for the ISF of the Laplace distribution 

for case I is given as;      

  1 ( ) 0p Q p b                          (112) 

 (0.1) 0.5878Q b                         (113)          

Case II, x  :           

 ( ) ln(2 )Q p b p                         (114) 

 ( )
b

Q p
p

                                      (115)                    

The equation can only exists for 0,0 1.b p  
 
                                                                              

The first order ODE for the ISF of the Laplace distribution 

for case II is given as;         

 ( ) 0pQ p b                                  (116) 

 (0.1) 1.6094Q b                   (117) 

The results are similar to the ones proposed in [16-29]. 

VI. HAZARD FUNCTION 

   The HF of the Laplace distribution is given by;    

 

1
exp

2
          if t

1
1 exp( )

2

1
                                  if t

t

b b

t
h t

b

b








  
 
  

  
   

 





      (118)               

Differentiate equation (118), to obtain the first order ODE;                                                                                                                      

Case I, t  :            

 

1

1
exp

2
( )

1
1 exp

2

1 1
      exp 1 exp

2 2

t

b b
h t

t

b

t t

b b b





 


 
 
 

 
  

 

      
     

    

  (119) 

       
2

2

1

1
exp

2

1 1
( ) 1 exp

2 2

1 1
exp 1 exp

2

t

b b

t
h t

b b

t t

b b b





 





      
     
     
 
    

     
   

 
                  

 

                                                                                 (120)                                  

The equation can only exists for 0.b                                                                                                                                                                  

 1

1
( ) exp

2

1 1 1
exp 1 exp

2 2

t
h t

b b

t t

b b b b



 


 
   

 

          
        

        

  

                                                      (121) 

 
1

( ) ( ) ( )h t h t h t
b

 
   

 
                (122)     

The first order ODE for the HF of the Laplace distribution 

for case I is given as;    

 
2( ) ( ) ( ) 0bh t bh t h t                   (123) 

 

1
exp

2
(0)

1
1 exp

2

b b
h

b





 
 
 
 

  
 

                (124)                                                                                                                                                           

Subsequently, the other higher order differential equations 

are given;       

 ( ) 2 ( ) ( ) ( ) 0bh t bh t h t h t                 (125) 

 
2( ) 2 ( ) ( ) 2 ( ) ( ) 0bh t bh t h t bh t h t           (126)  
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The result for case II is zero since the hazard function is 

constant and as such the ODE is zero. Meanwhile, the 

results are similar to the ones proposed in [16-29]. 

VII. REVERSED HAZARD FUNCTION 

 The RHF of the Laplace distribution is given by;   

 

1
                           if t

1
( ) exp

2
    if t

1
1 exp

2

b

t
j t

b b

t

b












  

   
  

  
  

 

       (127)               

Differentiate equation (127), to obtain the first order ODE;                                                                                                                   

Case II, t  :            

 

1

1
exp

2
( )

1
1 exp

2

1 1
exp 1 exp

2 2

t

b b
j t

t

b

t t

b b b





 


 
 
 

 
  

 

      
       

    

    (128) 

  

2

2

1

1
exp

2

1
1 exp

1 2
( )

2 1
exp

1
1 exp

2

t

b b

t

b
j t

b t

b b

t

b













      
      
     

 
              

  
   

 
 
    

    
    

     (129)                     

The equation can only exists for 0.b                                                                                                            
1

1

1 1
( ) exp 1 exp

2 2

1 1 1
exp 1 exp

2 2

t t
j t

b b b

t t

b b b b

 

 





      
         

    

          
          

        

 

                                                   (130) 

 
1

( ) ( ) ( )j t j t j t
b

 
    

 
                  (131)     

The first order ODE for the RHF of the Laplace distribution 

for case II is given as;     

 
2( ) ( ) ( ) 0bj t bj t j t                   (132) 

 

1 1exp
2 2(0)

1 1
1 exp exp

2 2

b b bj

b b



 

 
 
  
   

     
   

         (133)                                                                                                                                                            

The results are similar to the ones proposed in [16-29]. 

VIII. CONCLUDING REMARKS 

Ordinary differential equations (ODEs) have been obtained 

for the probability functions of Laplace distribution. This 

differential calculus and efficient algebraic simplifications 

were used to derive the various classes of the ODEs. The 

parameter and the supports that characterize the distribution 

determine the nature, existence, orientation and uniqueness 

of the ODEs. The results are in agreement with those 

available in scientific literature. Furthermore several 

methods can be used to obtain desirable solutions to the 

ODEs [48-60]. This method of characterizing distributions 

cannot be applied to distributions whose PDF or CDF are 

either not differentiable or the domain of the support of the 

distribution contains singular points.          
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