
 

 

Abstract— Modified Weibull distribution is an appreciable 

improvement over the Weibull distribution. This paper 

explores the application of differentiation to obtain the 

ordinary differential equations (ODE) of the probability 

functions of the modified Weibull Distribution. The 

parameters and support that characterized the distribution 

inevitably determine the behavior, existence, uniqueness and 

solution of the ODEs. The method is recommended to be 

applied to other probability distributions and probability 

functions not considered in this paper. Computer codes and 

programs can be used for the implementation.      

      

              

Index Terms— Differential calculus, quantile function, 

hazard function, reversed hazard function, survival function, 

inverse survival function, probability density function, 

Weibull.  

 

I. INTRODUCTION 

ALCULUS in general and differential calculus in 

particular is often used in statistics in parameter and 

modal estimations. The method of maximum likelihood is 

an example.   

Differential equations often arise from the understanding 

and modeling of real life problems or some observed 

physical phenomena. Approximations of probability 

functions are one of the major areas of application of 

calculus and ordinary differential equations in mathematical 

statistics. The approximations are helpful in the recovery of 

the probability functions of complex distributions [1-4]. 

                                                 

Apart from mode estimation, parameter estimation and 

approximation, probability density function (PDF) of 

distributions can be transformed as ODE whose solution 

yields the respective PDF. Some of which are available: see 

[5-9]. 

The aim of this paper is to propose homogenous ordinary 

differential equations for the probability density function 

(PDF), Quantile function (QF), survival function (SF), 

inverse survival function (ISF), hazard function (HF) and 

reversed hazard function (RHF) of the modified Weibull 

distribution. This will also help to provide the answers as to 

whether there are discrepancies between the support of the 
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distribution and the conditions necessary for the existence of 

the ODEs. Similar results for other distributions have been 

proposed, see [10-23] for details.                                                                                                                                  

                                                                                                                                 

The modified Weibull distribution considered was the 

one proposed by [24-26] as a generalization of the parent 

Weibull, exponential, Rayleigh and linear hazard rate 

distributions. Since the introduction of the distribution as a 

lifetime model, several researchers have studied different 

aspects of the distribution. Gasmi and Berzig [27] worked 

on parameter estimation based on type I censored samples, 

Soliman et al. [28] applied Markov Chain Monte-Carlo 

approach on progressive censored data while Jiang et al. 

[29] done their estimation based on type II censored 

samples. There are other modified Weibull models such as 

the ones proposed by [30] and [31].                                                                                                                             

The distribution has been used in the development of new 

models which includes; modified inverse Weibull 

distribution [32], transmuted modified inverse Weibull 

distribution [33], beta transmuted Weibull distribution [34], 

the modified Weibull geometric distribution [35] and 

Weibull exponential distribution [36-37].                                                                                            

Differential calculus was used to obtain the results. 

   

II. PROBABILITY DENSITY FUNCTION 

The PDF of the modified Weibull distribution is given as; 
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The equation can only exists for , , , 0x    .                                                                                             

The ODEs can be obtained for any given values of 

,  and  .                                                                                          

When 1  , equation (2) becomes;        
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 ( ) ( ) ( ) 0d df x f x                                    (4)      

When 2  , equation (2) becomes;        
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When 3  , equation (2) becomes;        
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Equation (2) is differentiated;                        
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The equation can only exists for , , , 0x    .                                                                                    

These presented equations from (2) are needed to further 

simplification of equation (9);    
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Substitute equations (10), (12) and (13) into equation (9); 
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When 1  , equation (14) becomes;        
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See [10-23] for details. 

                 

III. QUANTILE FUNCTION 

  The QF of the modified Weibull distribution is given as; 

 ( ) ( ) ln(1 )Q p Q p p              (19)          

Equation (19) is differentiated in order to obtain the first 

order ODE;                       
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The equation can only exists for 0 1p  .                                              

 
1(1 )( ( )) ( ) 1 0p Q p Q p             (21)                              

The ODE and their initial conditions can be derived for any 

given values of ,  and  .                                                                                                                                             

When 1  , equation (19) and (22) become;      

 (1 )( ) ( ) 1 0p Q p                   (22)          

 (0) (0) 0Q Q                                (23)      

 (0) ( )Q                                      (24)      

When 2  , equation (19) and (22) become;      
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When 3  , equation (19) and (22) becomes;      

 
2(1 )( 3 ( )) ( ) 1 0p Q p Q p             (28)          

 
3(0) (0) 0Q Q                            (29)      

 (0)Q i



                                          (30)     

Differentiate equation (20), to obtain the second order ODE;
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The equation can only exists for 0 1p  .                                                                                                         

The ODEs and their initial conditions can only be derived 

for any given values of ,  and  .                                                                                                                                            

When 1  , equation (31) and (20) become;      
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When 2  , equation (31) and (20) becomes;      
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When 3  , equation (31) and (20) becomes;     
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See [10-23] for details. 

        

IV. SURVIVAL FUNCTION 

  The SF of the modified Weibull distribution is given as; 
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Differentiate equation (43);      
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Differentiate equation (45);          

  1 2( ) ( ) ( ) ( 1) ( )S t t S t t S t             

                                                                             (52)           

These equations derived from (45) are required in the 

simplification of equation (52);    
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Substitute equations (156) and (55) into equation (52);   
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The second order ODE for the SF of the modified Weibull 

distribution is given by;     
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See [10-23] for details.               

  

V. INVERSE SURVIVAL FUNCTION 

 

The ISF of the modified Weibull distribution is given as;  
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Differentiate equation (62), to obtain the first order ODE;  
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The equation can only exists for 0 1p  .                                               
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The ODEs and their initial conditions can be derived for any 

given values of ,  and  . Some examples are shown in 

Table 1.      

Table 1: ODE of ISF for some selected parameters of the 

distribution 

 
       Ordinary differential equation 

1 1 1 2 ( ) 1 0pQ p    

1 1 2 3 ( ) 1 0pQ p    

1 2 1 3 ( ) 1 0pQ p    

1 2 2 4 ( ) 1 0pQ p    

2 1 1 (2 ( ) 1) ( ) 1 0p Q p Q p    

2 1 2 2 ( ( ) 1) ( ) 1 0p Q p Q p    

See [10-23] for details. 
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VI. HAZARD FUNCTION 

                                                                                                                

The HF of the modified Weibull distribution is given as; 
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Using equation (66) to simplify equation (67), equation (66) 
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The first order ODE for the HF of the modified Weibull 

distribution is given by;     
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Differentiate equation (67);          
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Two ODEs can be derived from equation (73);                                                                   

ODE 1; Use equation (66) in equation (73);    
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Three ODEs can be derived from the further evaluation of 

equation (80);                                                                           

ODE 1; Use equation (66) in equation (80);       
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See [10-23] for details. 

 

VII. REVERSED HAZARD FUNCTION 

The RHF of the modified Weibull distribution is given as; 
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Differentiate equation (92), to obtain the first order ODE;         
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The equation can only exists for
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Equation (95) is further differentiated;                    
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The equation can only exists for
 

, , , 0t    .                                                                                       

These equations derived from (95) are required to further 

evaluate equation (96);    
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Substitute equations (97), (99) and (100) into equation (96); 
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See [10-23] for details. 

                                                                                                                                                           

VIII. CONCLUDING REMARKS 

Ordinary differential equations (ODEs) has been obtained 

for the probability density function (PDF), Quantile function 

(QF), survival function (SF), inverse survival function 

(ISF), hazard function (HF) and reversed hazard function 

(RHF) of modified Weibull distribution. This differential 

calculus and efficient algebraic simplifications were used to 

derive the various classes of the ODEs. Different classes of 

the differential equations can be obtained for the different 

values of the parameters that defined the distribution. The 

parameter and the supports that characterize the distribution 

determine the nature, existence, orientation and uniqueness 

of the ODEs. The results are in agreement with those 

available in scientific literature. Furthermore several 

methods can be used to obtain desirable solutions to the 

ODEs [38-50]. This method of characterizing distributions 

cannot be applied to distributions whose PDF or CDF are 

either not differentiable or the domain of the support of the 

distribution contains singular points.     
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