

Abstract—This paper presents an efficient hardware

implementation of Advance Encryption Standard (AES) and
SM4 algorithms on Xilinx Virtex 7 FPGA by exploiting the
feature of dynamic partial reconfiguration (DPR) to optimize
S-Box on composite field arithmetic (CFA). We utilize delay
aware common sub-expression elimination (DACSE) scheme to
reduce overall area consumption by sharing the multiplicative
inverse (MI) over GF(28) and eliminating the redundant
circuitry. Our results reveal that hardware resources i.e. slices
are minimized by 21.6%, and frequency is improved by 27.9%.
In addition to that efficiency of our implementation is improved
by 62.70 Mbps/slices which is higher than the previously
proposed design.

Index Terms—AES, SM4, Substitution Box(S-Box), DPR

I. INTRODUCTION

HE Advanced Encryption Standard (AES) is widely
used in various applications of information security as an

encryption algorithm [1], [2]. SM4 is the first block cipher
algorithm released by the Chinese National Cipher
Management Committee Office and it is usually used in
wireless security of local area network products [3]. Large
number of products use these two algorithms to implement
encryption of data. Most applications are using them
independently; and without any optimization that leads to
more on chip area consumption. Therefore, it is significant to
optimize these algorithms used in the wireless sensor
networks and other resource limited applications.

S-Box is a nonlinear function and the fundamental
computing unit of AES and SM4, that occupies most of area
and power consumption in circuits. For AES it occupies
about 75% area of the round transformation [4]. Hence it is
important to analyze the S-Box and optimize the logic.

The design and optimization of S-Box have been studied in
detail. Shared memory scheme is used to design a
reconfigurable S-Box for different cipher algorithms that
provide more flexibility in [5], [6]. However, their design

Manuscript received July 02, 2018; revised July 25, 2018. This work was

supported by the National Science Foundation of China (No.61774086,
No.61376025), the Fundamental Research Funds for the Central Universities
(NS2017023) and the Natural Science Foundation of Jiangsu Province
(BK20160806).

Q. B. is with the College of Electronic and Information Engineering,
Nanjing University of Aeronautics and Astronautics, Nanjing, 211100,
China (e-mail: biqiangjia@nuaa.edu.cn).

N. W. is with the College of Electronic and Information Engineering,
Nanjing University of Aeronautics and Astronautics, Nanjing, 211100,
China (e-mail: wunee@nuaa.edu.cn).

F. Z and Yasir is with the College of Electronic and Information
Engineering Nanjing University of Aeronautics and Astronautics, Nanjing,
211100, China.

consumes more area and reduces the performance of the
circuit because of the memory. It uses the additional circuit to
implement the two encryption schemes but only one
algorithm can be used in one instance of time in [7]. It costs
additional area and increased power consumption.

Since both of the cipher algorithm AES and SM4 are using
MI as a computing unit which is the most complex function
for reducing the chip area of S-Box. Our design shares the
multiplicative inverse (MI) over GF(28) based on dynamic
partial reconfiguration (DPR) technology. In order to further
improve implementation efficiency, composite field
arithmetic (CFA) and delay aware common sub-expression
elimination (DACSE) have been employed in our S-Box
design.

The rest of the paper is organized as follows: Section II
introduces the S-Box algorithm of AES and SM4. Section III
describes the optimized implementation of S-Box circuit.
Meanwhile, the detailed CFA, DACSE algorithm and DPR
technology is discussed. Section IV shows the results and
evaluation of our design along with comparison to other
design schemes. Finally, Section V concludes this paper.

II. REVIEW OF S-BOX ALGORITHM

The algebraic expression of S-Box of AES and SM4 is
shown as (1) respectively [8], [9].

()

()

Z x I x M V

S x I x A C A C

 (1)

Where I is the multiplicative inverse (MI) over GF(28)
which can be reused by AES and SM4, x is the input of
S-Box. M is the affine matrix and V is row vector of AES
S-Box. A is the affine matrix and C is row vector of SM4
S-Box. Z(x) and S(x) are the output of S-Box of AES and
SM4 respectively. M and V are shown in (2). A and C are
shown in (3).

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

M

,

0

1

1

0

0

0

1

1

V

(2)

DPR Based AES/SM4 Encryption Highly
Efficient Implementation

Qiangjia Bi, Ning Wu, Fang Zhou and Yasir

T

Proceedings of the World Congress on Engineering and Computer Science 2018 Vol I
WCECS 2018, October 23-25, 2018, San Francisco, USA

ISBN: 978-988-14048-1-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2018

1 1 1 0 0 1 0 1

1 1 1 1 0 0 1 0

0 1 1 1 1 0 0 1

1 0 1 1 1 1 0 0

0 1 0 1 1 1 1 0

0 0 1 0 0 1 1 1

1 0 0 1 0 1 1 1

1 1 0 0 1 0 1 1

A

,

1

1

0

1

0

0

1

1

C

 (3)

III. DESIGN AND OPTIMIZATION OF MI

A. Using CFA to optimize MI over GF(28)

Since the calculation of the MI over GF(28) is very
complex, we introduce CFA to reduce the hardware
complexity by mapping the MI over GF(28) into composite
field GF((24)2). In order to achieve this transformation, we
need to optimize the equation (1), that is expressed as:

11

11

(x)

S(x)

Z M X V

A T T AX C C

 (4)

Where δ, T is the mapping matrix and the δ-1, T-1 is the
inverse of mapping matrix. We can calculate them using
MATLAB based on the irreducible polynomials.

The structure of S-Box computing process is shown as
Fig.1. The structure on the upper half of Fig.1 is for AES
S-Box while bottom half shows SM4 S-Box. The MI over
GF((24)2) in the middle is the MI which need to be optimized.

In finite field, the irreducible polynomials of GF(28) of
AES is (5). In the composite field GF((24)2) using (6) as
irreducible polynomials internally.

 8 4 3
28 1P x x x x x (5)

24 2
1

4 4 3 2
2

2 :

2 : 1

GF f y y y

GF f x x x x x

 (6)

Where v={0010}2. v is the coefficient of the GF(22)
irreducible polynomial. Modification of this polynomial
affects the design the circuit. For SM4, it has a little different
irreducible polynomial in finite field GF(28). When it
converts to composite field it still needs the irreducible
polynomials (6).

Based on the first equation in (6), the MI over GF(28) is
calculated in the following expression:

 11 2

 =

h h l l h h l

l h

A A A A A A A A

B B B

 (7)

Where A can be expressed as A=Ah+γAl, Ah, Al ∈GF(24),
B is the output of MI that can be expressed as B=Bh+γBl, Bh,

Bl ∈GF(24). The main architecture of MI over GF((24)2)as

shown in Fig.2.
The composite filed MI over GF((24)2) needs three

multiplication, two addition, one square multiply coefficient
and one multiplicative inverse. All sub-calculation are 4 bit
input and 4 bit output in finite field GF(24).

Following section shows the calculation of multiplication,
addition, square multiply coefficient and MI in GF(24).
a) Multiplication over GF(24)

Computing the multiplication, we assume that a and b are
elements over GF(24). They can be described as:

a=a3ω3+ a2ω2+ a1ω+ a0, b=b3ω3+ b2ω2+ b1ω+ b0 (8)
where {a3, a2, a1, a0, b3, b2, b1, b0}∈GF(2). So the

expression of multiplication can be shown in (9) and

2mod(f (x))c a b .

3 3 1 1 3 3 0 0 3 2 1 1 2 2 2

2 3 1 1 3 2 0 0 2 2 2 1 1

1 3 1 1 3 1 0 0 1 3 3 2 2

0 3 2 2 3 3 1 1 3 2 2 0 0

c a b a b a b a b a b a b a b

c a b a b a b a b a b a b
c

c a b a b a b a b a b a b

c a b a b a b a b a b a b

 (9)

As the set of equation (9) shows, the multiplication needs
25AND gates and 21 XOR gates.
b) Addition over GF(24)

In finite field, the addition is just XOR of the
corresponding bit so the addition of GF(24) is relatively
simple. It just needs 4 XOR gates, the expression is shown in
(10).

3 3 3

2 2 2

1 1 1

0 0 0

d a b

d a b
d a b

d a b

d a b

 (10)

c) Constant Multiplied by Square over GF(24)
Based on the multiplication we calculated the square

operation shown in (11).

3 2

2 2 12

1 3 2

0 2 0

h a

h a a
h a

h a a

h a a

 (11)

Because v is a constant {0010}2. We calculate v with the
square operation. And it cost nothing.

3 1

2 32

1 0

0 2

*

e a

e a
e a v

e a

e a

 (12)

d) Multiplicative Inverse over GF(24)

In finite field, it has 2 1 1, 2
p pGF . So in

GF(24), the calculation of multiplicative inverse is

Fig. 1. S-Box computing process

Ah
4

Al

()2×υI

()-1

Bh

Bl
4

4

4

Fig. 2. MI over GF((24)2)

Proceedings of the World Congress on Engineering and Computer Science 2018 Vol I
WCECS 2018, October 23-25, 2018, San Francisco, USA

ISBN: 978-988-14048-1-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2018

1 14 . We transfer the calculation from multiplicative
inverse to multiplication. The expression is shown in (13).

3 3 2 0 3 1 0 3 1 2 0 2 1

3 3 2 0 2 1 0 2 0 1 0 3 1

1
3 3 2 1 3 1 0 2 1 0 3 0 2 1

2 0 1

3 3 2 1 3 2 0 3 1 2 0 1 0

f a a a a a a a a a a a a

f a a a a a a a a a a a a

f a f a a a a a a a a a a a a a

a a a

f a a a a a a a a a a a a

 (13)

It needs 27 AND gates and 21 XOR gates.

So after all the sub-calculation, we summarize the MI over
GF(28) gate consumption in TABLE I.

B. Using DACSE to optimize the MI over GF(28)

Because those multiplication and MI over GF(24) are
complex, we continue to optimize these two units based on
DACSE considering the critical path delay and hardware
consumption.
a) Multiplication over GF(24) optimized by DACSE

On (8), we extract the same computing elements as shown
in (14).

1 3 2 2 3

2 3 1 1 3 3 3 3

3 3 0 0 3 2 2 2

1 1 14 2 1 1 2

0 0 05 2 0 0 2

6 1 0 0 1

,

R a b a b

R a b a b r a b

R a b a b r a b

r a bR a b a b

r a bR a b a b

R a b a b

 (14)

So the product of a and b is shown:

3 2 3 4 2

2 2 5 2 1
2

1 2 6 3 2

0 1 2 2 0

* mod(f (x))

c R R R r

c R R r r
c a b

c R R r r

c R R r r

 (15)

Still we can find one computing unit expressed in (16).

2 2S R r (16)
So, after comparing and searching the final result is (17):

3 3 4

2 5 1
2

1 6 3

0 1 0

* mod(f (x))

c S R R

c S R r
c a b

c S R r

c S R r

 (17)

The overall hardware consumption of multiplication is 16
AND gates and 15 XOR gates and the critical path is
3TXOR+1TAND.
b) Multiplicative inverse over GF(24) optimized by DACSE

Same way, the common part of multiplicative inverse is
shown in (18) and the final expression is (19).

1 3 2

7 1 12 3 1
1 1 5

8 1 03 3 0
2 7 1

9 3 64 2 1
3 8 1

5 2 0 10 2 6

6 1 0

, ,

R a a

R R aR a a
S a R

R R aR a a
S R S

R a RR a a
S R S

R a b R a R

R a a

 (18)

3 2 2 1 8

3 2 3 5 91

3 1 2 3 8 9

3 1 0 0 7

f S a R R

f S a R R
f a

f S R R R R

f S a R R

 (19)

The overall hardware consumption of MI over GF(24) is 10
AND gates and 16 XOR gates and the critical path is
3TXOR+2TAND.

After DACSE the gates utilization of GF(28) is shown in
Table II.

C. Using DACSE to optimize the constant matrix over
GF(28)

After calculating the MI over GF(28), we generate the
mapping matrix and applied further optimizing by DACSE.
The computing procedure of AES is like Fig.3.

For example, based on the irreducible polynomial of AES
over GF(28) shown in (5), we calculate the root βi of P28(w)=0.
w is from 1 to 255, we use method of exhaustion to find βi.
Based on the equation (18), use βi to generate the mapping
matrix δ and the δ-1 is using δ-1δ=E to generate. The mapping
matrix calculation of SM4 is same like AES.

2
0

2 3 4 5 6 7

, (i 0 ~ 7)

1, , , , , , ,

i

i

i i i i i i i i

 (20)

And the related matrix of AES is shown in (21), for SM4 is
(22).

TABLE I
GATES CONSUMPTION AFTER CFA

Computing Unit AND gate XOR gate

Multiplication 25 21
Addition 0 4

Constant multiplied
by square

0 0

MI over GF(24) 27 21
MI over GF(28) 102 92

MI over GF(28) includes 2 addition, 3 multiplication, 1 MI over
GF(24) and 1 constant multiplied by square.

TABLE II
GATES CONSUMPTION AFTER DACSE

Computing Unit AND gate XOR gate

Multiplication 2516 2115
Addition 0 4

Constant multiplied
by square

0 0

MI over GF(24) 2710 2116
MI over GF(28) 10258 9269

The AB means that the number of gates decrease from A to B.

2
0

i

w

Fig. 3. AES calculation of mapping matrix

Proceedings of the World Congress on Engineering and Computer Science 2018 Vol I
WCECS 2018, October 23-25, 2018, San Francisco, USA

ISBN: 978-988-14048-1-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2018

Fig. 4. DPR S-Box computing process

1

1 1 0 1 0 0 1 0 1 0 1 1 0 1 0 0

1 0 1 0 1 1 0 0 1 1 1 0 0 0 1 0

1 1 0 1 1 1 1 0 0 1 0 1 0 1 0 0

0 1 1 1 0 0 0 0 1 0 1 0 0 1 1 0
,

0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0

1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0

1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0

1 0 1 0 0 0 0 1 1 1 1 0 0 0 0 1

 (21)

1

0 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0

1 0 0 0 1 1 1 0 0 1 0 1 1 0 0 0

1 0 1 0 1 1 0 0 1 0 1 0 1 1 1 0

0 0 1 0 1 1 0 0 1 1 0 0 1 0 0 0
,

1 1 1 0 0 0 1 0 1 0 0 0 0 1 0 0

0 1 1 1 0 1 0 0 0 0 1 1 1 0 1 0

0 1 1 0 0 1 1 0 1 1 0 0 1 1 1 0

0 1 1 0 0 0 1 1 0 0 1 1 1 0 0 1

T T

 (22)

Then we calculate the Mδ-1 and AT-1. This matrix

multiplication has also been optimized by DACSE.
Finally, we have the gate consumption of those matrix

multiplication as shown in Table III.

D. Using DPR Technology to optimize the MI over GF(28)

Dynamic Partial Reconfiguration is being used in many
kind of security area [10]. Based on Fig.1, we use the
optimized MI over GF(28) as the static part which always
work by AES and SM4 whenever any of the algorithms is
used. The other operations of AES S-Box including mapping
matrix, affine matrix and raw vector are in dynamic 1 AES.
The other operations of SM4 are dynamic 2 SM4 and the
structure of our design is shown in Fig.3.

In this design, we let the biggest unit be the static and small
circuit to be the dynamic. In this way, we do not have to use
the redundancy circuit which always works on chip like [7].
Further improvement circuit area, critical path and DPR
computing process is shown in Fig.4.

After all calculation, the un-optimized and optimized
design are shown in Table IV. And comparing with the

normal design, our optimized design reduce 11XOR gate of
mapping unit. Mapping inverse also reduce 7 XOR gate.

IV. IMPLEMENT RESULTS AND ANALYSIS

In paper [11], [3], they optimized AES S-Box and SM4
S-Box on GF(((22)2)2) and implemented on Spartan-3E
FPGA. In order to compare the difference, we implement
their design on Vritex-7 FPGA. As the table V shows, the 2
design is being optimized. But if directly add the slices
number of two design. The slices should be 46.

In paper [7], it design a redundancy S-Box circuit in ASIC.
Because of the redundancy, it cost more area, power and
increase the path delay. We have implemented that design in
FPGA to compare that design with our design. After
implementation, the comparison of our S-Box design and
others design is shown in Table VI.

As the Table VI shows, paper [7]’s design cost 120 LUT,
but ours only cost 39 for static and at most 21 for dynamic.
And the slices are reduced by 21.6%. And the frequency is
improved 27.9%.

Dynamic 1 AESDynamic 2 SM4

Static part(MI)

FPGA

Fig. 3. S-Box computing process

TABLE III
CONSTANT MATRIX CONSUMPTION AFTER DACSE

Computing Unit AES SM4

δ× 11 /

Mδ-1× 13 /

A× / 21

T× / 13

AT-1× / 13

The number in the table is the XOR gates number.

TABLE IV
THE GATE OPTIMIZATION COMPARISON

Computing Unit Not Optimized Optimized

 XOR AND XOR AND
Mapping 22 0 11 0

MI over GF(28) 102 92 58 69
Mapping inverse 20 0 13 0

Sum 144 92 82 69

TABLE V
THE COMPARISON OF DIFFERENT DESIGN

Performance
Parameter

Ref.[11]
AES -Box

Ref.[3]
SM4 S-Box

Ours

LUT6 10 10 15
LUT5 16 26 7
LUT4 12 14 16
LUT3 6 5 6
LUT2 14 10 10
LUT1 0 10 2

Critical Path 9 12 9/12

Frequency/MHz 221.3 188.8 188.8

TABLE VI
THE COMPARISON OF DIFFERENT DESIGN

Performance
Parameter

Ref.[7] Ours

Static/LUT 120 39
Dynamic/LUT 0 12/21

Slices 37 29
Power/W 0.262 0.271

Frequency/MHz 163.93 188.8
Efficient/

(Mbps/slices)
35.44 52.1

Proceedings of the World Congress on Engineering and Computer Science 2018 Vol I
WCECS 2018, October 23-25, 2018, San Francisco, USA

ISBN: 978-988-14048-1-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2018

V. CONCLUSION

S-Box is the most important and complex unit of AES and
SM4 encryption algorithm[5]. It is significant to do more
researches on S-Box, especially on reducing the area,
improving the speed and low power. CFA and DACSE
schemes remarkably reduce the implementation area of the
S-Box. Beside that, a new implementation of AES and SM4
S-Box based on Dynamic Partial Reconfiguration technology
of Xilinx Virtex 7 is proposed in this paper. After comparing
with the other designs, our design shows area reduction of
21.6% and frequency improvement is 27.9%.

REFERENCES
[1] D. Canright, “A Very Compact S-Box for AES,” Preceddings of 7th

International Workshop on Cyptograpic Hardware and Embedded
Systems (CHES), pp. 441–455, 2005.

[2] D. Chen, G. Shou, Y. Hu, and Z. Guo, “Efficient Architecture and
Implementations of AES GF (24).” International Conference on
Advanced Computer Theory & Engeineering, pp. 295–298, 2010.

[3] XU Yan-hua, BAI Xue-fei, and GUO Li, “A new algorithm of S-box
for hardware implementation of SMS4,” Journal of University of
Science & Technology of China, vol. 39, p. 1164-1170, 2009.

[4] Yong Zhang, Fang Zhou, and Yasir, “FPGA Based Highly Efficient
AES Implementation,” WCECS, vol. I, pp. 1–5, 2017.

[5] Y. Jinjiang, G. Wei, C. Peng, and Y. Jun, “An Area-Efficient Design of
Reconfigurable S-box for Parallel Implementation of Block Ciphers,”
IEICE Transactions on Fundamentals of Electronics Communications
& Sciences, vol. 10, pp. 1–10, 2016.

[6] W. Shan, X. Zhang, X. Fu, and P. Cao, “VLSI design of a
reconfigurable S-box based on memory sharing method,” IEICE
Electrn Express, vol. 11, no. 1, pp. 1–6, 2014.

[7] L. Fu, X. Shen, L. Zhu, and J. Wang, “A new compact hardware
architecture of S-Box for block ciphers AES and SM4,” IEICE
Electronics Express, vol. 7, no. 2, pp. 365–375, 2014.

[8] F. Liu et al., “Analysis of the SMS4 Block Cipher.,” Information
Security & Privacy, Australasian Conference, Acisp, Townsville,
Australia, July, 2007, pp. 158–170.

[9] W. E. I. B. dian, M. A. W. ping, W. X. mei, and X. an, “The algebraic
expression for the AES Sbox,” Journal of Xidian University., 2003.

[10] Z. E. A. A. Ismaili and A. Moussa, “Self-Partial and Dynamic
Reconfiguration Implementation for AES using FPGA,” International
Journal of Computer Science Issues, vol. 2, pp. 33–40, 2009.

[11] M. Wisdom and P. Lee, “An efficient implementation of a Fully
Combinational Pipelined S-Box on FPGA,” 2016 Conference of Basic
Sciences and Engineering Studies (SGCAC), pp. 222–227, 2007.

Proceedings of the World Congress on Engineering and Computer Science 2018 Vol I
WCECS 2018, October 23-25, 2018, San Francisco, USA

ISBN: 978-988-14048-1-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2018

