
 

 
Abstract—This paper presents an efficient hardware 

implementation of Advance Encryption Standard (AES) and 
SM4 algorithms on Xilinx Virtex 7 FPGA by exploiting the 
feature of dynamic partial reconfiguration (DPR) to optimize 
S-Box on composite field arithmetic (CFA). We utilize delay 
aware common sub-expression elimination (DACSE) scheme to 
reduce overall area consumption by sharing the multiplicative 
inverse (MI) over GF(28) and eliminating the redundant 
circuitry. Our results reveal that hardware resources i.e. slices 
are minimized by 21.6%, and frequency is improved by 27.9%. 
In addition to that efficiency of our implementation is improved 
by 62.70 Mbps/slices which is higher than the previously 
proposed design. 
 

Index Terms—AES, SM4, Substitution Box(S-Box), DPR 
 

I. INTRODUCTION 

HE Advanced Encryption Standard (AES) is  widely 
used in various applications of information security as an 

encryption algorithm [1], [2]. SM4 is the first block cipher 
algorithm released by the Chinese National Cipher 
Management Committee Office and it is usually used in 
wireless security of local area network products [3]. Large 
number of products use these two algorithms to implement 
encryption of data. Most applications are using them 
independently; and without any optimization that leads to 
more on chip area consumption. Therefore, it is significant to 
optimize these algorithms used in the wireless sensor 
networks and other resource limited applications. 

S-Box is a nonlinear function and the fundamental 
computing unit of AES and SM4, that occupies most of area 
and power consumption in circuits. For AES it occupies 
about 75% area of the round transformation [4]. Hence it is 
important to analyze the S-Box and optimize the logic. 

The design and optimization of S-Box have been studied in 
detail. Shared memory scheme is used to design a 
reconfigurable S-Box for different cipher algorithms that 
provide more flexibility in [5], [6]. However, their design 
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consumes more area and reduces the performance of the 
circuit because of the memory. It uses the additional circuit to 
implement the two encryption schemes but only one 
algorithm can be used in one instance of time in [7]. It costs 
additional area and increased power consumption. 

Since both of the cipher algorithm AES and SM4 are using 
MI as a computing unit which is the most complex function 
for reducing the chip area of S-Box. Our design shares the 
multiplicative inverse (MI) over GF(28) based on dynamic 
partial reconfiguration (DPR) technology. In order to further 
improve implementation efficiency, composite field 
arithmetic (CFA) and delay aware common sub-expression 
elimination (DACSE) have been employed in our S-Box 
design. 

The rest of the paper is organized as follows: Section II 
introduces the S-Box algorithm of AES and SM4. Section III 
describes the optimized implementation of S-Box circuit. 
Meanwhile, the detailed CFA, DACSE algorithm and DPR 
technology is discussed. Section IV shows the results and 
evaluation of our design along with comparison to other 
design schemes. Finally, Section V concludes this paper. 

II. REVIEW OF S-BOX ALGORITHM 

The algebraic expression of S-Box of AES and SM4 is 
shown as (1) respectively [8], [9]. 
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Where I is the multiplicative inverse (MI) over GF(28) 
which can be reused by AES and SM4, x is the input of 
S-Box. M is the affine matrix and V is row vector of AES 
S-Box. A is the affine matrix and C is row vector of SM4 
S-Box. Z(x) and S(x) are the output of S-Box of AES and 
SM4 respectively. M and V are shown in (2). A and C are 
shown in (3). 
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III. DESIGN AND OPTIMIZATION OF MI 

A. Using CFA to optimize MI over GF(28) 

Since the calculation of the MI over GF(28) is very 
complex, we introduce CFA to reduce the hardware 
complexity by mapping the MI over GF(28) into composite 
field GF((24)2). In order to achieve this transformation, we 
need to optimize the equation (1), that is expressed as: 
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Where δ, T is the mapping matrix and the δ-1, T-1 is the 
inverse of mapping matrix. We can calculate them using 
MATLAB based on the irreducible polynomials. 

The structure of S-Box computing process is shown as 
Fig.1. The structure on the upper half of Fig.1 is for AES 
S-Box while bottom half shows SM4 S-Box. The MI over 
GF((24)2) in the middle is the MI which need to be optimized. 

In finite field, the irreducible polynomials of GF(28) of 
AES is (5). In the composite field GF((24)2) using (6) as 
irreducible polynomials internally. 
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Where v={0010}2. v is the coefficient of the GF(22) 
irreducible polynomial. Modification of this polynomial 
affects the design the circuit. For SM4, it has a little different 
irreducible polynomial in finite field GF(28). When it 
converts to composite field it still needs the irreducible 
polynomials (6). 

Based on the first equation in (6), the MI over GF(28) is 
calculated in the following expression: 
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Where A can be expressed as A=Ah+γAl, Ah, Al ∈GF(24), 
B is the output of MI that can be expressed as B=Bh+γBl, Bh, 

Bl ∈GF(24). The main architecture of MI over GF((24)2)as 

shown in Fig.2. 
The composite filed MI over GF((24)2) needs three 

multiplication, two addition, one square multiply coefficient 
and one multiplicative inverse. All sub-calculation are 4 bit 
input and 4 bit output in finite field GF(24). 

Following section shows the calculation of multiplication, 
addition, square multiply coefficient and MI in GF(24). 
a) Multiplication over GF(24) 

Computing the multiplication, we assume that a and b are 
elements over GF(24). They can be described as: 

a=a3ω3+ a2ω2+ a1ω+ a0, b=b3ω3+ b2ω2+ b1ω+ b0            (8) 
where {a3, a2, a1, a0, b3, b2, b1, b0}∈GF(2). So the 

expression of multiplication can be shown in (9) and 

2mod(f (x))c a b  . 
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As the set of equation (9) shows, the multiplication needs 
25AND gates and 21 XOR gates. 
b) Addition over GF(24) 

In finite field, the addition is just XOR of the 
corresponding bit so the addition of GF(24) is relatively 
simple. It just needs 4 XOR gates, the expression is shown in 
(10). 
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c) Constant Multiplied by Square over GF(24) 
Based on the multiplication we calculated the square 

operation shown in (11). 
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Because v is a constant {0010}2. We calculate v with the 
square operation. And it cost nothing. 
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d) Multiplicative Inverse over GF(24) 

In finite field, it has  2 1 1, 2
p pGF    . So in 

GF(24), the calculation of multiplicative inverse is 

Fig. 1.  S-Box computing process 
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Fig. 2.  MI over GF((24)2)  
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1 14   . We transfer the calculation from multiplicative 
inverse to multiplication. The expression is shown in (13). 
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It needs 27 AND gates and 21 XOR gates. 

So after all the sub-calculation, we summarize the MI over 
GF(28) gate consumption  in TABLE I. 

B. Using DACSE to optimize the MI over GF(28) 

Because those multiplication and MI over GF(24) are 
complex, we continue to optimize these two units based on 
DACSE considering the critical path delay and hardware 
consumption. 
a) Multiplication over GF(24) optimized by DACSE 

On (8), we extract the same computing elements as shown 
in (14). 
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So the product of a and b is shown: 
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Still we can find one computing unit expressed in (16). 

2 2S R r                                        (16) 
So, after comparing and searching the final result is (17): 
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The overall hardware consumption of multiplication is 16 
AND gates and 15 XOR gates and the critical path is 
3TXOR+1TAND. 
b) Multiplicative inverse over GF(24) optimized by DACSE 

Same way, the common part of multiplicative inverse is 
shown in (18) and the final expression is (19). 
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The overall hardware consumption of MI over GF(24) is 10 
AND gates and 16 XOR gates and the critical path is 
3TXOR+2TAND. 

After DACSE the gates utilization of GF(28) is shown in 
Table II. 

C. Using DACSE to optimize the constant matrix over 
GF(28) 

After calculating the MI over GF(28), we generate the 
mapping matrix and applied further optimizing by DACSE. 
The computing procedure of AES is like Fig.3. 

For example, based on the irreducible polynomial of AES 
over GF(28) shown in (5), we calculate the root βi of P28(w)=0. 
w is from 1 to 255, we use method of exhaustion to find βi. 
Based on the equation (18), use βi to generate the mapping 
matrix δ and the δ-1 is using δ-1δ=E to generate. The mapping 
matrix calculation of SM4 is same like AES. 
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And the related matrix of AES is shown in (21), for SM4 is 
(22). 

TABLE I 
GATES CONSUMPTION AFTER CFA 

Computing Unit AND gate XOR gate 

Multiplication 25 21 
Addition 0 4 

Constant multiplied 
by square 

0 0 

MI over GF(24) 27 21 
MI over GF(28) 102 92 

MI over GF(28) includes 2 addition, 3 multiplication, 1 MI over 
GF(24) and 1 constant multiplied by square. 

TABLE II 
GATES CONSUMPTION AFTER DACSE 

Computing Unit AND gate XOR gate 

Multiplication 2516 2115 
Addition 0 4

Constant multiplied 
by square 

0 0 

MI over GF(24) 2710 2116 
MI over GF(28) 10258 9269 

The AB means that the number of gates decrease from A to B. 

2
0

i

w 

Fig. 3. AES calculation of mapping matrix 
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Fig. 4. DPR S-Box computing process 
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Then we calculate the Mδ-1 and AT-1. This matrix 

multiplication has also been optimized by DACSE. 
Finally, we have the gate consumption of those matrix 

multiplication as shown in Table III. 

D. Using DPR Technology to optimize the MI over GF(28) 

Dynamic Partial Reconfiguration is being used in many 
kind of security area [10]. Based on Fig.1, we use the 
optimized MI over GF(28) as the static part which always 
work by AES and SM4 whenever any of the algorithms is 
used. The other operations of AES S-Box including mapping 
matrix, affine matrix and raw vector are in dynamic 1 AES. 
The other operations of SM4 are dynamic 2 SM4 and the 
structure of our design is shown in Fig.3.  

In this design, we let the biggest unit be the static and small 
circuit to be the dynamic. In this way, we do not have to use 
the redundancy circuit which always works on chip like [7]. 
Further improvement circuit area, critical path and DPR 
computing process is shown in Fig.4. 

After all calculation, the un-optimized and optimized 
design are shown in Table IV. And comparing with the 

normal design, our optimized design reduce 11XOR gate of 
mapping unit. Mapping inverse also reduce 7 XOR gate. 

IV. IMPLEMENT RESULTS AND ANALYSIS 

In paper [11], [3], they optimized AES S-Box and SM4 
S-Box on GF(((22)2)2) and implemented on Spartan-3E 
FPGA. In order to compare the difference, we implement 
their design on Vritex-7 FPGA. As the table V shows, the 2 
design is being optimized. But if directly add the slices 
number of two design. The slices should be 46. 

In paper [7], it design a redundancy S-Box circuit in ASIC. 
Because of the redundancy, it cost more area, power and 
increase the path delay. We have implemented that design in 
FPGA to compare that design with our design. After 
implementation, the comparison of our S-Box design and 
others design is shown in Table VI. 

As the Table VI shows, paper [7]’s design cost 120 LUT, 
but ours only cost 39 for static and at most 21 for dynamic. 
And the slices are reduced by 21.6%. And the frequency is 
improved 27.9%. 

Dynamic 1 AESDynamic 2 SM4

Static part(MI)

FPGA

Fig. 3.  S-Box computing process 

TABLE III 
CONSTANT MATRIX CONSUMPTION AFTER DACSE 

Computing Unit AES SM4 

δ× 11 / 

Mδ-1× 13 / 

A× / 21 

T× / 13 

AT-1× / 13 

The number in the table is the XOR gates number. 

TABLE IV 
THE GATE OPTIMIZATION COMPARISON 

Computing Unit Not Optimized Optimized 

 XOR AND XOR AND 
Mapping 22 0 11 0 

MI over GF(28) 102 92 58 69 
Mapping inverse 20 0 13 0 

Sum 144 92 82 69 

TABLE V 
THE COMPARISON OF DIFFERENT DESIGN 

Performance 
Parameter 

Ref.[11] 
AES -Box 

Ref.[3] 
SM4 S-Box 

Ours 

LUT6 10 10 15 
LUT5 16 26 7 
LUT4 12 14 16 
LUT3 6 5 6 
LUT2 14 10 10 
LUT1 0 10 2 

Critical Path 9 12 9/12 

Frequency/MHz 221.3 188.8 188.8 

TABLE VI 
THE COMPARISON OF DIFFERENT DESIGN 

Performance 
Parameter 

Ref.[7] Ours 

Static/LUT 120 39 
Dynamic/LUT 0 12/21 

Slices 37 29 
Power/W 0.262 0.271 

Frequency/MHz 163.93 188.8 
Efficient/ 

(Mbps/slices)
35.44 52.1 
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V. CONCLUSION 

S-Box is the most important and complex unit of AES and 
SM4 encryption algorithm[5]. It is significant to do more 
researches on S-Box, especially on reducing the area, 
improving the speed and low power. CFA and DACSE 
schemes remarkably reduce the implementation area of the 
S-Box. Beside that, a new implementation of AES and SM4 
S-Box based on Dynamic Partial Reconfiguration technology 
of Xilinx Virtex 7 is proposed in this paper. After comparing 
with the other designs, our design shows area reduction of 
21.6% and frequency improvement is 27.9%. 
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