

Managing Early Aspects Interaction
Boubendir Amel

Abstract__ Despite, the Aspect-oriented Software
Development (AOSD) allows the separation of crosscutting
concerns throughout the software life cycle and improve the
modularity of software system artifacts, the complexity and
diversity of interactions between aspects remind an important
problem that AOSD community has to deal with, and has to
support their manage by surely and fully catch the right
conditions that involve their interaction in consistent way.

 In this paper, we present our approach which deal with
many type of aspect interaction at requirement phase and
follows a step by step strategy: from the concern level to the
requirements level and analysis artifact level. Through this
work we concentrate on issues of gathering and capturing
clearly conditions necessary to be satisfied for a proper
composition of the system.

Index terms__ AOSD, Aspect, Aspects Conflict
type,Concerns, Interaction between Aspects,

I. INTRODUCTION

The Aspect-oriented Software Development is an
emerging paradigm that complete and improve the current
modern development approaches such as object-oriented and
component-oriented approaches by providing a new
mechanism for the separation of crosscutting concerns
throughout the software life cycle in order to improve the
modularity and maintainability of software system artifacts.
The transversal concerns are then encapsulated in new
modular units called "aspect"[13], and it provides as well a
new composition technique for combining aspects and bases
modular units named weaving. However, the complexity and
diversity of interactions among aspects, and between aspects
and base modules can reduce the value of the aspects
oriented approach. So, it is essential to manage aspect
interaction.

Up to now, existing aspect-oriented software
development approaches have basically focused on dealing
with aspect and their interactions at the programming level,
such as works presented in [29]-[30]-[32]-[33] . Just lately,
there have a few attentions that have been taken on managing
their interaction at the early phases: analysis and design level
[3]. Nevertheless, some works exist in the literature which
undertake this subject in Aspect Oriented Requirement
Engineering (AORE) such as in [12], where the authors try to
diminish the time complexity of interactions among aspects,
between aspects and base modules using Hamiltonian path
techniques by locate the match point, order conflicting
aspect, dominant aspect and generate the composition rules.

In [34] S. Mohite et al. suggested analyze interaction and
potential inconsistencies in requirement modeling. Through
an use case driven approach , where the use case are refined
by activities and are the join points , graph transformation
system is used to weave aspect use case and to provide an
analysis support for detecting order conflicts and
dependencies. In the same way; in [5] Whittle et al. present
an approach called MATA, based on model transformation.
They provide support for conflict and dependency detection,
based on critical pair analysis of weaved system. The
objective of this detection phase is to order composition.
More recent work by Chitchyan et al. [4] shifts the highlight
towards a semantic analysis of requirements. Requirements
here are annotated and composition rules can be expressed
using semantic queries. This approach aim of removing
some order conflicts automatically detected. In [19] the
authors propose a FTS approach witch deal with aspects
interactions and dependencies in analysis phase. The
approach identifies aspects using Colored Petri nets and
exploit dependencies resulted of using operators such as
Before, After, and Replace which is consumed by their
framework, for generating a composition rule for every
match point using the specification of aspect. The approach
incorporates a feedback edge set, topological ordering, and
second valid ordering. In [6] an AORE approach called
MDSOCRE based on XML syntax, it allows the
organization of requirements into concerns. Concerns can be
connected by means of compositions rules which express
crosscutting relationships of aspects in requirement level
granularity. However in [20] A. Alberto et al. concentrate
rather on identifying and resolving conflicting dependencies
between aspects in textual requirement, they present an
automated tool EA_analyser to detect conflict on
requirement specified in natural language.

Even so, from our literature review we have observed so
far, a considerable lack of works that deal with different
issues of aspect interaction analysis and management. From
these important issues, which are less investigated, we
underline the importance to deal with different aspect
interaction type more than their classification and the issue
of formulating sure conditions that has to be satisfied in
implementation phase.
 Therefore, through this paper we refine and extend our
ideas on dealing with aspect interactions. We will present
an extended multi-level interactions approach to deal with
interaction between aspects in the requirement engineering
phase, from the concern level (use case) through the
requirements level (scenario and step of scenarios of use
cases) to arriving at the analysis diagrams specification. We
will concentrate on aspect condition identification issue and
initiate also to a certain treatment process of the conflicts and
multi-level interactions analysis during the early phases.

Manuscript received June 2019, revised June 2019.
Boubendir amel , Department of Computer Science
University of 20 Aout 1955 Skikda , Skikda, Algeria,
 a.boubendir@univ-skikda.dz

Proceedings of the World Congress on Engineering and Computer Science 2019
WCECS 2019, October 22-24, 2019, San Francisco, USA

ISBN: 978-988-14048-7-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2019

mailto:a.boubendir@univ-skikda.dz

 The rest of the paper is organized as follow: In section 2,
we give a background about aspects interaction and conflict
problems; we give some classifications as proposed in some
research works. In section 3, we discuss how dealing with
aspects interaction problem and we discuss issue of capturing
aspects conditions to motivate our new approach. Our
approach is described in section4. Once, the section 5 gives
some related works, and finally concluding remarks are
drawn from the work and perspectives.

II. ASPECTS INTERACTION AND CONFLICTS PROBLEM

The problem of interaction and conflicts between aspects
is a very serious problem that occurs throughout all software
development phases. An interaction has been recognized as
the application of multiple aspects at the same join point
which can yield to undesired effects during program
execution [6]. However, a conflict captures the situation of
semantically interference: one aspect that works correct in
isolation does not work correctly anymore when it is
composed with other aspects [5].

There are some works which cover in an explicit way
these problems, most of those give classifications of them:
According to [7], an aspect is able to interact with other
components by altering mainly the static structure of both
code or system or the control flow or by the state of the
objects .In [9], the authors distinguish two types of conflict,
control and data related conflicts. Where the first models the
effect of advice on the control flow and the latter captures
conflicts that occur due to shared data. According to [8]
Bakre et al. classify interactions among aspects and base
program into Spectative aspects that observe the state of the
system at join points, but they do not control the execution
flow. Regulative aspects which observe the state at join
points and control the flow at join points based on the state,
and Invasive aspects, which in addition to be regulative
modify the system state at join points. Globally, all the
previous classifications are too much oriented to aspect
programs. However, the following classification is more
complete than the previous ones: according to [10], we
distinguish four principals’ categories for interactions:

The first one is the transverse specifications in which the
current use of join points for specifying aspects and theirs
locations where they are to be inserted, can lead to two
problems: the accidental join points and accidental
recursion. The first problem where the capture behavior
aspect is accidentally inserted bad and undesirable locations
(Join point). However, accidental recursion refers to the
situation where the behavior of the aspect itself corresponds
to a join point specification leading to recursion. The second
one is aspect-aspect conflicts: also called interaction aspects,
this problem occurs when multiple aspects coexist in a
system, and here they identify five types of interaction:
Conditional execution, Mutual exclusion, Conflict of order,
Conflict of a nature depend on the dynamic context and
negotiation of the conflicts on the requirements and
architecture level (tradeoff). Conditional execution is the
case when the application of an aspect depends on another
aspect that must be applied for its correct functioning. The
two last ones are Base-aspect type conflicts and concern

type conflicts. Conflicts Type Concern Occur when
concerns affect the comportment or status of other concerns.
After all, there is a last classification which is more general.
According to [2], Aspect interaction occurs when several
aspects coexist in a system. The authors distinguish between
four different types of aspect interactions: mutual exclusion,
dependency, reinforcement and conflict.

A. How dealing with aspects interaction problem?
From the foregoing, we can assure that the aspect

interaction treatment process is very difficult, and that
problem can be occurring and discussing in tree essential
points:

- The aspect itself can occur in complex state.
- There are different types of conflicts and interactions.
- The conflicts and interaction problem affects all

aspect oriented software process.
From the first point, an aspect itself may be the locus of

further complexity. Aspects can be homogeneous or
heterogeneous [11], it is heterogeneous if it implements
different advices for many join point’s specification. And
then, we need a solid analysis for defining theirs behaviors
and theirs interactions, and we need to formulate a strict
constraints and conditions to be satisfied.

When from the second point, the different types of
conflicts require to establish a clear process for treating
different types of interactions in order to lead to formulate
conditions and constraints list that must be never
contradictory later.

However, from the third point, we can recognize that the
aspect and the aspect interaction and conflict problems are
occurred in all life cycle process. Certainly, it is favorable to
define aspects early in the development process during the
early stages of software development, requirements analysis,
domain analysis and design phase architecture; that
improves the aspect-oriented development.

Thus, it is very important to formulate conditions and
constraints which must be satisfied later in the following
stage of life cycle.

Other more, we think that’s important to adopt a multi-
level identification and definition of constraints and
conditions which have to be satisfied in all following stages
owing to the diversity and complexity of the problem itself.

B. Aspects interaction conditions identification issue.
E. Pulvermuller et al in [27] argued that there were

several issues to be considered with respect to conditions
that had to be satisfied: The classification, Detection,
collection, expression, storage and evaluation of conditions
and each was an area of research by itself [27]. We are
interesting here to detect and collect conditions. We will
first explain the relationship between aspect requirement
(early aspect) and aspect implementation level as like as it
has been described in several works like [17]-[18]-[26]-[27].
Then we will discuss some advantages and problems.

It is well known that aspect in requirements level will be
dispersed in set of implementation unit in implementation
level such as classes and methods and then the
implementation of aspect requirement may interact to
gather because an implementation unit may implement
many aspect requirements.

Proceedings of the World Congress on Engineering and Computer Science 2019
WCECS 2019, October 22-24, 2019, San Francisco, USA

ISBN: 978-988-14048-7-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2019

Fig.1 Relationship between aspect requirement and
implementation level

It is important to capture relevant dependencies and
conditions in the aspect requirement level, because the
aspect implementation must satisfied all specified conditions
connected to its specified requirement.

We agree with authors of [27] while they suggested that
due to the fact that it is impossible to capture all relevant
dependencies and conditions from beginning. Additional
conditions were added as needed or detected in growth
manner. Furthermore, we think that is a multi level analysis
of interaction leads to capture sure and precise conditions
which have to be satisfied in implementation level and we
think that is the definition of condition in analysis artifacts is
more suitable since it is the closest level to conception and
implementation level and then the mapping of specified
condition at this level to conception and implementation
level is easier and more interpreted. However, this level is
too finer that it is impossible to identify and deal with aspect
interaction correctly owing to the diversity and complexity
of the problem itself. Consequently we believe that a multi
level analysis which adopts a step by step constraints
specification strategy can help us to deal with this complex
situation.

III. OUR APPROACH

In our work, we concentrate on the requirements analysis
phase, from de requirement definition until requirement
analysis since it is the earliest stage in life cycle process and
the aspect oriented requirements engineering (AORE)
proclaims the advantage of the early dealing with aspect
interaction and conflicts for all development process phases.
We focus on managing aspects interactions and dealing with
some types of aspects conflicts which are:

- tradeoff of the conflicts on the requirements and
architecture level

- accidental recursive conflicts
- identification of order conflicts
- dependency or conditional execution

That permits us to capture and formulate sure conditions
in well established way. Our proposal is an extension of the
approach presented in [28], However in this work we
expand our treated type aspect conflict list to deal with
tradeoff of the conflicts on the requirements and
architecture level and dependency (or Conditional
execution). Likewise, we initiate to manage interaction
through the analysis artifacts.

Fig 2. Overall process of our approach

The process of our proposal is illustrated by figure2. It
comprises six stages, namely:

- Concerns, bases and aspects definition.
- negotiation of the conflicts on the requirements and

architecture level (tradeoff) : level1
- Identification of accidental recursive conflicts:

level 1 and level 2.
- Identification of interactions: level 1 and level 2.
- Identification of order conflicts: levels 1 and 2.
- Dependency and Conditional execution : level 1

and level2
- Managing interaction on analysis artifact : level3

This process is resumed in two principal activities:
concerns definition and interactions analysis.

A. Concerns definition
During this activity, we define the concerns, aspects and

bases as it was proposed in many aspect requirement
approaches like [17]-[21]-[14] for us we adopt a generic use
case template to specify theme. An aspect is a concern
which could be either a base or an aspect, and this last may
be a base concern for other aspects. It could crosscut many
bases concerns and the base concern could be affected by
many heterogeneous aspects. Furthermore, an aspect
concern could have many behaviors which are applied in
different localizations. It is the most generic and most

Proceedings of the World Congress on Engineering and Computer Science 2019
WCECS 2019, October 22-24, 2019, San Francisco, USA

ISBN: 978-988-14048-7-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2019

difficult case, which mainly maintains more liberty and
more aptitude to specify aspect oriented software. Concerns
(aspects and bases) definitions are separated in separate
template, but this is not enough to keep them really
separated. It is well-known they influence each other either
positively or negatively. And thus their influence
relationship must be described and well managed
We exploit the matrix (tab1) described in [22] to link
concerns and represent the symmetric influence relationship
between them.

Table I
 Matrix of link concern-concern

Concern1 Concern2 …
…….

Concern n

Concern1 √ √
concern2 √ √

…Concern n √ √

And we use also our proposal matrix (tab2) which is a
specialization of matrix (tab1) that describes the crosscutting
relationship between aspect and base in a high level of
abstraction and which could be also viewed as an improved
version of the matrix described in [21] .

Table II
 Matrix aspects - bases

Aspect1 Aspect2 ………. Aspect N
Base1 √
Base2 √ √

Base N √ √

These matrixes (tab1 and tab2) are very useful; we can
exploit them for an early detection of conflicts. The matrix
(tab1) is very suitable to identify tradeoff of conflicts on the
requirements and architecture level; in contrast our matrix
(tab2) is suitable to capture aspects bases conflicts and
interactions.

B. Interactions Analysis
In this activity, we focus on managing and analysis

interaction between aspects and some types of conflicts
between them.

First we start with negotiation of the conflicts on the
requirements and architecture level, next we deal with
accidental recursion conflicts type identification then we
identify interaction between aspects and we deal with order
conflicts and dependency or conditional execution. Finally
we deal with interaction in analysis artifact.

C. negotiation of the conflicts on the requirements and
architecture level
Negotiation of the conflicts in the requirements and

architecture level are namely the most treated conflict type
in requirement analysis phase. It is through positive and
negative influences that almost early aspect approaches
manage and reason about conflicts such as in works [21]-
[22]-[23]-[24]-[25].

In our approach we propose that this type of interaction
should have managed in first step and in only concern level.
We take support of matrix tab1 which is more suitable to

represent in an early step any identified influence between
concerns. And we employ also the matrix of contribution
(see tabIII) which point out positive and negative influences
between concerns since it is the most technique currently
used. When there is a negative influence, we usually use
concern assigned weights and negotiation to resolve
conflicts such as weight expresses priorities [21]-[22].

Table III
 Matrix of contribution

Concern1 Concern2 …
…….

Concern n

Concern1 .+ -
concern2 + +

…Concern n - -

Nevertheless, we assume that priority negotiation is a
hard task in which we can update priorities incorrectly. And
so we propose carry out Tradeoffs shift our analysis to deal
with other conflict types and manage them in several levels,
in view of the fact that assigned weights are usually useful
in aspect order conflicts identification and resolution.
Consequently, Assigned priorities are fixed in gradual way
and priority constraints are specified.

D. Accidental recursion conflicts types identification:
The figure 3 presented in [28] shows an example of

recursion problem situation even as there is not a really
recursion. The example is about three use cases where the
first one crosscut principal scenario of the second with a
principal scenario, the second crosscut the principal scenario
of the third with another principal scenario and the third one
crosscut the principal scenario of the second use case with
an alternative scenario [28]. In concern level we detect one
cycle between use case 2 and use case 3, in contrast in the
requirements level there is not a real cycle seeing as we do
not weave the same behaviors of use case 2 and use case 3.

Fig 3. The recursion problem example

To deal with recursion problem we propose keep all
crosscut relationship on a crosscut graph Cros=(X,U) which
its X set of nodes includes the list of aspects and bases
concerns and its U set of arc holds all the existing relation of
crosscut and then looking for all cycles in this graph .

This matrix is employed in both concern and
requirement levels. In contrast of the concern level; the last
level detects recursive conflicts in a more detailed
granularity level (scenario and step of use case scenario). If
there are no recursive conflicts in the first level of concern,
we should specify constraints to be respected; otherwise we
shift on to the next level to check whether the cycle problem
found in the previous level is real or not. In the case of
conflicts the specification has to be corrected otherwise we
should generate constraint.

Proceedings of the World Congress on Engineering and Computer Science 2019
WCECS 2019, October 22-24, 2019, San Francisco, USA

ISBN: 978-988-14048-7-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2019

E. Interaction identification:
We have to identify the problem of interaction between

aspects, in each join point. We suggested using the match
point matrix described in [14] provided that it identifies
interactions between aspects into the two levels concern and
requirement. In instance where there is one aspect in any
match point, it means there is no conflict or aspect-aspect
interaction, knowing that the problem of aspect-base
interaction has been already resolved in the accidental
recursive conflict detection phase. Otherwise, if there are
several aspects in a one match point, it is a problem of
interaction. The interaction can be positive or negative: the
dependencies are positive interactions and conflicts are
negative ones. There are several sorts of conflict that may
occur and which needs to be handled by developers, such as
order conflict, accidental join points and conflicts type
concern. This task could be obviously critical and hard. In
spite of that we believe that our step by step strategy
allows us to reduce trouble of mission and carry out a good
mastery of aspects interactions. We have to generate
conditions to be respected. If not, we pass to the next level
where others refined conditions can be formulated and
corrections on the specifications can be done. And anyway
we expect that all identified interaction condition should be
made and extended with other conditions based on deal with
join point class type interaction. So far we would
concentrate in the next sections only on two type of
interaction: aspect order conflict and aspect dependency.

F. Order conflicts identification:
The purpose here is to identify multi-level order conflicts.

To pull off this goal, we pass through a step by step strategy:
from the concern level at the requirements level. Similarly
to [1, 12], we use the generic technique described in [1]
which diminish the time complexity analysis of conflict and
interactions among aspects

This technique exploits the initial generated dependencies
graph and the look for Hamiltonian paths in this graph, if
not the generation of longer paths. This technique has to be
used for the two levels.

G. Identification of dependencies:
The identification of dependencies or conditional

execution is very close to order conflicts handling ever
since its resolution specifies order conditions which catch
clear dependencies. In our approach dependencies are
managed through generation of the fulfilled dependencies
graph presented in [1]-[12].

However, the construction of such graph is a critical task.
The identification and the reasoning about correct
dependencies, is not easy. We classify dependencies to
dependencies inferred from weaving operators and
resolution dependencies introduced incrementally to resolve
order conflict. The dependencies generated from weaving
operators reflect the aspect oriented concepts and therefore,
they can provide an ideal starting point for identifying
convinced dependencies and allows a guided incremental
dependencies analysis process. We can prohibit the
introduction of a wrong dependency, as we can force the
system to respond with the appropriate behaviour by
identifying and specifying the sure dependencies.

H. Managing interaction on the analysis artifact:
In this section we outline a transition from an aspect-

oriented use case model towards an aspect oriented analysis
model, and initiate to deal with aspect interaction in this fin
level. For dealing with aspects which have internal structure
and complex behavior and dealing with their interaction, we
support a use case driven approach which encapsulates these
aspects as use cases as like as [26]. Here, the transformation
between requirements, analysis, and design can be made
perfectly. In requirements modeling we concentrate on
defining rigorous use case models. In contrast, in analysis
modeling we ponder to look for objects witch collaborate to
realize the specified use case scenarios, and to model them
with UML diagrams.

We assume that is in analysis artifact the more aspects are
available the more interaction analysis is complex and the
more errors on their composition are produced. Beyond the
definition and modeling of aspects, a further problem arises:
How could be an aspect specification verified and how
could the correctness of their mutual interactions be
proved? [26]-[27] And especially witch conditions must be
expressed to be satisfied.

So we can reason about concerns (base and aspect) as a
use case that each of them specifies a set of condition. Then
requirement of any concern (scenario, step of scenario) has
to satisfy their first level conditions (concern level). And
could refine their concern conditions or could add specific
requirement conditions that relate to specific requirements.
Finally, each of analysis unit inherits all conditions of
concerns and requirement that implement. Conditions
specified on analysis artifact then have to refine the
previous level constraints and specify them based on the
units involved to each concern and requirement. For
example let suppose that A1, A2 two aspect concern that
crosscut the Base concern (B). in concern level it is
specified that A1 and A2 has to be weaved before the base B
a constraint of priority has be identified (A1 prior than A2).
Then we can refine in requirement level to specify for
example all requirement off aspect A1 are prior to all
requirement of aspect A2 and in last in analysis artifact we
specify that method invocation which start A1 execution (
is captured as advice) is prior than the method invocation
that start execution of A 2 . This is the simpler case of
interaction other complex case can occur.

IV. RELATED WORKS

A. The aspect-oriented development approach with
use cases (AOSD/ UC):
AOSD/UC is one of the most important aspect oriented

methods; it is not only an analysis aspect-oriented
requirements method, but an aspect-oriented development
method that covers all the development process. In
principle, this approach suggests that the use cases are
crosscutting concerns, in consequence their realization
affects several classes [15]-[17]. The AOSD/UC approach
process in requirements engineering is very similar to the
traditional use cases oriented approaches process. About the
treatment of conflict; the method does not support the
treatment of interactions. Identification and resolution of

Proceedings of the World Congress on Engineering and Computer Science 2019
WCECS 2019, October 22-24, 2019, San Francisco, USA

ISBN: 978-988-14048-7-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2019

conflict between basic and feature use case, it is left to
developer who must identify conditions to meet and write a
rule specification that satisfies composition [15]. And as the
approach assumes that the use cases are aspects that cut
crosscut classes, the problem of interaction is only observed
in the implementation level and does not consider the
transverse effect of concerns during requirements analysis
[15]. These concerns not only would be certainly
crosscutting at the implementation stage but they will surely
impose conditions and constraints in all phases owing to
their interactions. In our work we take into account the
transverse manifestation of concerns during the
requirements phase. The disregard of their interaction
handling yields to very hard specification of composition
rules.

B. The ARCADE approach :
The objective of arcade approach described in [17] is the

modularization and composition of crosscutting concerns at
the level of requirements. The approach is in essence based
on the point views. The concrete realization of the approach
is carried out through the exploit of well-defined XML-
based language models which let the definition of
composition rules and enable the analysis of the composed
specification to establish possible points of compromises.
The approach deals with aspects conflicts. The
identification of conflicts between candidates aspects is
based on the build of the contribution matrix which indicates
how (positively or negatively) an aspect contributes to
others aspects, and also by assigning weight to the cells of
the matrix. The assigned weights are employed to resolve
conflicts. If two aspects contribute negatively to each other
and have the same weight, a negotiation is necessary among
stakeholders, to solve the problem [17]. So; although this
approach addresses early the interactions problems, we can
perceive several points of difference compared to our
approach. The approach anticipate the advantage of a fine
analysis (the requirement level) but surly not by step by step
strategy analysis, it is just for avoiding unnecessary
negotiations. However the purpose of our step by step
analysis strategy is to gather and specify mandatory
constraints to be satisfied in the following phases.
Moreover, the approach focuses on a single type of conflict
and does not treat different types of conflict. In our approach
we anticipate the dealing of different types of problems.

C. Theme/UML approach:
The Theme/UML approach is an aspect-oriented analysis

and design approach that tends to identify and model a wide
range of aspects early in the life cycle of software [16]. It
provides support for aspects oriented development, in
requirements through the different views of Theme/Doc and
crosscutting behaviors and design level via Theme / UML
[16]. About the interactions treatment, as the approach does
not compose Aspects at the requirement phase, the approach
does not provide explicit support for the early treatment of
aspects interaction problem during this phase [16].
Moreover the approach does not consider other types of
conflict problem that may occur. Our work can enhance this
approach. We take into account the treatment of several
types of conflicts and emphasize their early treatment. We

believe this not only helps maintain aspects traceability but
also maintain traceability of solutions.

D. Version Model for Aspect Dependency
Management:
The approach presented in [27] is a version model that

concentrated on aspect dependency problem. This work was
motivated by the fact that it is impossible to capture all
relevant dependencies and conditions from beginning
additional conditions have to be added during composition
process as needed. May be the approach highlight the
importance of capturing true condition, we can perceive
several points of difference compared to our approach. This
approach do not precise how to capture condition, they
namely indicate that they appeared during the problem
analysis and design of a system [27] . Yet, in our work we
start to a well established process that captures conditions,
we deal too with several type of conflict by step by step
strategy and before any composition of system.

V. CONCLUSION
Despite, the Aspect-oriented Software Development

(AOSD) allows the separation of crosscutting concerns
throughout the software life cycle ,the complexity and
diversity of interactions between aspects remind an
important problem that AOSD community has to deal with,
and has to support their manage by surely and fully catch the
right conditions that involve their interaction in consistent
way.

Just lately, there have a few attentions that have been
taken on managing their interaction at the early phases [3].
In this paper we have refined our multi-level approach to
deal with interaction between aspects in requirement
engineering phase. The aim of our work was both the
contribution to the built of multi-level interactions and
conflicts identification process and to handle many types of
conflict identification. By the way, we could by step by step
strategy from the concern level (use case) through the
requirements level to analysis artefacts, capture in clearly
the sure constraints and conditions necessary to be satisfied
for a proper composition of the system in the
implementation level and offer a good mastery of
interactions too.

This work is not yet the last step towards a multi-level
management of interactions between aspects. Our future
work will focus on developing a sophisticated support for
this approach, and improving it by treating other aspect
conflicts type and refined the third more detailed level of
granularity (level of analysis class and objects) to present
how identifying more interaction problems, and dealing
with them . And we will focus on constraints formulation
and how specifying them.

Reference
[1] A. Boubendir, A. Chaoui,” Towards a generic technique for analysing

interactions between aspects at requirement phase”. ICDIM 2010 :
507-512.

[2] F. Sanen, E. Truyen, W. Joosen, A. Jackson, A. Nedos, S. Clarke, N.
Loughran, A. Rashid, “Classifying and documenting aspect
interactions”.workshop on Aspectscomponents and patterns for
infrastructure software at AOSD,2006.

Proceedings of the World Congress on Engineering and Computer Science 2019
WCECS 2019, October 22-24, 2019, San Francisco, USA

ISBN: 978-988-14048-7-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2019

http://translate.google.com/translate?hl=fr&prev=_t&sl=fr&tl=en&u=http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chaoui:Allaoua.html
http://translate.google.com/translate?hl=fr&prev=_t&sl=fr&tl=en&u=http://www.informatik.uni-trier.de/~ley/db/conf/icdim/icdim2010.html%23BoubendirC10#BoubendirC10

[3] The Aspect-oriented Software Architecture Design portal:
Http://trese.cs.Utwente.nl/taosad/aosd.htm

[4] R. Chitchyan, A. Rashid, P. Rayson, R.Waters. “Semantics-based
composition for aspect-oriented requirements engineering”.
Proceedings of the 6th international conference on Aspect-oriented
software development, pages 36{48, New York, USA, 2007.ACM.

[5] J. Whittle and P. Jayaraman. “MATA: A tool for aspect-oriented
modeling based on graph transformation”. Workshops and Symposia
at MoDELS 2007, volume 5002 of Lecture Notes in Computer
Science, pages 16{27. Springer, Berlin / Heidelberg, 2008.

[6] A. Zambrano, ‘’ Addressing Aspect Interactions in an Industrial
Setting: Experiences, Problems and Solutions’’, Tesis presentada para
obtener el grado de Doctor en Ciencias Informaticas Facultad de
Informatica - Universidad Nacional de La Plata, Marzo de 2013.

[7] M. Bernardi, G. Di Lucca, “A Taxonomy of Interactions Introduced
by Aspects”, IEEE International Computer Software and Applications
Conference, Italy, 2008.

[8] S. Bakre, T.Elrad.”Scenario based resolution of aspect interactions
with aspect interaction charts”. In Proceedings of the 10th
international workshop on Aspect-oriented modeling, AOM '07, pages
1-6, New York, USA, 2007. ACM.

[9] P. Durr, L. Bergmans, M. Aksit “Static and Dynamic Detection of
Behavioral Conflicts Between Aspects”, in sokolsky o, Tasirans, RV,
2007, Lncs,vol 4839,pp 38-50, springer .

[10] J.Hannemann, R.Chitchyan, R.Awais, “Analysis of Aspect-Oriented
software”, AAOS, Darmstadt, Almagne, 2003.

[11] C. Chavez et al,”Crosscutting interfaces for aspect-oriented
modeling”, journal of Brazilian Computer Society, 2006 volume12.

[12] K. Santhi, G.Zayaraz, V. Vijayalakshmi, ‘’Diminution of Interactions
among Aspects at Requirement Phase using Hamiltonian Path
Technique’’, Research Scholar/CSE, Department of CSE, Department
of ECE Pondicherry Engineering College, Puducherry, 2012.

[13] AOSD homepage, HTTP://WWW.AOSD.net
[14] I. Brito, A. Moreira, ‘’Towards a composition process for aspects-

oriented requirements’’,in EA workshop, Boston,USA,2003.
[15] R.Chitchyan, A.Rashid, P.Sawyer, A. Garcia, M.P. Alarcon , J.

Bakker, B.Tekinerdogan, S.Clarke, A.Jackson ,“Survey of Analysis
and Design Approaches”, Report of the AOSD-Europe -Network of
Excellence on AOSD , 18 May 2005.

[16] E. Baniassad , S. Clarke, "Theme: An Approach for Aspect-Oriented
Analysis and Design," International Conference on Software
Engineering, 2004.

[17] I. Jacobson , “use case and aspect-working seamlessly together”,
journal of objecttechnology, vol 2: 7-28, 2003.

[18] J. Araujo, E.Baniassad, P.Clements, A.Moriera, A.Rachid,
B.Tekinerdogan, “Early aspect: the current landscape”, Technical
Report , Lancaster university February, 2005 .

[19] K.Shanthi,G.Zayarar,V.Vijayalakshmi,”Resolving Aspect
Dependencies for Composition of Aspects”, Arab J SCi Eng (2015)
40: 475.doi;10.1007/s13369-0141454-3

[20] A.Shardinha, A,Christchyan, J.araujo, A.Morira, A.rachid, (2013),
”conflict identification with EA-analyzer”, aspect oriented
requirement engineering, springer, berlin, heidbelberg.

[21] A. Rachid, A.Moreira and J.Araujo “Modulaisation and composition
of Aspectual Requirements”. In 2and International conference on
Aspect Oriented Software Development (AOSD). 2003 Bostan, USA:
ACM.

[22] A. Moreira, J. Araujo, and A. Rashid, "A Concern-Oriented
Requirements Engineering Model," presented at Conference on
Advanced Information Systems Engineering (CAiSE'05), Porto,
Portugal, 2005.

[23] A.Amirat, ”Towards a requirements model for crosscutting concern”,
information tecnnology journal Vol.6(3):332-337, asian network for
scientific information , 2007.

[24] A. Moreira, J. Araujo, and A. Rashid, "Multi-Dimensional Separation
of Concerns in Requirements Engineering," presented at
Requirements Engineering Conference (RE 05), 2005, France,.

[25] I.Brito, A. Moreira,” Integrating the NFR framework in a RE
model”, In proceedings of the 3rd Workshop on Early Aspects, 3rd
international conference on Aspect-Oriented Software Development,
March 2004.

[26] S. Herrmann, C. Hundt, K. Mehner,” Mapping Use Case Level
Aspects to ObjectTeams/Java”, in workshop on early aspects,2004:
aspect-oriented requirements engineering and architecture design, in
conjunction with OOPSLA conference, Canada,2004 .

[27] E. Pulvermuller, A. Speck, J. O. Coplien, “A Version Model for
Aspect Dependency Management” , In Proc. of 3rd International
Conference on Generative and Component-based Software-

Engineering (GCSE 2001), Springer, LNCS 2186, pages 70-79,
Erfurt, Germany, 2001

[28] A. Boubendir, A. Boudeffa, “A multi-level interaction dealing
approach with aspects in requirement engineerib phase”,in engenering
&MIS(ICMIS), IEEE, Maroco, 2016

[29] N.Weston, F.Taiani, A. Rashid, “Interaction Analysis for Fault-
Tolerance in Aspect-Oriented Programming”, in procedeeng of 2007
workshop on methods, models, and tools for fault tolerance

[30] R.douance , P,Frader, ” detection and resolution of aspect
interactions” ,INRIA technical report N°RR 4435 April 2002

[31] S.Mohite, R.Phalnikar, M.Joshi, S.D.Joshi, S.Jaldav, ”Requirement
and interaction analysis using aspect-oriented modeling”, Advence
computing conference(IACC),2014.

[32] E. Katz, S Katz, W. Havinga, Tstaijen, N. Weston, F.Tiani,R.Awis,
Dong Ha Nguyen , M. Südholt, “ Detecting Interference among
Aspects “, Report of the AOSD-Europe -Network of Excellence on
AOSD 18 february 2007,

[33] W. Havinga , I.Nagy , L. Bergmans , M. Aksit: “A graph-based
approach to modeling and detecting composition conflicts related to
introductions”. AOSD 2007 : 85-95

Proceedings of the World Congress on Engineering and Computer Science 2019
WCECS 2019, October 22-24, 2019, San Francisco, USA

ISBN: 978-988-14048-7-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2019

http://www.aosd.net/
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Havinga:Wilke.html
http://www.emn.fr/z-info/ascola/bib/Author/NGUYEN-DH.html
http://www.emn.fr/z-info/ascola/bib/Author/SUDHOLT-M.html
http://translate.google.com/translate?hl=fr&prev=_t&sl=fr&tl=en&u=http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Havinga:Wilke.html
http://translate.google.com/translate?hl=fr&prev=_t&sl=fr&tl=en&u=http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/n/Nagy:Istv%3Daacute%3Dn.html
http://translate.google.com/translate?hl=fr&prev=_t&sl=fr&tl=en&u=http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Bergmans:Lodewijk.html
http://translate.google.com/translate?hl=fr&prev=_t&sl=fr&tl=en&u=http://www.informatik.uni-trier.de/~ley/db/conf/aosd/aosd2007.html%23HavingaNBA07#HavingaNBA07

