
A Comparative Study of AOP Approaches:

AspectJ, Spring AOP, JBoss AOP

Ravi Kumar, Dalip and Munishwar Rai

ABSTRACT - Aspect-oriented programming is implemented with

standard crosscutting concerns much like object-oriented

programming is implemented with standard common concerns.

Modularization is the important software quality principle which

was proposed by Aspect Oriented Programming. The AOP could

be seen as a complementary technique that exists with different

approaches likes AspectJ, JBoss AOP and Spring AOP. This paper

we discussed the three AOP approaches on flexibility as well as on

how easily they will fit with our application.

KEYWORDS - Aspect Oriented Programming, AspectJ, JBoss

AOP, Spring AOP

I. INTRODUCTION

Now a day, the Aspect Oriented Programming pattern

penetrates in several areas of software development. With its

increasing marketability, developers are starting to

amazement whether they should start looking into it. Aspect

Oriented Programming is simply an auxiliary way of

designing and précis software [3]. It’s normally used in

merging with object orientation to let you précis a problem’s

aspects as well as its design.

 According to Markus Völter “Aspect Orientation

is primarily a mindset. Aspects in Aspect Oriented

Programming (AOP) package advice and point cuts into

functional units in much the similar way that Object

Oriented Programming (OOP) uses classes into methods and

package fields. AOP is not supposed to replace the wide-

spread Object-Oriented programming methodology but

extends it. In OOP, a ‘class’ is the physical representation of

a ‘dominant concern’ [13]. In AOP, an ‘aspect’ is the

physical representation of an ‘aspect’ [5] [14] [20]. Aspects

are also highly modular, making it possible to develop plug-

and-play implementations of crosscutting functionality [18].

Manuscript submission for review on dated July 01, 2019.

Ravi Kumar is a PhD student in the department of Maharishi

Markandeshwar Institute of Computer Technology & Business

Management (MMICT&BM) at the university of Maharishi

Markandeshwar Deemed to be University, Mullana (Ambala)-133207,

Haryana, India.

E-mail id: ravisangwan77@gmail.com

Dr. Dalip is an Assistant Professor in the department of Maharishi

Markandeshwar Institute of Computer Technology & Business

Management (MMICT&BM) at the University of Maharishi

Markandeshwar Deemed to be University, Mullana (Ambala)-133207,

Haryana, India.

E-mail id: dalipkamboj@mmumullana.org

Dr. Munishwar Rai is a Professor and Head of Computer Science

Department at the Sri-Sri University Bidyadharpur, Cuttack- 754006, and

Orissa, India.

E-mail id: muniswar.r@srisriuniversity.edu.in

Before we begin, let’s do a quick, high-level review of terms

and core concepts [4]:

Aspect – A standard code/feature that is scattered across

multiple places in the application and is typically different

than the actual Business Logic (for example, Transaction

management). Each aspect focuses on a specific cross-

cutting functionality.

Join point – It’s a particular point during execution of

programs like method execution, constructor call, or field

assignment.

Advice – The action taken by the aspect in a specific join

point.

Point cut – a regular expression that matches a join point.

Each time any join point matches a point cut, a specified

advice associated with that point cut is executed.

Weaving – the process of linking aspects with targeted

objects to create an advised object.

An aspect is an entity that looks like a class but models a

concern that crosscuts object classes. Point cuts are

declarations used in an aspect to identify principled points in

the program execution and source code locations where it

can be involved. Principled points such as an access or

change of a field value, a method call or a method execution

are called Join points. Point cuts are particular forms of

predicates that use Boolean operators and specific primitives

to capture join points and dynamic contextual information

such as parameters of a call statement. The aspect code is

divided into blocks called advices. They are method-like

mechanisms used to declare that a certain code should

execute before, after or around the code corresponding to

the join points captured by point cuts. Therefore, there are

three possible relationships that bind an advice to point cuts:

before, after and around [23].

II. PROPOSED WORK

Today the various AOP approaches available in software

development and developers face a number of problems and

some questions arise in his mind like as:

Q1. Which approach is best appropriate with my

existing or new application?

Q2. Which AOP approach is most suitable for

implementation?

Q3. How fast will it merge with my application?

Q4. What is the performance elevated?

In this paper, we will introduce JBoss AOP, Spring AOP

and AspectJ – the three most popular AOP interfaces with

some key areas and find the answering these questions.

Proceedings of the World Congress on Engineering and Computer Science 2019
WCECS 2019, October 22-24, 2019, San Francisco, USA

ISBN: 978-988-14048-7-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2019

mailto:ravisangwan77@gmail.com
mailto:dalipkamboj@mmumullana.org

III. OUTLINE OF SELECTED AOP APPROACHES

AspectJ - AspectJ is a general purpose programming

language, which is simple and a practical Aspect-oriented

extension to Java. AspectJ extends the Java language with

keywords for writing aspects, point cuts, advice code, and

intertype declarations. Gregor Kiczales and his team, who

has created a new programming paradigm AOP at the Palo

Alto Research Center (PARC) [2], has also developed

AspectJ—which is now the leading tool for Aspect-oriented

Programming. Using this, it is possible to create clean

modular implementations of crosscutting concerns such as

tracing, login, user session management, synchronization,

consistency checking, protocol management etc [7] [8].

AspectJ supports eleven different kinds of join points:

method call, method execution, constructor call, constructor

execution, field get, field set, pre-initialization, initialization,

static initialization, handler, and advice execution join

points. There are also nine kinds of point cut designators

that match join points according to their kind: call,

execution, get, set, handler, static initialization, pre

initialization, initialization, and advice execution [23].

By creating, just a few new constructs, AspectJ provides

support for modular implementation of a range of

crosscutting concerns [1]. Here in dynamic join point model,

join points are well-defined points of the program where the

advice code will be executed; point cuts are collections of

join points; advice are special method-like constructs that

can be attached to point cuts; and aspects are modular units

of crosscutting implementation, comprising point cuts,

advice, and ordinary Java member declarations [15].

AspectJ is a static-typing programming language and also

considered as type-safe like its base class Java. However,

researches [11] have revealed that, unlike Java, AspectJ

does not have a safe type system, a binding between a point

cut and an advice can rise to type errors at runtime. Also,

AspectJ‘s typing rules severely restrict the definition of

certain generic advice behavior. In AspectJ, a cross-cutting

concern i.e., memory monitoring and management can be

applied at a point cut of the program for better memory

management. This approach can be used for both managed

and unmanaged resources (files, handles, DB connections

etc.). AspectJ provides a rich set of primitive point cuts to

specify join points within an aspect [16].

The last concept of AspectJ is the static crosscutting

which modifies a program at compile time by specifying

new members of a class (called introduction) or specifying

what a class extends or implements (called inter-type

member declaration) [22].

JBoss AOP - JBoss AOP was designed and developed by

Bill Burke [17]. JBoss AOP is a pure Java Aspect Oriented

Framework usable in any programming environment or

tightly integrated with our application server. Aspects allow

you to more easily modularize your code base when regular

object oriented programming just does not fit the bill. It can

provide a cleaner separation from application logic and

system code. It provides a great way to expose integration

points into your software. Combined with Java Annotations,

it also is a great way to expand the Java language in a clean

pluggable way rather than using annotations solely for code

generation. It can be used independently or in conjunction

with J2EE application server JBoss; in the first case it is

called Standalone. From version 4.0, the JBoss Application

Server includes as standard the JBoss AOP framework.

JBoss AOP is not only a framework, but also a prepackaged

set of aspects that are applied via annotations, point cut

expressions, or dynamically at runtime. Some of these

include caching, asynchronous communication, transactions,

security, remoting, and many more. JBoss AOP works with

plain old Java objects (POJOs) as opposed to pre-defined

"components". JBoss AOP allows you to apply Enterprise

Java Bean (EJB)-style services to POJOs without the

complex EJB infrastructure code and deployment

descriptors. You can develop new aspects and deploy them

into the application server for all applications to use. That

essentially extends the existing container services. JBoss

AOP can also be used in standalone Java applications. A

detailed introduction to aspect-oriented programming and

the JBoss AOP framework can be found on JBoss web site.

If AspectJ defines point cuts using keywords, the point

cuts declarations in JBoss AOP can be done in two ways: in

a dedicated XML document (usually called jboss-aop.xml.),

or in the class that implements the aspect, as annotation.

JBoss AOP allows defining five types of point cuts: method

execution, constructor, attribute, class and method call.

An invocation is a JBoss AOP class that encapsulates what a

join point is at runtime. It could contain information like

which method is being called, the arguments of the method,

etc [21].

In JBoss AOP, the aspect is a java class. The advices are

methods (i.e. code that must be executed). An interceptor in

JBoss AOP is a particular type of aspect that has only one

advice. The mix-in mechanism provided by JBoss AOP

allows extending the behavior of an application. This

mechanism is similar to the introduction mechanism applied

in AspectJ. Specifically with the mix-in mechanism we can

introduce interfaces, fields and methods to the existing

classes of an application [12].

Spring AOP - Aspect-Oriented Programming (AOP)

complements Object-Oriented Programming (OOP) by

providing another way of thinking about program structure

[19]. The key unit of modularity in OOP is the class,

whereas in AOP the unit of modularity is the aspect. Aspects

enable the modularization of concerns such as transaction

management that cut across multiple types and objects.

(Such concerns are often termed crosscutting concerns in

AOP literature.) [10]

One of the key components of Spring is the AOP

framework. While the Spring Inversion of Control (IoC)

container does not depend on AOP, meaning you do not

need to use AOP if you don't want to, AOP complements

Spring IoC to provide a very capable middleware solution.

AOP is used in the Spring Framework to provide declarative

enterprise services, especially as a replacement for EJB

declarative services. The most important such service

is declarative transaction management. AOP is used in the

Spring Framework to allow users to implement custom

aspects, complementing their use of OOP with AOP [6].

Proceedings of the World Congress on Engineering and Computer Science 2019
WCECS 2019, October 22-24, 2019, San Francisco, USA

ISBN: 978-988-14048-7-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2019

https://docs.spring.io/spring/docs/3.0.x/spring-framework-reference/html/transaction.html#transaction-declarative

In Spring AOP, aspects are implemented using regular

classes (the schema-based approach) or regular classes

annotated with the @Aspect annotation

(the @AspectJ style). In Spring AOP, a join

point always represents a method execution. Many AOP

frameworks, including Spring, model an advice as

an interceptor, maintaining a chain of

interceptors around the join point. The concept of join points

as matched by point cut expressions is central to AOP, and

Spring uses the AspectJ point cut expression language by

default. Spring AOP allows you to introduce new interfaces

(and a corresponding implementation) to any advised object.

Since Spring AOP is implemented using runtime proxies,

this object will always be a proxy object [15]. In the Spring

Framework, an AOP proxy will be a JDK dynamic proxy or

a CGLIB proxy. Spring AOP, like other pure Java AOP

frameworks, performs weaving at runtime. Since Spring

AOP, like AspectJ, provides a full range of advice types, we

recommend that you use the least powerful advice type that

can implement the required behavior. For example, if you

need only to update a cache with the return value of a

method, you are better off implementing an after returning

advice than an around advice, although an around advice

can accomplish the same thing. Using the most specific

advice type provides a simpler programming model with

less potential for errors. For example, you do not need to

invoke the proceed () method on the Join point used for

around advice, and hence cannot fail to invoke it.

In Spring 2.0, all advice parameters are statically typed,

so that you work with advice parameters of the appropriate

type (the type of the return value from a method execution

for example) rather than Object arrays [9].

Spring AOP is implemented in pure Java. There is no

need for a special compilation process. Spring AOP does not

need to control the class loader hierarchy, and is thus

suitable for use in a Servlet container or application server.

Spring AOP currently supports only method execution join

points (advising the execution of methods on Spring beans).

Field interception is not implemented, although support for

field interception could be added without breaking the core

Spring AOP APIs. If you need to advise field access and

update join points, consider a language such as AspectJ.

Spring AOP's approach to AOP differs from that of most

other AOP frameworks. The aim is not to provide the most

complete AOP implementation (although Spring AOP is

quite capable); it is rather to provide a close integration

between AOP implementation and Spring IoC to help solve

common problems in enterprise applications [24].

Thus, for example, the Spring Framework's AOP

functionality is normally used in conjunction with the

Spring IoC container. Aspects are configured using normal

bean definition syntax (although this allows powerful "auto

proxy" capabilities). This is a crucial difference from other

AOP implementations. There are some things you cannot do

easily or efficiently with Spring AOP, such as advice very

fine-grained objects (such as domain objects typically):

AspectJ is the best choice in such cases. However, our

experience is that Spring AOP provides an excellent

solution to most problems in enterprise Java applications

that are amenable to AOP. Spring AOP will never strive to

compete with AspectJ to provide a comprehensive AOP

solution. We believe that both proxy-based frameworks like

Spring AOP and full-blown frameworks such as AspectJ are

valuable, and that they are complementary, rather than in

competition [23].

IV. ANALYSIS OF AOP APPROACHES WITH

DIFFERENT PARAMETERS

Now, we discuss Spring AOP and AspectJ across a different

parameter like competency, objectives, weaving, internal

framework, join points, simplicity and performance.

A. Competency and objectives

JBoss AOP, Spring AOP and AspectJ have different

objectives. JBoss AOP is the ability to introduce an interface

to an existing Java class in a transparent way. You can force

a class to implement an interface and even specify an

additional class called a mix-in that implements that

interface. Spring AOP aims to provide a simple AOP

implementation across Spring IoC to solve the most

common problems that programmers face. It is not intended

as a complete AOP solution – it can only be applied to beans

that are managed by a Spring container.

On the other hand, AspectJ is the original AOP

technology which aims to provide complete AOP solution. It

is more robust but also significantly more complicated than

Spring AOP. It’s also worth noting that AspectJ can be

applied across all domain objects. JBoss AOP can also be

used in standalone Java applications.

B. Weaving

JBoss AOP, AspectJ and Spring AOP use the different

type of weaving which affects their behavior regarding

performance and ease of use [2]. AspectJ makes use of three

different types of weaving:

a. Compile-time weaving: The AspectJ compiler

takes as input both the source code of our aspect and our

application and produces a woven class files as output

b. Post-compile weaving: This is also known as

binary weaving. It is used to weave existing class files and

JAR files with our aspects

c. Load-time weaving: This is exactly like the

former binary weaving, with a difference that weaving is

postponed until a class loader loads the class files to the

JVM.

JBoss AOP used three different modes to run your

aspectized applications such as Precompiled, load time or

hot swap. JBoss AOP needs to weave your aspects into the

classes which they aspectize. You can choose to use JBoss

AOP's pre compiler to accomplish this (Compile time) or

have this weaving happen at runtime either when the class is

loaded (Load time) or after it (Hot Swap).

Compile-time happens before you run your application.

Compile time weaving is done by using the JBoss AOP pre

compiler to weave in your aspects to existing .class files.

The way it works is that you run the JBoss AOP pre

compiler on a set of .class files and those files will be

modified based on what aspects you have defined. Compile

time weaving isn't always the best choice though. JSPs are a

good instance where compile time weaving may not be

Proceedings of the World Congress on Engineering and Computer Science 2019
WCECS 2019, October 22-24, 2019, San Francisco, USA

ISBN: 978-988-14048-7-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2019

https://docs.spring.io/spring/docs/3.0.x/spring-framework-reference/html/aop.html#aop-schema
https://docs.spring.io/spring/docs/3.0.x/spring-framework-reference/html/aop.html#aop-ataspectj

feasible. It is also perfectly reasonable to mix and matches

compile time and load time though. If you have load-time

transformation enabled, precompiled aspects are not

transformed when they are loaded and ignored by the class

loader transformer.

Load-time weaving offers the ultimate flexibility. JBoss

AOP does not require a special class loader to do load time

weaving, but there are some issues that you need to think

about. The Java Virtual Machine actually has a simple

standard mechanism of hooking in a class transformer

through the –java agent. JBoss AOP an additional load-time

transformer that can hook into class loading via this standard

mechanism. Load-time weaving also has other serious side

effects that you need to be aware of. JBoss AOP needs to do

the same kinds of things that any standard Java profiling

product needs to do. It needs to be able to process byte code

at runtime. This means that boot can end up being

significantly slowed down because JBoss AOP has to do a

lot of work before a class can be loaded. Once all classes are

loaded though, load-time weaving has zero effect on the

speed of your application. Besides boot time, load-time

weaving has to create a lot of Java data structure that

represent the byte code of a particular class. These data

structures consume a lot of memory. JBoss AOP does its

best to flush and garbage collects these data structures, but

some must be kept in memory.

Hot Swap weaving is a good choice if you need to enable

aspects in runtime and don't want that the flow control of

your classes be changed before that. When using this mode,

your classes are instrumented a minimum necessary before

getting loaded, without affecting the flow control. If any join

point becomes intercepted in runtime due to a dynamic AOP

operation, the affected classes are weaved, so that the added

interceptors and aspects can be invoked. As the previous

mode, hot swap contains some drawbacks that need to be

considered.

As AspectJ uses compile time and class load time

weaving, Spring AOP makes use of runtime weaving.

C. Internal Framework and Application

Spring AOP is a proxy-based AOP framework. This

means that to implement aspects to the target objects, it’ll

create proxies of that object as shown in Fig 1. This is

achieved using either of two ways:

JDK dynamic proxy –It is the preferred way for Spring

AOP. Whenever the targeted object implements even one

interface, then JDK dynamic proxy will be used

CGLIB proxy – If the target object doesn’t implement an

interface, then CGLIB i.e. Code Generation Library proxy

can be used.

We can learn more about Spring AOP proxy mechanisms

from the official docs.

AspectJ, on the other hand, doesn’t do anything at

runtime as the classes are compiled directly with aspects.

And so unlike Spring AOP, it doesn’t require any design

patterns [23]. To weave the aspects to the code, it introduces

its compiler known as AspectJ compiler (ajc), through

which we compile our program and then runs it by

supplying a small runtime library. An interceptor in JBoss

AOP is a particular type of aspect that has only one advice.

The mix-in mechanism provided by JBoss AOP allows

extending the behavior of an application as shown in Fig 2.

D. Join points

We showed that Spring AOP is based on proxy patterns.

Because of this, it needs to subclass the targeted Java class

and applies cross-cutting concerns accordingly. But it comes

with a limitation. We cannot apply cross-cutting concerns

(or aspects) across classes that are “final” because they

cannot be overridden and thus it would result in a runtime

exception.

The same applies for static and final methods. Spring

aspects cannot be applied to them because they cannot be

overridden. Hence Spring AOP because of these limitations

only supports method execution join points.

However, AspectJ weaves the cross-cutting concerns

directly into the actual code before runtime. Unlike Spring

AOP, it doesn’t require to subclass the targeted object and

thus supports many others join points as well. That’s

obviously because when we call a method within the same

class, then we aren’t calling the method of the proxy that

Spring AOP supplies. If we need this functionality, then we

do have to define a separate method in different beans, or

use AspectJ. Table I show the summary of compatible join

points:-

Table I

Summary of Compatible Join points

Join points
Spring AOP

Compatibility

AspectJ

Compatibility

JBoss AOP

Compatibility

Calling

Method
 ✓ ✓

Execution of

Method
✓ ✓ ✓

Calling

Constructor
 ✓ ✓

Execution of

Constructor
 ✓

Execution of

Static

initialization

 ✓ ✓

Initialization

of Object
 ✓ ✓

Field

reference
 ✓ ✓

Field

assignment
 ✓ ✓

Execution of

Handler
 ✓ ✓

Execution of

Advice
 ✓ ✓

Proceedings of the World Congress on Engineering and Computer Science 2019
WCECS 2019, October 22-24, 2019, San Francisco, USA

ISBN: 978-988-14048-7-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2019

https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#aop-proxying

Fig 1 Spring AOP Process

Fig 2 JBoss AOP and AspectJ programming process

E. Simplicity

Spring AOP is obviously simpler because it doesn’t

introduce any extra compiler or weaver our build process. It

uses runtime weaving, and therefore it integrates seamlessly

with our usual build process. Although it looks simple, it

only works with beans that are managed by Spring AOP.

However, to use AspectJ and JBoss AOP, we’re required

to introduce the AspectJ compiler (ajc) and re-package all

our libraries (unless we switch to post-compile or load-time

weaving).

This is, of course, more complicated than the former –

because it introduces AspectJ Java Tools (which include a

compiler (ajc), a debugger (ajdb) and documentation

generator (ajdoc), a program structure browser (ajbrowser))

which we need to integrate with either our IDE or the build

tool.

F. Performance

As far as performance is concerned, compile-time

weaving is much faster than runtime weaving. Spring AOP

is a proxy-based framework, so there is the creation of

proxies at the time of application startup. Also, there are a

few more method invocations per aspect, which affects the

performance negatively.

On the other hand, AspectJ weaves the aspects into the

main code before the application executes and thus there’s

no additional runtime overhead, unlike Spring AOP and

JBoss AOP. For these reasons, the benchmarks suggest that

AspectJ is much faster than Spring AOP and JBoss AOP.

V. SUMMARY

We summarize the key differences between Spring AOP

and AspectJ as shown in Table II. JBoss AOP and Spring

AOP Implemented in pure Java but AspectJ programming

language Implemented using extensions of Java. Spring

AOP, no need for separate compilation process but JBoss

AOP and AspectJ needs AspectJ compiler (ajc) unless Load

Time Weaving is set up. Only runtime weaving is available

in Spring AOP but in JBoss AOP and AspectJ supports

compile-time, post-compile, and load-time Weaving.

Spring AOP only supports method level weaving but JBoss

AOP and AspectJ can weave fields, methods, constructors,

static initialize, final class/methods, etc. Spring AOP

supports only method execution point cuts but JBoss AOP

and AspectJ support all point cuts. If we analyze all the

arguments made in this paper, we’ll start to understand that

it’s not at all that one framework is better than another.

Simply put, the choice heavily depends on our requirements:

a) Interface - If the application is not using Spring

interface, then we have no option but to drop the idea of

using Spring AOP because it cannot manage anything that’s

outside the reach of spring container. However, if our

application is created entirely using Spring interface, then

we can use Spring AOP as it is straight forward to learn and

implement.

b) Flexibility - Given the limited join point support,

JBoss AOP, Spring AOP is not a complete AOP solution,

Defining Business Classes

Defining Concerns in

AspectJ

Defining Abstract

Aspect

Defining Concrete

Aspect

Attaching Aspect to

the code(Pointcuts,

Advices)

Defining Concerns in JBoss

AOP

Defining Mix In Classes

Defining Aspects, classes,

Interceptors, Interfaces

Creating XML Files

Attaching Aspects Class

Code to the Base Code

Compilation

Weaving

Execution

TargetObject

Spring Proxy

TargetObject

Aspect TargetObject

Spring Proxy

Aspect TargetObjectImpl

Proceedings of the World Congress on Engineering and Computer Science 2019
WCECS 2019, October 22-24, 2019, San Francisco, USA

ISBN: 978-988-14048-7-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2019

https://web.archive.org/web/20150520175004/https:/docs.codehaus.org/display/AW/AOP+Benchmark

but it solves the most common problems that programmers

face. Although if we want to dig deeper and exploit AOP to

its maximum capability and want the support from a wide

range of available join points, then AspectJ is the choice.

c) Output - If we’re using slight aspects, then there are

trivial output differences. But there are sometimes cases

when an application has more than tens of thousands of

aspects. We would not want to use runtime weaving in such

cases so it would be better to opt for AspectJ. AspectJ is

known much faster than JBoss AOP and Spring AOP.

d) Best between three techniques - All of these

techniques are totally appropriate with each other. We can

regular take lead of JBoss AOP, Spring AOP whenever

possible and still use AspectJ to get support of join points

that are not supported by other approaches.

Table II

Difference between Spring AOP and AspectJ

Spring AOP AspectJ

Pure Java implementation Using extensions of Java

implementation

Compilation process is not

separated

AspectJ compiler (ajc)

needed unless Load Time

Weaving is set up

Available runtime weaving Not available runtime

weaving. Compile-time,

post-compile, and load-time

Weaving supported

Method level weaving

supported so less robust

Use final class/methods,

weave fields, constructors,

static initialization, methods,

etc. so most robust

Implemented on beans

managed by Spring

container

Implemented on all domain

objects

Method execution point cuts

supported

All point cuts supported

Proxies are created of

targeted objects, and aspects

are applied on these proxies

Aspects are weaved directly

into code before application

is executed (before runtime)

Much slower than AspectJ Performance is better than

Spring AOP

Easy to learn and implement More complicated than

Spring AOP

VI. CONCLUSION

AOP is a programming technique that target to resolve

crosscutting concerns by providing better modularization of

the code. This paper delivers a transitory outline of the

JBoss AOP, Spring AOP and AspectJ approaches. We

compared the three AOP approaches on flexibility as well as

on how easily they will fit with our applications. We

analyzed JBoss AOP, Spring AOP and AspectJ in different

parameters.

REFERENCES

[1] Geeta Bagade and Shashank Joshi, “Exploring AspectJ Refactoring”,

International Journal of Computer Applications, 2016.

[2] Ramniwas Laddad, “AspectJ in Action: Practical Aspect Oriented

Programming”, Manning Publications, 2003.

[3] Zambrano Polo y La Borda, Arturo Federico (5 June

2013). "Addressing aspect interactions in an industrial setting:

experiences, problems and solutions": 159. Retrieved 30 May, 2014.

[4] Sk. Riazur Raheman, Amiya Kumar Rath, Hima Bindu M, “Dynamic

Slice of Aspect Oriented Program: A Comparative Study” IJRITCC,

vol.2, Issue: 2, pp.249-259, 2014

[5] Abhishek Ray et. al., “An Approach for Computing Dynamic Slice of

Concurrent Aspect-Oriented Programs”, International Journal of

Software Engineering and Its Applications, Vol. 7, No. 1, January,

2013.

[6] Aspect Oriented programming with Spring; Spring Framework:

“http://www.springframework.org/docs/reference/aop. html”

[7] Adam Przylylek, “Impact of Aspect Oriented Programming on Software

Modularity”,

https://www.researchgate.net/publication/224227238/2011

[8] S.Kotrappa and P. J. Kulkarni, “Multilevel Security using Aspect

Oriented Programming AspectJ”,

https://www.researchgate.net/publication/224202556/2010

[9] Erik Gollot. “Introduction au framework Spring. [online].

http://ego.developpez.com/spring/ (accessed June 9, 2006)”.

[10] Jyri Laukkanen, “Aspect-Oriented Programming, ACM Computing

Classification System (CCS)”, 2008

[11] Colyer and Clement, “Aspect-oriented programming with AspectJ,”

IBM Systems Journal, Vol 44, NO 2, 2005.

[12] “labs.jboss.com. Jobs AOP Reference Documentation”.

JBossInc./RedhatInc.,2003.

“http://labs.jboss.com/portal/jbossaop/docs/1.5.0.GA/docs/aspect-

framewo%rk/reference/en/html/index. html”.

[13] Parul Rajpal and Prof. Amanpreet Kaur, “Comparative Study of

Component – Oriented and Aspect – Oriented Programming”, 2015

www.ijarcsse.com

[14] Geetanjali Sharma, “Twist of Aspect Oriented and Component

Oriented, International Journal of Computer Science and

Communication”, Vol. 3, No. 1, January-June 2012.

[15] R. Laddad, “AspectJ in Action”, Enterprise AOP with Spring,

Manning Publications, 2010

[16] A. Colyer, A. Clement, G. Harley and M. Webster, “Eclipse AspectJ:

Aspect-Oriented Programming with AspectJ and Eclipse AspectJ

Development Tools”, Addison-Wesley Professional, 2004.

[17] Soumeya Debboub and Djamel Meslati, “Quantitative and qualitative

evaluation of AspectJ, JBoss AOP and CaesarJ, using Gang-of-Four

design patterns”, International Journal of Software Engineering and

Its Applications Vol.7, No.6 (2013)

[18] Munishwar Rai, Rajender Nath & Jai Bhagwan, “Validation of Cluster

Based Reusability Model” International Journal Computer

Technology and Applications (IJCTA) Volume 5, Issue 3, June 2014,

PP: 829-32

[19] Gregor Kiczales and Mira Mezini “Aspect-Oriented Programming and

Modular Reasoning”, ACM, ICSE’05, May 15–21, 2005

[20] Gregory Kiczales et. al., “An Overview of AspectJ”, published in

proceedings of the 15th European Conference on Object Oriented

Programming, pages 327-353, 2001.

[21] J.Boss AOP homepage, “http://www.jboss.org/jbossaop/”.

[22] Daniela Gotseva and Mario Pavlov, “Aspect-oriented programming

with AspectJ” IJCSI vol. 9, Issue 5, No.1. 2012

[23] Jörg Kienzle, “11th International Workshop on Aspect-Oriented

Modeling”, 2008

[24] www.springframework.org. Spring Framework v 2.0 M5. [online].

“http://www.springframework.org/ “(accessed June 5, 2006)

Proceedings of the World Congress on Engineering and Computer Science 2019
WCECS 2019, October 22-24, 2019, San Francisco, USA

ISBN: 978-988-14048-7-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2019

http://sedici.unlp.edu.ar/handle/10915/35861
http://sedici.unlp.edu.ar/handle/10915/35861
https://www.researchgate.net/publication/224227238/2011
http://www.ijarcsse.com/

