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Abstract—We study how efficiently N interconnected units
execute a common workload whose intensity grows. Units are
characterized by quenched random thresholds of workload W
they can support. A load W bigger that a given unit threshold
breaks this unit irreversibly and triggers a sequence of other
units failure. If W is applied progressively to the system, initial
sequences of breaks develop in avalanches of failures and the
system is pushed to the limit of its functionality. This limiting
state of the system relates the critical load Wc and the number
nc < N of units that still are able to work. We employ computer
simulations to study distributions of Wc and nc. We show that
in systems with uniformly random thresholds the critical Wc

and nc as well as the ratio Wc/nc are distributed according to
a skew-normal distribution with parameters fitted by power-law
functions of N .

Index Terms—failure, multicomponent system, statistics,
transfer rule, workload distribution.

I. INTRODUCTION

LOAD-SHARING models are frequently applied to study
efficiency and reliability of parallel systems. In this

paper we consider a workload distribution among a large
number of functionally identical units that perform a com-
mon task. When units become overloaded they fail and
possibly trigger subsequent failures which reduce the system
performance. An orchestrated sequence of overloaded units
eventually leads to a catastrophic avalanche of failures.
Such a catastrophe happens because systems subjected to
an increasing load begin to fail when the internal workload
exceeds the critical value of less reliable units. Then, the
failure develops in a form of avalanche of simultaneously
overloaded units. Precisely speaking, avalanches emerge
when an increasing workload eliminates an unit from the
system in such a way that the exclusion changes the internal
workload pattern sufficiently to initiate the overload of other
units. In consequence, the corresponding chain of failures
provokes a wave of over-loadings. Avalanches of failures
are frequently studied using so-called load transfer models
as e.g. the Fibre Bundle Models (FBM) and Random Fuse
Models [1], [2], [3], [4]. The FBM are particularly useful for
study problems related to failure cascades in technological
applications [5], [6], [7], [8], [9].

Our system is a set of units located at nodes of a lattice,
see Fig. 1, and analysed using a Fibre Bundle Model method-
ology. In this work we limit our analysis to the case where
each unit is characterized as working or overloaded (failed).
We also assume that overloaded units are removed from the
system. In our simulations, an ensemble of N components is
subjected to a growing workload W , that systematically elim-
inates non-efficient units and initiates avalanches of failures.
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(a) (b)

Fig. 1. Schematic diagram of a multiple-unit system. Disks represent units:
black disks – working units, open circles – overloaded units, shade discs –
just overloaded units with their workloads transferred to (a) neighbouring
under-loaded units or (b) to all other units if the neighbourhood is inacces-
sible.

This means that when a unit fails, its workload is transferred
to the other non-overloaded units. Obviously, such a transfer
increases the probability of subsequent failures.

Due to structural imperfections and organisational factors,
units’ efficiencies are non uniform. We represent this non-
uniformity by the unit-workload-thresholds. In simulations
these thresholds are modelled by quenched random variables
{σi}. Specifically, we assume that {σi} are distributed uni-
formly over the segment [σmin, σmax].

In our simulations, a set of N units is subjected to a
quasi-statically growing workload. Under the increasing W
units begin to suffer from workloads approaching their load-
thresholds and then fail. The workloads are redistributed
through the system’s units and together with the load already
applied to the working units substantially accelerates new
overloads. Thus, a cascade of overloads among units moves
down the system performance and may eventually trigger
a catastrophic avalanche of failures. Such critical avalanche
develops when W reaches a specific, we call it critical, level
Wc. This avalanche involves all still working units and the
whole system breaks.

II. SIMULATION FRAMEWORK

The rule of workload transfer is a fundamental factor of
the model. Among many different rules there are two extreme
ones: global load sharing (GLS) and local sharing (LLS) [10],
[11], [12], [13], [14], [15], [16].

We transfer workloads from overloaded units according to
a rule symbolized by arrows in Fig. 1. Let us consider i-th
unit under the local workload wi ≤ σi. When W increases
enough to attain locally wi > σi then the i-th unit becomes
over-loaded and stops working. At this circumstance wi
has to be undertaken by other units. At first attempt we
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share wi equally among nearest-neighbouring units if they
are accessible. If no such neighbouring units the workload
is uniformly distributed through entire set of under-loaded
units. The first eventuality corresponds to the LLS transfer
whereas the latter one reflects the GLS rule. Effectively
such a workload-transfer rule represents a mixture of LLS
and GLS rules. We call this transfer policy the mixed LLS-
GLS rule. To some extent this rule corresponds to a recently
reported strategy that helps to avoid a complete destruction
of the system in presence of a cascade of failures [17].

As we have already mentioned, because of variable-
range-load transfer, internal workloads are non-uniformly
distributed. In consequence groups of units with workload
accumulation emerge in the whole system. Growing internal
load induces other overloads, after which each surviving
unit sustains increasing workload. If the load transfer does
not trigger further failures, a stable workloads’ configuration
emerges. This means that the given W is not sufficient to
fail the entire system, and the applied W should increase.

In the simulations we apply a quasi-static procedure:
if the system is in a stable configuration the applied W
increases by an amount sufficient to overload the unit with
the smallest (σi − wi). A series of increases in the value
of applied workload gives Wc. In detail, Wc corresponds
to a marginally stable configuration of the system, whereas
Wc + δW provokes an avalanche of failures among all
remaining units. By executing the quasi-static procedure we
identify a workload W necessary to overload all the units and
to get Wc and nc describing the highest system’s efficiency.

To determine the initial state of the system we assume
unit’s workload-thresholds {σi} are uniformly random. The
main question is how these quenched random thresholds dis-
tributed uniformly over [σmin, σmax], determine the resulting
critical Wc and limiting number of units nc. Based on results
of simulations, we have found that coefficients of skewness
of distributions of Wc/N , nc/N and Wc/nc are negative and
gathered data are correctly fitted by a three-parameter skew-
normal distribution [18], [19], [20] defined by the density
function

ψSN (x) =
erfc

(
−αx−µ√

2σ

)
√
2πσ

exp

[
−
(
x− µ√

2σ

)2
]

(1)

where µ, σ and α are respectively: location, scale and shape
parameters.

III. CRITICAL WORKLOAD AND MINIMAL NUMBER OF
UNITS

Employing the mixed LLS-GLS rule symbolised in Fig.
(1), we simulated a growing workload processes in systems
of 400 ≤ N ≤ 10000 working units with quench thresholds
{σi} distributed uniformly over [0, 1]. In order to achieve
reliable estimates of Wc and nc each simulation was executed
104 times. We have gathered ample data sets containing de-
tailed information about applied workload (W ) and numbers
of non-overloaded units (n). We have used these W ’s and
n’s sets to determine corresponding statistics by merging Wc

with number of units nc. Some empirical estimators as e.g.
the mean values, the standard deviations or the skewness
have been taken into account as well.
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Fig. 2. Probability density of scaled critical workload Wc/N for systems
with growing number of units: 900 (black triangles), 1600 (white triangles)
and N = 2500 (rhombus). Work-thresholds are distributed uniformly over
[0, 1]. The solid lines represent skew normally distributed Wc/N with the
parameters computed from the simulations. The results are obtained from
104 samples for each value of N

The simulation framework presented in Section II enabled
us to collect data sets of critical workloads Wc with corre-
sponding minimal numbers of non-overloaded units nc for
various system sizes and uniformly distributed workload-
thresholds. Then, based on these sets we have analysed re-
sulting empirical probability density functions using different
goodness-of-fit tests [21].

In Fig. (2) we show exemplary distributions of critical
workload Wc scaled by corresponding numbers of units N .
It turns out that Wc/N are skew-normally distributed (1)
with parameters related to N through power-law functions.
Based on numerical data we fitted the mean Wc/N and the
standard deviation st.dev(Wc/N) to the following symbolic
non-linear models

W c/N = am +
bm

(
√
N)cm

(2)

st.dev(Wc/N) = as +
bs

(
√
N)cs

(3)

where the parameters am,s, . . . , cm,s are reported in Tab. (I)
and the functions are displayed in Fig. (3). Formulas similar
to (2) and (3) hold for nc/N as well. We do not display them
here giving only the Fig. (4). We would like to underline
that (2) and (3) reflect the mixed LLS-GLS rule applied to
transfer overloads and the connectivity among units.

We have mentioned in Sec. (II) that the quasi-statically
growing workload systematically reduces number of non-
overloaded units and the system approaches critical state at
which the maximal workload (Wc) is executed by the reduced
number of units (nc). This critical state is marginally stable
and nc is minimal because an additional overload triggers an
avalanche that spans over the whole system. This means that
Wc/nc is directly related to an average density of workload.
In Fig. (5) we display empirical distributions of Wc/nc for
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TABLE I
PARAMETERS OF ESTIMATED MEAN W c/N (2) AND STANDARD

DEVIATION σ(Wc)/N (3), FOR SYSTEMS WITH GROWING NUMBER OF
UNITS

Parameter Estimate Standard Error Confidence Interval
am 0.125727 0.013307 (0.006034, 0.008303)
bm 0.179412 0.003116 (0.172364, 0.186461)
cm 0.266343 0.049344 (0.154720, 0.377966)
as 0.007168 0.000502 (0.785590, 0.800570)
bs 0.245501 0.060994 (0.107522, 0.383480)
cs 1.112720 0.100209 (0.886030, 1.339410)
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Fig. 3. Mean and standard deviation (inset) of critical workload Wc for
systems with growing number of units. Solid lines are drawn using (2) and
(3), respectively.
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Fig. 4. Distributions of scaled minimal number of channels nc/N for
systems with N = 3600 (white disks), N = 2500 (white triangle) and
N = 1600 units. The solid lines represent skew normally distributed nc/N
with the parameters computed from the simulations. The results are obtained
from 104 samples for each value of N
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Fig. 5. Empirical probability density of Wc/nc for systems with 3600
units (white disks) and 1600 units (black disks). The solid lines are drawn
using (1) with parameters estimated from the simulations. Sample size is
104.

Fig. 6. Empirical joint probability density functions of nc/N and Wc/N
for systems with 1600 units. Sample size is 2.5× 104.

systems with N1 = 3600 and N2 = 1600 units. It is clearly
seen that bigger N corresponds to lower value of Wc/nc.
Such a behaviour of Wc/nc my also be deduced from Figs.
(2) and (4). These figures show that with growing N the
mean critical workload W c/N decreases whereas nc/N
increases. (5). Obviously, a quantitative analyse requires
data displayed in Fig. (5). We extent properties of relation
between critical workload and number of non-overloaded
units by presenting an example of empirical joint probability
density function of nc/N and Wc/N . This exemplary pdf
related to the system with N = 1600 units is presented in
Fig. (6). We have built it by joining, sample by sample,
critical workloads Wc/N with corresponding nc/N . The
inset in this Figure illustrates the shape of joint pdf support.
The Pearson coefficient r related to presented distributions
equals to r = −0.639.

Now we compare Wc and nc related to systems whose
units are associated with nodes of the square lattice with
periodic boundary condition to the same quantities but related

Proceedings of the World Congress on Engineering and Computer Science 2019 
WCECS 2019, October 22-24, 2019, San Francisco, USA

ISBN: 978-988-14048-7-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2019



0.40 0.50 0.60 0.80 0.9nc/N

4

8

12

16

pdf

Fig. 7. Distributions of scaled minimal number of units nc/N for systems
with N = 400 (triangles) and N = 3600 (disks) units. White triangles
and white disks represent systems located on a square lattice with periodic
boundary conditions whereas the black plot-marks belong to data from
systems where no periodicity on boundaries takes place.The solid lines
are skew normally distributed nc/N with the parameters computed from
simulations.The results are obtained from 104 samples for each data set.

to units in presence of open boundaries of the underlying
lattice. From the topological point of view the former case
corresponds to the nodes lying on a torus. Periodic boundary
guarantees a perfect neighbourhood for all the units. This is
not the case when open boundary are present, i.e. the system
suffers from smaller number of links among units on the
border and thus the local load transfer is less efficient. This
reduced local load transfer affects at most a fraction of the
order 1/

√
N of units and can be neglected for systems with

N � 1. Figure (7) displays corresponding data.

IV. FINAL REMARKS

We have examined task distributions among function-
ally identical units subjected to a quasi-statically increasing
workload. We have characterised units by quench random
thresholds distributed uniformly and employed the mixed
LLS-GLS rule to transfer workload from overloaded units
to non-overloaded ones. Based on results of simulations we
have shown that the experimental distributions of the critical
load Wc, minimal number of non-overloaded units nc as
well as the local-workload intensity Wc/nc follow the skew-
normal distribution. By fitting discrete distributions we have
found that:

(i) for uniformly random workload thresholds expected
maximal load supported by the system depends mainly
on the rule of workload transfer, i.e. Wc/N ∼
N−0.133 for the mixed LLS-GLS rule examined in this
work, Wc/N ∼ 1 for the GLS rule and Wc/N ∼
(logN)−0.41 when the LLS rule is applied [8],

(ii) minimal numbers of non-overloaded units nc are skew-
normally distributed when the mixed LLS-GLS rule is
used in contrast to normally distributed nc when the
LLS rule is applied.

Even that the mixed LLS-GLS rule of workload transfer
is chosen arbitrary we observe that this rule represents

a reasonable compromise between the LLS and the GLS
rules, however. The mixed LLS-GLS rule distributes locally-
accumulated overload among neighbouring units if they are
accessible and the entire system is engaged only when such
a neighbourhood is already destroyed.

REFERENCES

[1] A. Hansen, P.C. Hemmer, and S. Pradhan, “The Fiber Bundle Model:
Modeling Failure in Materials,” Weinheim, Wiley-VCH, 2015.

[2] F. Kun, F. Raischel, R.C. Hidalgo, and H.J. Herrmann, “Extensions
of fibre bundle models,” in Modelling Critical and Catastrophic Phe-
nomena in Geoscience, Lecture Notes in Physics, P. Bhattacharyya
and B.K. Chakrabarti, Eds, vol. 705, Berlin: Springer 2006, pp. 57-
92.

[3] M.J. Alava, P.K.V.V. Nukala, and S. Zapperi, “Statistical models of
fracture,” Adv. In Physics, vol. 55, pp. 349-476, April 2006.

[4] D. Cohen, P. Lehmann and D. Or,“Fiber bundle model for multiscale
modeling of hydromechanical triggering of shallow landslides,” Water
Resources Res., vol. 45, W10436, Oct. 2009.

[5] Z. Bertalan, A. Shekhawat, J.P. Sethna, and S. Zapperi, “Fracture
strength: Stress concentration, extreme value statistics and the fate
of the Weibull distribution,” Phys. Rev. Applied, vol. 2, id. 034008,
Sept. 2014.
C. Manzato, A. Shekhawat, P. K. V. V. Nukala, M. J. Alava, J.
P. Sethna, and S. Zapperi, “Fracture Strength of Disorder Media:
Universality, Interactions, and Tail Asymptotics,” Phys. Rev. Lett.,
vol. 108, id. 065504, Feb. 2012.

[6] J. Knudsen and A.R. Massih, “Breakdown of disordered media by
surface loads,” Phys. Rev. E, vol. 72, id. 036129, Sept. 2005.

[7] S. Zapperi, P. Ray, H.E. Stanley, and A. Vespignani, “Analysis of
damage clusters in fracture processes,” Phys. A, vol. 270, pp. 57-62,
Aug. 1999.

[8] Z. Domanski, T. Derda and N. Sczygiol, “Critical Avalanches in
Fiber Bundle Models of Arrays of Nanopillars,” Lecture Notes in
Engineering and Computer Science: the International MultiConfer-
ence of Engineers and Computer Scientists 2013, 13-15 March, 2013,
Hong-Kong, pp. 765-768.

[9] Z. Domanski, “Damage Statistics in Progressively Compressed Ar-
rays of Nano-pillars”, Eng. Letters, vol. 27, no. 1, pp. 18-23, February
2019.

[10] H. Daniels, “The statistical theory of the strength of bundles of
threads I,”Proc. Royal. Soc. A, vol. 83, pp. 405-435, 1945.

[11] B. Coleman,“Time dependence of mechanical breakdown in bundles
of fibers I. Constant total load, J. Appl. Phys., vol. 28, pp. 10581064,
1957.

[12] B. Coleman,“Time dependence of mechanical breakdown in bundles
of fibers II. The infinite ideal bundle under linearly increasing loads,
J. Appl. Phys., vol. 28, pp. 10651067, 1957.

[13] R.C. Hidalgo, Y. Moreno, F. Kun, and H.J. Herrmann, “Fracture
model with variable range of interaction,” Phys. Rev. E, vol. 65, id.
046148, April 2002.

[14] D. Wang, Ch. Jiang and Ch. Park, “Reliability analysis of load-
sharing systems with memory”, Lifetime Data Anal., vol. 25, pp.
341-360, 2019.

[15] T. Derda, “Analysis of damage processes in nanopillar arrays with
hierarchical load transfer,” J. Appl. Math. Comput. Mech., vol. 15(3),
pp. 27-36, 2016.

[16] Z. Domanski, T. Derda and N. Sczygiol, “Statistics of critical
avalanches in vertical nanopillar arrays,” in Transactions on Engi-
neering Technologies. Lecture Notes in Electrical Engineering, G.C.
Yang, S.I. Ao, X. Huang, O. Castillo, Eds., vol. 275, Dordrecht:
Springer, 2014, pp. 1-11.

[17] C.E. La Rocca, H.E. Stanley and L.A. Branunstein, “Strategy in
interdependent networks to avoid the complete destruction of the
system in the presence of a cascade of failures”, Physica A: Statistical
Mechanics and its Applications, vol. 508, pp. 577-583, 2018.

[18] A. OHagan, and T. Leonard, “Bayes estimation subject to uncertainty
about parameter constraints,” Biometrika, vol. 63, 201-202, April
1976.

[19] A. Azzalini and A.R. Massih, “A class of distributions which
includes the normal ones,” Scand. J. Statist., vol. 12, pp. 171-178,
June 1985.

[20] A. Azzalini, “The Skew-Normal and Related Families,” Cambridge:
Cambridge University Press, 2013.

[21] T.B. Arnold and J.W. Emerson, “Nonparametric Goodness-of-Fit
Tests for Discrete Null Distributions,” The R Journal, Vol. 3/2, pp.
34-39, December 2011.

Proceedings of the World Congress on Engineering and Computer Science 2019 
WCECS 2019, October 22-24, 2019, San Francisco, USA

ISBN: 978-988-14048-7-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2019




