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Abstract—An iterative solution method for the discrete high
wavenumber Helmholtz equation is presented. The basic idea
for solution, already presented in [1], is to develop a precondi-
tioner which is based on a Helmholtz operator with a complex-
valued shift for a Krylov subspace iterative method. The
preconditioner which can be seen as a strongly damped wave
equation in Fourier space, can be approximately inverted by a
multigrid method. Extensive deflation and spectral analysis, as
Krylov subspace methods depends upon eigenvalues, highlights
in this paper. Findings in analysis are validated by numerical
results.

Index Terms—Helmholtz equation, Multigrid Method, Pre-
conditioning, Sparse linear systems, Deflation preconditioner.

I. INTRODUCTION

WAVE scattering have many applications in physics,
engineering and science. Examples include seismic

imaging [1], [2], [3], [4], [5], radars, electromagnetism [6],
bio medical imaging [7], (ultrasound), road-speed sensors
etc. Wave scattering phenomena is mostly modeled by math-
ematicians in the form of the Helmholtz equation [8], [9] and
[10]. Solving Helmholtz equation requires the use of iterative
methods. The Helmholtz equation in two dimensional (2D)
or three dimensional (3D), the convergence is typically
characterized by indefiniteness of the eigenvalues of the
corresponding coefficient matrix. With such a property, an
iterative method either basic or advanced, encounters conver-
gence problems. The method usually converges very slowly
or diverges [11]. There are very few choices of numerical
methods to compute solution of very large sparse systems
for many reasons, including memory, sparsity, heterogeneity
of medium and indefiniteness. Indefiniteness limits the choice
narrowly. The sparse direct solver have been used in [12],
[13], [14] and [15]. They are heavily constrained with mem-
ory and storage, hence are not practical for sufficiently large
problems. The direct methods are not favorable for many
obvious grounds, and they are too much time restrictions.
They consume unaffordable memory for large problem which
is under consideration. Discrete Helmholtz system, obtained
by finite difference scheme, is approximated using Krylov
subspace method. The preconditioner CSLP are tested with
different shifts. Eigenvalue analysis of CSLP is given in
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accordance with solver performance. For small frequency,
CSLP performs better whereas increasing frequency, CSLP
becomes impractical in terms of memory and computational
time. Deflation technique is used to address these types of
issues.
The Helmholtz equation can be read as

−∆2u(x, y)− k2(x, y)u(x, y) = f(x, y), (1)

where ∆2 = ∂2

(∂x2) + ∂2

∂y2 , and u(x, y)the unknown variable,
defined on the unit square domain Ω = (0, 1) × (0, 1), K
wave number. The wave number k is related with wavelength
λ as

k(x, y) =
2π

λ
=
omega

c(x, y
(2)

where ω = 2πF is angular velocity, F the wave frequency,
λ = c(x,y)

F the wavelength and c(x, y) is the speed of sound.

A. Model Problem

The Helmholtz problem considered this paper is non-
homogeneous defined on the domain Ω = (x, y) × (x, y)
where x, y ∈ (0, 1). The wavenumber is constant, indepen-
dent of geometry. The source function is given as

f(x, y) = δ(x, y) = δ(x− 1/2, y − 1/2). (3)

With x, y ∈ (0, 1) where Dirac delta function is given as

δ(x, y) =

{
+∞ x = 0, y = 0

0 x 6= 0, y 6= 0
. (4)

This source functions is used to model the source centered at
( 1
2 ,

1
2 ). The domain is bounded by the Sommerfeld radiation

conditions [6] [1] [16], which are given as

∂u

∂η
− ιku = 0. (5)

This models the propagation of wave from center outwards
direction.Discretization: two lines. The resultant linear sys-
tem is written as

Ahuh = fh. (6)

II. HELMHOLTZ SOLVERS

Solving Helmholtz equation requires solution of resultant
large sparse Linear System (6). For large, sparse matrix the
Krylov subspaces are very popularchoice.The methods are
developed on construction of iterants in the subspace.The
space

Kj(A; r0) = Span{r0, Ar0, A2r0, · · · . . . A(j−1)r0},

is called the Krylov subspace of dimension j, associated with
A and r0, and initial residual r0 := g − Au0 is related
to the initial guess u0. Among methods which are based
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on construction the Krylov subspaces, a Conjugate Gradient
(CG) [17],[18] [19] GMRES [20], CGS [21], Bi-CG [22],
Bi-CGSTAB [23]and QMR are popular. For non-symmetric
linear systems, Krylov subspace can be built from Arnoldi’s
process, which leads to GMRES(Saad and Schultz, 1986).
GMRES is optimal method; it reduces the 2-norm of the
residual at the every iteration. GMRES, however, require
long recurrences, which is usually limited by the available
memory. A remedy is by restarting, which some-times lead
to slow convergence or stagnation [24].

A. Preconditioning

In an iterative method preconditioning is often vital com-
ponent in enhancing the convergence of iterations, partic-
ularly when the system is large sized.. There are many
iterative techniques for solving linear system. For large spare
linear system, the convergence rate is always a concern for
researchers; one can improve significantly the convergent rate
by applying appropriate preconditioner. The convergence of
iterative methods depends on eigenvalues of the coefficient
matrix, it is often advantageous to use preconditioner that
transfer the system to one with a better distribution of
eigenvalues. The preconditioner is the key to successful
iterative solver. In brief, to make linear system favorable for
iterative solver, the coefficient matrix is scaled with a matrix
Mcalled preconditioner. With choice of preconditionerMfor
Linear System 6, where the inverse of M is relatively
inexpensive to compute, and then the preconditioned system
is M ( − 1)Au = M ( − 1)f is supposed to be favorable for
iterative solver. A few preconditioners have been tried for
the Helmholtz equation, for details see [10] [2] [4].

B. Complex Shifted Laplace Preconditioner

The Complex Shifted Laplace Preconditoner(CSLP) is
the discrete Helmholtz operator in addition with a complex
shift (a, ιb). The CSLP is preconditioner based on operator,
in contrast to decomposition type preconditioners, which
are matrix-based. The CSLP obtained by(finite difference)
discretization of the shifted Helmholtz operator i.e.

M(a, b) := −∆− (a− ιb)k2, where a, b ∈ R,

where a and b are real and imaginary numbers respectively.
The first precedent in operator based preconditioner for the
Helmholtz equation was simple Laplace operator ∆, used
without any shifts. It works well, until mesh size is small.
For large size of mesh, convergence starts to stagnates, and
alot of unwanted eigenvalues appear, as shown in Fig:1,
which shows that for large mesh size this shift is not good
choice. Later different shifts were introduced, with real as
well as imaginary parts, and found to be effective. The
number of iterations taken by GMRES preconditioned CLSP
M(1, π/4) gorws with linear rate with wave number. This
fact is illustrated by spectrum of preconditioned Helmholtz,
as shown in Fig:2, where eigen values are getting more closer
to orign. Some near-origin eigenvalues affect the convergence
of solver. Deflation preconditioned, illustrated in next Sectin,
is used to treat this drawback. A comparison of performance
of CSLP with different shifts in given in Table I, where shift
(1, π/4) is the one which outperforms rest of choices of shifts
for small as well large wave numbers.

TABLE I
COMPARISON OF GMRES NUMBER OF ITERATIONS BY CSLP WITH

DIFFERENT SHIFTS

k N M(0,0) M(0,1) M(1,1) M(1,pi/4)
10 16 09 11 10 09
20 32 20 21 20 18
30 48 40 35 33 29
40 64 71 53 44 37
50 80 110 75 57 47
60 96 154 98 67 56

Fig. 1. Spectrum with M(0, 0)

Fig. 2. Spectrum with M(0, 1)

III. DEFLATION TECHNIQUE

Convergence of the Krylov subspace method is typically
adversely affected by small eigenvalues, as seen in Fig: 2.
The small eigenvalues need to be special treatment. Deflation
is special type of preconditioner. Deflation is a technique
commonly used to get rid of certain part of the spectrum,
and to force the “unfair” eigenvalues not to participate in
the Krylov iterative method. In order to develop deflation
preconditioner, we consider the linear system

Ahuh = fh. (7)

For given a matrix Zh ∈ Cn×r, the deflation precondioners
are the projections of type

Ph = Ih −AhQh, (8)
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where Qh = ZhA
−1
2h Z

T
h and A2h = ZTh AhZh. Choice

of deflation vectors in matrix Zh forms an interest area
of research. Theoretically, eigenvectors gives ideal results,
as they projects corresponding eigenvectors to zero. Since
exact eigenvectors are impractical to compute, therefore
many problem-specific possibilities have been explored. For
the problem under consideration, few alternatives have been
researched in [25], [9] and [26]. Getting motivation from
property of resolving smaller error modes on coarser grids by
multigrid, we choose multigrid coarsegrid operator as defla-
tion matrix Zh for our problem. This deflation preconditioner
can be applied in combination with other preconditioners
[27] and [28], and we have combined with CSLP as follows:

PhM(a, b)−1
h Ahuh = PhM(a, b)−1

h fh. (9)

Next, we plot the spectrum of operator given in Eq: 9 in one-
dimension as well as two-dimension in Fig: 3 and Fig: 4.
These spectral plots show clustered behavior of eigenvalues
of deflated CSLP-preconditioned matrix in one dimension
and two dimension respectively.

Fig. 3. One Dimensional Spectrum with CSLP and Def.

Fig. 4. Spectrum with M(0, 1)

IV. NUMERICAL EXPERIMENTS

For all the experiments, u0 (zero vector) is used as initial
guess. The mesh size h is chosen such that for a wave number
k, it satisfies relation kh ≤ 0.625 (equivalent to 10 grid

points per wave length). Iterations are stoppedn when the
residul meets the tolerance

‖rh‖ ≤ 10−5.

A. Results

The first numerical result, using deflation, is presented
in Table II, where CSLP is not used. This effort has been
made to highlight affect of deflation preconditioner on its
own. The readings show a substantial reduction in number
of iterations and computational time. Subsequently, deflation
is applied in combination with the CSLP, the first level
preconditioner. A variety of shifts in CSLPj, in combination
with defltaion, has been experimented and readings have been
recorded and presented in Tables III, IV, V and VI for CSLP-
shifts (0, 0) , (0, 1), (1, 1) and (1, π4 ) respectively. Such
comparison is represented using consolidated bar plots given
in Fig: 6, where bar representing iterations taken by solver
preconditioned by CSLP and deflation is fairly smaller than
the bar representing iterations taken by solver preconditioned
by only CSLP. Comparison is performed with four different
choices of shifts, comprehensible from figure. The two level
preconditioned (CSLP and deflation perconditioner) solver
is also tested for a very large wave number k = 200,
and readings are presented in Table VII where inclusion of
defltaion alongwith CSLP reduced the number of iterations
significantly. Rate of reduction for shift (1, π4 ) is 5 times.
Lastly, the velocity potential for wave number ranging from
k = 5 to k = 30 is plotted in Fig:5. Increasing wave number
clearly highlights the need of more grid-points for large wave
number.

TABLE II
NUMBER OF ITERATIONS BY GMRES AND DEFLATED GMRES

k N Dim. of A GMRES It. Time Def GMRES It. Time
20 32 1089 74 00.79 13 00.11
40 64 4225 200 08.63 15 00.44
60 96 9409 405 51.95 17 01.10
80 128 16641 607 202.30 20 02.44

100 160 25921 782 362.79 24 04.36

TABLE III
NUMBER OF ITERATIONS BY CSLP AND CSLP-DEFLATION WITH

M(0, 0)

k N Dim. A CSLPIt Time(S) CSLP-Def It Time(S)
20 32 1089 20 00.25 07 00.16
40 64 4225 71 02.86 10 00.70
60 96 9409 154 17.28 13 02.30
80 128 16641 257 66.02 16 05.26

100 160 25921 358 133.68 20 09.56

TABLE IV
NUMBER OF ITERATIONS BY CSLP AND CSLP-DEFLATION WITH

M(0, 1)

k N Dim of A CSLPIt Time (S) Def CSLP It Time(S)
20 32 1089 21 00.27 07 00.16
40 64 4225 53 02.15 10 00.75
60 96 9409 98 10.56 13 02.32
80 128 16641 137 28.70 16 05.18

100 160 25921 175 56.93 20 09.73
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TABLE V
NUMBER OF ITERATIONS BY CSLP AND CSLP-DEFLATION WITH

M(1, 1)

k N Dim A CSLP It Time Def. CSLP It Time
20 32 1089 20 00.26 07 00.16
40 64 4225 44 01.77 10 00.73
60 96 9409 67 07.07 13 02.28
80 128 16641 88 17.87 16 05.37

100 160 25921 108 33.44 21 10.16

TABLE VI
NUMBER OF ITERATIONS BY CSLP AND CSLP-DEFLATION WITH

M(1, π/4)

k N Dim A CSLP It Time Def. CSLP It Time
20 32 1089 18 00.24 07 00.16
40 64 4225 37 01.49 10 00.74
60 96 9409 56 05.84 13 02.27
80 128 16641 73 14.54 16 05.09

100 160 25921 88 26.88 20 09.64

TABLE VII
NUMBER OF ITERATIONS BY CSLP AND CSLP-DEFLATION, DIFFERENT

SHIFTS M(a, b)

CSLP M(a, b) Dim A CSLP It t(s) D-CSLP It t(s)
M(0, 0) 103041 948 1681 48 107
M(0, 1) 103041 349 542 49 108
M(1, 1) 103041 208 267 49 86
M(1, π/4) 103041 169 248 49 83

V. CONCLUSION

In this paper, we discussed the ingredients of robust and
efficient iterative solver for high wave number Helmholtz
problems. Need of preconditioner is highlighted and a critical
investigation of different preconditioners is presented. The
CSLP preconditioner is applied and found to be very effective
to enhance the convergence of Krylov subspace methods
for small wave number problem. Increasing wave number
stagnates convergence of CSLP preconditioned solver. The
deflation is introduced and is used as a second-level in
combination with CSLP, which not only pushes the small
eigenvalues to origin ( unwanted eigenvalues ), also helps
to achieve faster convergence fast. Specially when wave
numbers are large, the deflation method takes less iterations
as compared to the CSLP. It also reduces solve time for large
wave number problem, which highlights the contribution of
this paper.
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