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Abstract—Quadratic programming with fuzzy parameters,
an extended version of conventional quadratic programming
deems fit to tackle imprecise parameters and non linear
objective function. The optimum of such type of objective
functions is not unique due to flexible nature of modelling
parameters, rather it varies between two values. The current
study proposes an alternate solution methodology coupled with
(α, r) cut without using duality to deal with one of the two bi-
level subprograms that handles opposite direction optimization
and finds the value of the objective function. Comparative
analysis has been drawn to show the simple execution and
computational efficiency due to significant reduction in the
number of variables, constraints and hence, the processing
time. In addition, the study extends existing literature by
allowing different type of cuts for the objective function and the
constraints. The numerical examples are illustrated to highlight
the ease and efficiency of the solution methodology.

Index Terms—Fuzzy parameters, Quadratic programming
problem, Convex optimization, (α, r) cut.

I. INTRODUCTION

QUADRATIC programming with crisp parameters
limits its vast scope, keeping in view the rigidity

involved in data collection. Instead, imprecise parameters
are usually available for formulation of a model in real life
scenario. Development of an efficient algorithm to find an
acceptable solution for such an unstable model with interval
or fuzzy parameters which is applicable in general is one
of the most sought after techniques. Among frequently used
methodologies are the ones which use ranking function,
membership approach and duality. In fact many environment
related issues e.g. water resources management, power
management, noise control, flood diversion, irrigation water
allocation etc have been handled using imprecise variables
in linear programming, quadratic programming, dynamic
programming, interval mathematical programming, fuzzy
mathematical programming and stochastic mathematical
programming.

The concept of impreciseness in the formulation of
mathematical programming has charmed a number of
researchers across different fields due to close association
with real life models. The use of interval parameters were
among the early efforts for the inclusion of uncertainty.
Later on, the focus was shifted to fuzzy parameters which
extended the notion of interval with the help of membership
functions. To enrich the literature with imprecise parameters,
Allahviranloo and Ghanbari [2] proposed algebraic solution
of fuzzy linear systems based on interval theory. Lu et al.
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[3] utilised interval parameters to provide electric power
system management with inexact programming approach.
Safi and Razmjoo [4] investigated transportation problem
with interval parameters. Li et al. [5] developed a quadratic
programming model to study waste management with
interval parameters. Figueroa-Garcı́a et al. [6] provided
optimal solutions of group fuzzy matrix games using interval
valued fuzzy numbers.

Earlier also, quadratic programming problem (QPP) with
fuzzy parameters has been investigated. Duality concept
introduced by Dorn [7] along with membership function
approach was used by Liu [8] to reduce fuzzy quadratic
programming problem (FQPP) with fuzzy parameters into
a pair of conventional mathematical programs and then the
bounds of the objective function were found. Kheirfam
and Verdegay [9] explored sensitivity analysis on FQPP.
Silva et al. [10] proposed an algorithm to solve FQPP with
fuzziness in the cost function by converting it into parametric
multiobjective QPP. Later on, Zhou et al. [11] provided
optimality conditions to solve FQPP with trapezoidal fuzzy
numbers using ranking function and duality. Recently,
Mirmohseni and Nasseri [12] presented a numerical method
to solve FQPP with triangular fuzzy numbers in constraint
coefficients. Fuzzy quadratic programming with interval
numbers was also discussed by Kumar and Jeyalakshmi
[13] using Simplex method and α-cut.

The objective of the present study is to provide a solu-
tion methodology for quadratic programming problems with
fuzzy parameters for convex optimization type of problems.
The proposed method does not use duality to find the highest
value of the objecvtive function. Moreover an equivalent
simplified approach is proposed. As a result, we are able
to significantly reduce the number of variables to n and the
number of constraints to m+n. The advantage of this model
over the previous ones is that it is computationally efficient
and significantly useful for big data problems. It is quite easy
to apply due to decrease in complexity as well as decrease in
the number of variables and constraints. Moreover, an (α, r)-
cut provides liberty to use different type of cuts for objecvtive
function and constraints. The paper is organized as such that
Sect. II deals with the definition and notations, Sect. III gives
the details of the methodology, Sect. IV provides illustrative
examples to highlight the solution methodology and Sect. V
ends up with the conclusions and future scope.
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II. PRELIMINARIES

Definition 2.1 [1] If X is a collection of objects denoted
generically by x, then a fuzzy set Ã in X is a set of ordered
pairs: {(x, µÃ(x))|x ∈ X}, µÃ(x) is called the membership
function of x in Ã that maps X to the membership space
M = [0, 1].

Definition 2.2 [1] A triangular fuzzy number (TFN) Ã =
(x1, x

′
1, x
′′
1) is a fuzzy set if its membership function is given

by

µÃ(x) =


x− x1
x′1 − x1

, x1 < x ≤ x′1
x′′1 − x
x′′1 − x′1

, x′1 ≤ x < x′′1

0, otherwise

Definition 2.3 [1] A TFN Ã = (x1, x
′
1, x
′′
1) is called

non-negative iff x1 ≥ 0.

Definition 2.4 Let A = [ãij ]n×n = (aij , a
′
ij , a

′′
ij)n×n

be a symmetric triangular fuzzy number matrix. Let
B = [aij ]n×n, C = [a′ij ]n×n and D = [a′′ij ]n×n be
the corresponding crisp matrices (obtained by using lower,
middle and upper entries of each of the fuzzy number entries
of the matrix [ãij ]n×n) then the matrix [ãij ]n×n is positive
definite/ positive semidefinite/ negative definite/ negative
semidefinite/ indefinite in accordance with all of B,C and
D being positive definite/ positive semidefinite/ negative
definite/ negative semidefinite/ indefinite, respectively.

Definition 2.5 [1] The (crisp) set of elements that belong
to the fuzzy set Ã at least to the degree α ∈ (0, 1] is called
the α-cut of Ã and is defined as:

Aα = {x ∈ X | µÃ(x) ≥ α}.
If Ã = (x1, x

′
1, x
′′
1), Aα = [x1+α(x

′
1−x1), x′′1−α(x′′1−x′1)].

Arithmetic operations

Let X̃1 = (x1, x
′
1, x
′′
1) and X̃2 = (x2, x

′
2, x
′′
2) be two

triangular fuzzy numbers, then

(i) X̃1 ⊕ X̃2 = (x1 + x2, x
′
1 + x′2, x

′′
1 + x′′2)

(ii) For k ∈ R, kX̃ =

{
(kx, kx′, kx′′), k ≥ 0,

(kx′′, kx′, kx), k < 0.

(iii) X̃1 	 X̃2 = (x1 − x′′2 , x′1 − x′2, x′′1 − x2)

(iv) X̃1 ⊗ X̃2 ≈ (p1, p2, p3) where

p1 = min {x1x2, x1x′′2 , x′′1x2, x′′1x′′2},
p2 = {x′1x′2},
p3 = max {x1x2, x1x′′2 , x′′1x2, x′′1x′′2}.

(v) If X̃1 is a triangular fuzzy number and X̃2 is a
non-negative triangular fuzzy number, then

X̃1 ⊗ X̃2 ≈


(x1x2, x

′
1x
′
2, x
′′
1x
′′
2);x1 ≥ 0

(x1x
′′
2 , x
′
1x
′
2, x
′′
1x
′′
2);x1 < 0, x′′1 ≥ 0

(x1x
′′
2 , x
′
1x
′
2, x
′′
1x2);x

′′
1 < 0

III. FORMULATION OF A FUZZY QUADRATIC
PROGRAMMING PROBLEM

The fuzzy quadratic programming problem can be
formulated as:

Minimize Z̃ =
n∑
j=1

c̃jxj +
1

2

n∑
i=1

n∑
j=1

q̃ijxixj

subject to
n∑
j=1

ãijxj ≤ b̃i, xj ≥ 0,

i = 1, 2, ...,m, j = 1, 2, ..., n.


(1)

where ãij , b̃i, c̃j and q̃ij are assumed to be fuzzy numbers
and matrix [q̃ij ]n×n is positive semi definite .

Using α-cut for the objective function and r-cut for the
constraints, α, r ∈ (0, 1], the model (1) can be rewritten as :
Minimize Z(α,r) =
n∑
j=1

[(cj)
L
α, (cj)

U
α ]xj +

1

2

n∑
i=1

n∑
j=1

[(qij)
L
α, (qij)

U
α ]xixj

subject to
n∑
j=1

[(aij)
L
r , (aij)

U
r ]xj ≤ [(bi)

L
r , (bi)

U
r ],

xj ≥ 0, i = 1, 2, ...,m, j = 1, 2, ..., n.

Assume fU(α,r), f
L
(α,r) as the upper and lower bounds of

the objective function respectively after applying (α, r)-
cut, α, r ∈ (0, 1] on the objective function and constraints
respectively, the model (1) can be divided into the following
two-level IQP models as :

fL(α,r) = min
S

(
min
x
f =

n∑
j=1

cjxj +
1

2

n∑
i=1

n∑
j=1

qijxixj

)
subject to

n∑
j=1

aijxj ≤ bi, xj ≥ 0, i = 1, 2, ...,m


(2)

and

fU(α,r) = max
S

(
min
x
f =

n∑
j=1

cjxj +
1

2

n∑
i=1

n∑
j=1

qijxixj

)
subject to

n∑
j=1

aijxj ≤ bi, xj ≥ 0, i = 1, 2, ...,m


(3)

where S = {cj ∈ [(cj)
L
α, (cj)

U
α ], qij ∈ [(qij)

L
α, (qij)

U
α ],

aij ∈ [(aij)
L
r , (aij)

U
r ], bi ∈ [(bi)

L
r , (bi)

U
r ]}

or

fL(α,r) = min
S′

(
min
x
f =

n∑
j=1

(cj)
L
αxj +

1

2

n∑
i=1

n∑
j=1

(qij)
L
αxixj

)
subject to

n∑
j=1

aijxj ≤ bi, xj ≥ 0, i = 1, 2, ...,m


(4)

and

fU(α,r) = max
S′

(
min
x
f =

n∑
j=1

(cj)
U
αxj +

1

2

n∑
i=1

n∑
j=1

(qij)
U
αxixj

)
subject to

n∑
j=1

aijxj ≤ bi, xj ≥ 0, i = 1, 2, ...,m


(5)
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where S′ = {aij ∈ [(aij)
L
r , (aij)

U
r ], bi ∈ [(bi)

L
r , (bi)

U
r ]}

The problem is now to assign appropriate values to
the set S′ to find fU(α,r) and fL(α,r), which is decided as
under:

Lower bound

Model (4) corresponds to the lower bound of the objective
function of model (1) . As both the inner and outer programs
have the same minimization operation, they can be combined
into single programming model :

fL(α,r) = min
S′,x

( n∑
j=1

(cj)
L
αxj +

1

2

n∑
i=1

n∑
j=1

(qij)
L
αxixj

subject to
n∑
j=1

aijxj ≤ bi
)
, xj ≥ 0, i = 1, 2, ...,m

where S′ = {aij ∈ [(aij)
L
r , (aij)

U
r ], bi ∈ [(bi)

L
r , (bi)

U
r ]}

or

fL(α,r) = min
x

( n∑
j=1

(cj)
L
αxj +

1

2

n∑
i=1

n∑
j=1

(qij)
L
αxixj

)
subject to

n∑
j=1

(aij)
L
r xj ≤ (bi)

U
r , xj ≥ 0, i = 1, 2, ...,m.


(6)

(as the maximum possible region is determined by
(aij)

L
r and (bi)

U
r ).

A. The proposed result:

It will be shown that fU(α,r), the upper bound of the
objective function can be found without using duality
and hence, drastically curtails the number of variables,
constraints and processing time.

Upper bound

Model (5) corresponds to the upper bound of the objective
function of model (1) , but as the optimization is in different
directions, the direction of the inner is also changed to
maximization using duality as follows

Duality approach

The Lagrangian dual formulation of the problem corre-
sponding to highest value is to maximize θ(λ, δ), which is
given by

θ(λ, δ) = inf

{ n∑
j=1

(cj)
U
αxj +

1

2

n∑
i=1

n∑
j=1

(qij)
U
αxixj +

m∑
i=1

λi

( n∑
j=1

aijxj − bi
)
+

n∑
j=1

δjxj

}
where λi, δj , xj ≥ 0 and aij ∈ [(aij)

L
r , (aij)

U
r ],

bi ∈ [(bi)
L
r , (bi)

U
r ], ∀i, j.

Here, the function θ(λ, δ) is a convex function as [q̃ij ]n×n
is a symmetric positive semidefinite matrix. The necessary
and sufficient condition for a solution to attain maxima is
that gradient of θ(λ, δ) should vanish.

Hence, the inner level model in the problem corresponding
to highest value transforms to

max
x,λ,δ

( n∑
j=1

(cj)
U
αxj +

1

2

n∑
i=1

n∑
j=1

(qij)
U
αxixj +

m∑
i=1

λi

( n∑
j=1

aijxj − bi
)
−

n∑
j=1

δjxj

)
subject to

(cj)
U
α +

n∑
i=1

(qij)
U
αxi +

m∑
i=1

λiaij − δj = 0, j = 1, 2, ..., n,

where aij ∈ [(aij)
L
r , (aij)

U
r ], bi ∈ [(bi)

L
r , (bi)

U
r ],

λi, δj , xj ≥ 0, i = 1, 2, ...,m, j = 1, 2, ..., n.

In view of the duality concept, the problem to find highest
value becomes:

(f)Uα,r = max
S′,x,λ,δ

( n∑
j=1

(cj)
U
αxj +

1

2

n∑
i=1

n∑
j=1

(qij)
U
αxixj +

m∑
i=1

λi
( n∑
j=1

aijxj − bi
)
−

n∑
j=1

δjxj

)
subject to

(cj)
U
α +

n∑
i=1

(qij)
U
αxi +

m∑
i=1

λiaij − δj = 0, j = 1, 2, ..., n,

λi, δj , xj ≥ 0, i = 1, 2, ...,m, j = 1, 2, ..., n
where S′ = {(aij , bi) : aij ∈ [(aij)

L
r , (aij)

U
r ], bi ∈

[(bi)
L
r , (bi)

U
r ], ∀ i, j}.

Since (cj)
U
α +

n∑
i=1

(qij)
U
αxi +

m∑
i=1

λiaij − δj = 0,

j = 1, 2, ..., n, therefore
n∑
j=1

(cj)
U
αxj +

m∑
i=1

n∑
j=1

λiaijxj −
n∑
j=1

δjxj =

−
n∑
i=1

n∑
j=1

(qij)
U
αxixj , j = 1, 2, ..., n.

Thus, the above model reduces to

(f)Uα,r = max
S′,x,λ,δ

(
− 1

2

n∑
i=1

n∑
j=1

(qij)
U
αxixj −

m∑
i=1

λibi

)
subject to
n∑
i=1

(qij)
U
αxi +

m∑
i=1

λiaij − δj = −(cj)Uα , j = 1, 2, ..., n,

λi, δj , xj ≥ 0, i = 1, 2, ...,m, j = 1, 2, ..., n
where
S′ = { aij ∈ [(aij)

L
r , (aij)

U
r ], bi ∈ [(bi)

U
r , (bi)

U
r ],∀ i, j}.

Further, as (bi)Lr ≤ bi ≤ (bi)
U
r and λi ≥ 0 for all i, it follows

that

(f)Uα,r = max
S′′,x,λ,δ

(
− 1

2

n∑
i=1

n∑
j=1

(qij)
U
αxixj −

m∑
i=1

λi(bi)
L
r

)
subject to
n∑
i=1

(qij)
U
αxi +

m∑
i=1

λiaij − δj = −(cj)Uα , j = 1, 2, ..., n,

λi, δj , xj ≥ 0, i = 1, 2, ...,m, j = 1, 2, ..., n
where S′′ = {aij : aij ∈ [(aij)

L
r , (aij)

U
r ],∀ i, j}.

Finally, since (aij)
L
r ≤ aij ≤ (aij)

U
r for all i and j, therefore
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it yields

(f)Uα,r = max
x,λ,δ

(
− 1

2

n∑
i=1

n∑
j=1

(qij)
U
αxixj −

m∑
i=1

λi(bi)
L
r

)
subject to

n∑
i=1

(qij)
U
αxi +

m∑
i=1

λi(aij)
L
r − δj ≤ −(cj)Uα ,

n∑
i=1

(qij)
U
αxi +

m∑
i=1

λi(aij)
U
r − δj ≥ −(cj)Uα ,

λi, δj , xj ≥ 0, i = 1, 2, ...,m, j = 1, 2, ..., n.


(7)

Proposed method

We now propose a modified approach to find upper bound
fU(α,r) of the problem (1). The new formulation involves
considerably lesser number of constraints and variables as
compared to problem (5) and hence an efficient approach.
In addition the new formulation is applicable for concave
type of optimization also.

We claim that the highest value fU(α,r) can be found by
simply solving the following optimization model:

fU(α,r) = min
x

( n∑
j=1

(cj)
U
αxj +

1

2

n∑
i=1

n∑
j=1

(qij)
U
αxixj

)

subject to
n∑
j=1

(aij)
U
r xj ≤ (bi)

L
r , i = 1, 2, ...,m,

xj ≥ 0, j = 1, 2, ..., n.


(8)

Proof: Since (aij)
L
r ≤ (aij)

U
r , therefore the above problem

is equivalent to

fU(α,r) = min
x

( n∑
j=1

(cj)
U
αxj +

1

2

n∑
i=1

n∑
j=1

(qij)
U
αxixj

)

subject to
n∑
j=1

(aij)
U
r xj ≤ (bi)

L
r , i = 1, 2, ...,m,

n∑
j=1

(aij)
L
r xj ≤ (bi)

L
r , i = 1, 2, ...,m,

xj ≥ 0, j = 1, 2, 3..., n.


(9)

Now, we will show that the dual model of problem (9)
is identical to (7). Let λi, µi and δj be the Lagrange’s
multipliers to the constraints of the above problem in that
order, then the dual of the problem will be:

max
x,λ,µ,δ

( n∑
j=1

(cj)
U
αxj +

1

2

n∑
i=1

n∑
j=1

(qij)
U
αxixj +

m∑
i=1

λi
( n∑
j=1

(aij)
U
r xj − (bi)

L
r

)
+

m∑
i=1

µi
( n∑
j=1

(aij)
L
r xj −

(bi)
L
r

)
−

n∑
j=1

δjxj

)
subject to

(cj)
U
α +

n∑
i=1

(qij)
U
αxi +

m∑
i=1

λi(aij)
U
r +

m∑
i=1

µi(aij)
L
r − δj =

0, j = 1, 2, ..., n,

λi, µi, δj , xj ≥ 0 ∀ i and j.

The equation (cj)
U
α +

n∑
i=1

(qij)
U
αxi +

m∑
i=1

λi(aij)
U
r +

m∑
i=1

µi(aij)
L
r − δj = 0, for j = 1, 2, ..., n, implies

n∑
j=1

(cj)
U
αxj +

m∑
i=1

n∑
j=1

λi(aij)
U
r xj +

m∑
i=1

n∑
j=1

µi(aij)
L
r xj −

n∑
j=1

δjxj = −
n∑
i=1

n∑
j=1

(qij)
U
αxixj , j = 1, 2, ..., n.

It follows that

fU(α,r) = max
x,λ,µ,δ

(
− 1

2

n∑
i=1

n∑
j=1

(qij)
U
αxixj −

m∑
i=1

λi(bi)
L
r −

m∑
i=1

µi(bi)
L
r

)
subject to

n∑
i=1

(qij)
U
αxi +

m∑
i=1

λi(aij)
U
r +

m∑
i=1

µi(aij)
L
r − δj =

−(cj)Uα , j = 1, 2, ..., n,

λi, δj , xj ≥ 0, i = 1, 2, ...,m, j = 1, 2, ..., n.

Further, using (aij)
L
r ≤ aij ≤ (aij)

U
r , we get

fU(α,r) = max
x,λ,µ,δ

(
− 1

2

n∑
i=1

n∑
j=1

(qij)
U
αxixj −

m∑
i=1

λi(bi)
L
r −

m∑
i=1

µi(bi)
L
r

)
subject to

n∑
i=1

(qij)
U
αxi +

m∑
i=1

λi(aij)
L
r +

m∑
i=1

µi(aij)
L
r − δj ≤ −(cj)Uα ,

n∑
i=1

(qij)
U
αxi +

m∑
i=1

λi(aij)
U
r +

m∑
i=1

µi(aij)
U
r − δj ≥ −(cj)Uα ,

λi, µi, δj ≥ 0, i = 1, 2, ...,m, j = 1, 2, ..., n.

Finally, replacing λi+µi by νi, i = 1, 2, ...,m in the above,
we get model (7). This proves our claim. �

Remark 1 On the same lines, we get similar results in
case of a maximization problem. In particular, the lowest
and the highest values of the following model

Maximize Z̃ =
n∑
j=1

c̃jxj +
1

2

n∑
i=1

n∑
j=1

q̃ijxixj

subject to
n∑
j=1

ãijxj ≥ b̃i, xj ≥ 0,

i = 1, 2, ...,m, j = 1, 2, ..., n.


(10)

where ãij , b̃i, c̃j and q̃ij are assumed to be fuzzy numbers
and matrix [q̃ij ]n×n is negative semi definite,

can be found by solving
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fL(α,r) = max
x

( n∑
j=1

(cj)
L
αxj +

1

2

n∑
i=1

n∑
j=1

(qij)
L
αxixj

)
subject to

n∑
j=1

(aij)
L
r xj ≥ (bi)

U
r , xj ≥ 0, i = 1, 2, ...,m.


(11)

and

fU(α,r) = max
x

( n∑
j=1

(cj)
U
αxj +

1

2

n∑
i=1

n∑
j=1

(qij)
U
αxixj

)
subject to

n∑
j=1

(aij)
U
r xj ≥ (bi)

L
r , xj ≥ 0, i = 1, 2, ...,m.


(12)

TABLE I
COMPARISON OF PROPOSED METHOD WITH LIU’S METHOD

No. of
vari-
ables

No. of
con-
straints

Comput.
effi-
cient

Ease of
appli-
cation

Flex.
in
cuts

Liu’s
method

mn +
m+2n

2mn +
2m+ n

5 5 5

Proposed
method

n m+ n X X X

As a result the membership of the objective function can
be put as:

µZ̃(x) =


L(Z), fL(0,0) < Z ≤ fL(1,0),
1, fL(1,0) < Z ≤ fU(1,1),
R(Z), fU(1,1) < Z ≤ fU(0,1),
0, otherwise

where L(Z) and R(Z) are left and right shape functions
respectively of µZ̃(x).

Advantages of the proposed method over existing
methods

1) The proposed method contributes in solving a fuzzy
quadratic programming in an efficient way due to
significant reduction in the variables and constraints.

2) The proposed method does not use duality as done by
Liu [8] and thus is vey much simple to handle and
apply.

3) As objective function and constraints are of entirely
different nature, reasonably different type of cuts are
suggested. Here α-cut for objective function and r-cut
for constraints is proposed.

IV. ILLUSTRATIVE EXAMPLES :
Example 4.1 Let’s take the example considered by Liu [8]

Minimize f = (−6,−5,−4)x1 + (1, 1.5, 2)x2 +
(−3,−2,−1)x1x2 + (2, 3, 4)x21 + (1, 2, 3)x22
subject to

x1 + (0.5, 1, 1.5)x2 ≤ (1, 2, 3),

(1, 2, 3)x1 +(−2,−1,−0.5)x2 ≤ (3, 4, 5), x1 ≥ 0, x2 ≥ 0.

Solution : For α, r ∈ (0, 1], the model (6) gives,

fL(α,r) = min
x

(
(−6 + α)x1 + (1 + 0.5α)x2 + (−3 + α)x1x2

+ (2 + α)x21 + (1 + α)x22
)

subject to
x1 + (0.5 + .5r)x2 ≤ (3− r)

(1 + r)x1 + (−2 + r)x2 ≤ (5− r), x1, x2 ≥ 0

and from model (8), we get

fU(α,r) = min
x

(
(−4− α)x1 + (2− 0.5α)x2 + (−1− α)x1x2

+ (4− α)x21 + (3− α)x22
)

subject to
x1 + (1.5− 0.5r)x2 ≤ (1 + r)

(3− r)x1 + (−0.5− 0.5r)x2 ≤ (3 + r), x1, x2 ≥ 0

The result is summed up as under in Table II.

TABLE II
VALUE OF f = [fLα,r, f

U
α,r] AT DIFFERENT (α, r)-CUTS

α\r 0.0∗ 0.3 0.7 1.0
0.0∗ [−10.08,

−1.00]
[−8.50,
−1.00]

[−6.94,
−1.00]

[−6.04,
−1.00]

0.2 [−7.20,
−1.16]

[−6.48,
−1.16]

[−5.63,
−1.16]

[−5.07,
−1.16]

0.4 [−4.47,
−1.34]

[−4.47,
−1.34]

[−4.32,
−1.34]

[−4.10,
−1.34]

0.6 [−3.14,
−1.56]

[−3.14,
−1.56]

[−3.14,
−1.56]

[−3.14,
−1.56]

0.8 [−2.49,
−1.80]

[−2.49,
−1.80]

[−2.49,
−1.80]

[−2.49,
−1.80]

1.0 [−2.09,
−2.09]

[−2.09,
−2.09]

[−2.09,
−2.09]

[−2.09,
−2.09]

Example 4.2 Consider another example as below:

Maximize f = (6, 7, 8)x1 + (−4,−3,−2)x2 +
(2, 4, 6)x1x2 + (−7,−5,−4)x21 + (−8,−6,−4)x22
subject to

(0, 1, 2)x1 + (1, 2, 3)x2 ≥ (5, 7, 9),

(2, 4, 6)x1 + (−4,−2,−1)x2 ≥ (4, 5, 6), x1 ≥ 0, x2 ≥ 0.

Solution : For α, r ∈ (0, 1], we get the lowest value,

fL(α,r) = min
x

(
(6 + α)x1 + (−4 + α)x2 + (2 + 2α)x1x2

+ (−7 + 2α)x21 + (−8 + 2α)x22
)

subject to
(r)x1 + (1 + r)x2 ≥ (9− 2r)

(2 + 2r)x1 + (−4 + 2r)x2 ≥ (6− r), x1, x2 ≥ 0

and the highest value as

fU(α,r) = min
x

(
(8− α)x1 + (−2− α)x2 + (6− 2α)x1x2

+ (−4− α)x21 + (−4− 2α)x22
)

subject to

(2− r)x1 + (3− r)x2 ≥ (5 + 2r)

(6− 2r)x1 + (−1− r)x2 ≥ (4 + r), x1, x2 ≥ 0

The result is summed up as under in Table III.
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TABLE III
VALUE OF f = [fLα,r, f

U
α,r] AT DIFFERENT (α, r)-CUTS

α\r 0.0∗ 0.3 0.7 1.0
0.0∗ [−3267,

4.04]
[−529.7,
4.74]

[−135.0,
5.77]

[−66.4,
6.28]

0.2 [−2977,
3.59]

[−477.1,
4.03]

[−120.2,
4.48]

[−58.8,
4.51]

0.4 [−2686,
3.22]

[−424.5,
3.50]

[−105.3,
3.62]

[−51.3,
3.62]

0.6 [−2396,
2.93]

[−371.9,
3.06]

[−90.4,
3.08]

[−43.7,
3.08]

0.8 [−2105,
2.67]

[−319.3,
2.71]

[−75.5,
2.71]

[−36.1,
2.71]

1.0 [−1815,
2.44]

[−266.6,
2.45]

[−60.7,
2.45]

[−28.4,
2.45]

V. CONCLUSION

The present study suggests a computationally efficient
alternate approach to investigate fuzzy quadratic program-
ming without using duality. As a result, significant number
of variables and constraints are reduced. Consequently, it
helps in saving processing time as well. This approach will
definitely go a long way to simplify the handling process
of fuzziness in mathematical programming especially in big
data problems. Moreover usual α-cut need not simultane-
ously govern the objective function and the constraints, so
(α, r)-cut is proposed for fuzzy quadratic programming. The
results presented by Liu [8] are achieved when α = r and
present a subset of the proposed approach. In future, the
approach can be extended to other nonlinear programming
problems.
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