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Abstract—Mixed-mode oscillations (MMOs) are phenomena
first discovered in chemical experiments. We investigate MMOs
generated by an extended Bonhoeffer–van der Pol (BVP)
oscillator with a diode by using a constrained equation with a
grazing-sliding region. From this equation, the Poincaré return
map is derived rigorously as one-dimensional and explains
successive MMO-incrementing bifurcations.

Index Terms—Nonlinear circuits, Dynamical oscillators,
Bonhoeffer–van der Pol oscillator, Mixed-mode oscillations.

I. INTRODUCTION

M IXED-MODE oscillations (MMOs) are phenomena
discovered in 1970’s in chemical experiments and

have been studied extensively in recent years [1], [2], [3], [4],
[5], [8]. MMOs consist of L large oscillations and s small
peaks, and customarily, they are denoted by the notation
“Ls”. MMOs are characteristic phenomena observed in ex-
tended slow-fast dynamics that can generate Canards [6], [7],
[8], [1], and they have been the subject of intense research
in recent years [1], [8], [9], [10], [11], [12], [13], [14], [15],
[16].

Kawczyński et al. [10], [11] shows that the period-
adding sequences that are complex but have a strong or-
der, emerge in a quite simple three-variable autonomous
ordinary differential equation (ODE) generating MMOs.
Shimizu et al. [6] discovers the simplest successive period-
adding sequences expressed by 12(11)n for successive n
in an extended Bonhoeffer–van der Pol (BVP) oscillator
and terms the resulting bifurcations as the mixed-mode
oscillation-incrementing bifurcations (MMOIBs). It has been
known that MMOIBs occur successively many times in
many chemical fields both in autonomous [8], [10], [11]
and nonautonomous [17], [18] ODEs. Kousaka et al. [19]
attempts to explain the successive generation of MMOIBs
in a driven BVP oscillator with a diode using constrained
dynamics where the diode essentially operates as a switch. In
Kousaka’s dynamics, one-dimensional Poincaré return map
is derived. They explain successive generation of MMOIBs,
because MMOIBs occur in a way similar to the period-
adding bifurcations in the circle map and accumulate toward
a saddle-node bifurcation point. We call this the MMO
increment-terminating tangent bifurcation point [19].
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In this study, we investigate successive MMOIBs gen-
erated by an extended BVP oscillator proposed by Yoshi-
naga et al. [7]. We analyze successive MMOIBs generated
by the extended BVP oscillator including a diode with a
grazing-sliding region. We assume that the diode in the
circuit operates essentially as an ideal switch. In this case,
the governing equation of the circuit is represented by a
constrained equation and one-dimensional Poincaré return
map is derived from this circuit. By using this return map, we
can clearly demonstrate that the MMOIBs of 12(11)n type
occur for successive n toward MMO increment-terminating
tangent bifurcation point. This fact is explained because the
one-dimensional Poincaré return map comprises two upward
convex branches.

Fig. 1. Circuit diagram of the extended Bonhoeffer–van der Pol oscillator
with a diode.
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Fig. 2. Nonlinear negative conductance g(x).
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II. CIRCUIT SET UP

Figure 1 shows the circuit diagram of the extended BVP
oscillator proposed by Yoshinaga et al. [7]. This circuit is
very simple and belongs to natural circuits [20], nevertheless,
it exhibits tremendously complex MMO bifurcations. We
propose an extended BVP oscillator containing a diode in
parallel with a nonlinear negative conductor. We consider
the case where the diode in the circuit operates as a switch.
In this case, the governing equation of the circuit is repre-
sented by the following constrained equation with a grazing-
sliding region. In addition, Yoshinaga et al. investigate the
relationship between observed complex bifurcation structure
and MMOs.

The governing equation of the circuit is expressed by a
system of three autonomous ODEs as follows:
1. diode off region εẋ = y + z − g(x)

ẏ = −x− k1y +B1

ż = k3(−x− k2z +B2)
(1)

2. diode on region x = u
ẏ = −u− k1y +B1

ż = k3(−u− k2z +B2)
(2)

where x represents a variable that corresponds to the voltage
across the capacitor C, and y and z denote the variables
corresponding to the currents through the inductors L1 and
L2, respectively. In addition, ε is a parameter that cor-
responds to the small capacitor C and is assumed to be
small. Parameters k1 and k2 correspond to the two resistors,
respectively. L1 can be normalized to unity via rescaling.
Furthermore, k3(>0) is the ratio L2/L1 and k3 is assumed
to be small. In this case, x is a fast variable, whereas y
and z are slow and super-slow variables, respectively. Such
circuit dynamics are called a three-time-scale system [9]. A
three-time-scale system is one of the representative MMO-
generating dynamics [9]. In the following discussion, we
assume B1 = B2(≡ B) and select B as the bifurcation
parameter. The constant parameters are set to ε = 0.1,k1 =
k2 = 0.714, and k3 = 0.1. We assume that the nonlinear
v-i characteristics are represented by g(x) in Fig. 2, where
g(x) takes the constant value at x = α. In this case, the
circuit equation is represented by a constrained equation
when the diode is on because the voltage across the capacitor
is constrained to the threshold voltage of the diode, and the
transition condition of these two equations are given by the
following equations:

1. off → on : x = u (a)
2. on → off : y + z = −u+ u3 (b)

(3)

where u is the threshold voltage of the diode and Eq. (3)(a)
is derived when x increases to u, and Eq. (3)(b) applies when
the current through g(x) decreases to −u+ u3. Throughout
this study, u is set to 1. Yoshinaga shows that 11, 12, 13...
emerges successively. Figs. 3 (a), (b), and (c) represent an
attractor 11 projected onto x−y plane, time series waveforms
of x and y, respectively. In these figures, the symbol 11 is
marked. The MMOs 1n are known to occur for successive n.
Figures 4(a),(b), and (c) show the time series waveforms of
12, 13, and 14, respectively. In addition, the extended BVP
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Fig. 3. MMOs 11 (B = 0.372). (a) The solution projected in the x− y
plane, (b) Time-series waveform x (c) Time-series waveform y.

oscillator exhibits successive MMOIBs of types 12(11)n for
successive n between 11- and 12-generating region as shown
in Fig. 5. In Fig. 5, 11 appears once and 12s emerge six
times per sequence. Furthermore, our numerical calculation
shows that the sequences 13(12)n, 14(13)n, and 15(14)n for
successive n are generated in the areas between 12- and 13,
13- and 14-, and 14- and 15-generating regions, i.e., areas
marked C1, C2, C3, and C4, respectively (see Fig. 7(a)).

We clarify the mechanism causing complex MMOIBs by
defining the Poincaré return map. Because the governing
equation is two-dimensional when the diode is on, the
Poincaré return map is derived as a one-dimensional one.
To construct the Poincaré return map, we introduce some
symbols:

Π = {(x, y, z)|x = u}
Σ1 = {(x, y, z)|x = u, z = −u+ u3 − y} (4)

where Π is the plane when the diode is on and where Σ1

corresponds to the transition condition Eq. (3)(b). Figure. 6
shows the geometric structure of the vector fields. Let us
consider the flow initially located on Σ1. The initial point is
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Fig. 4. MMOs (a) 12 (B = 0.382), (b) 13 (B = 0.39), (c) 14 (B =
0.395).
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Fig. 5. MMOs [1211 × 6] (B = 0.3733).

denoted by y1. The solution leaving y1 enters the diode off
region and strikes a point marked by P . Then, the solution
is constrained onto the diode on plane Π and returns back
Σ1 again. Therefore, one-dimensional Poincaré return map
T is rigorously defined as follows:

T : Σ1 → Σ1, y1 7→ y2 = T (y1) (5)
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Fig. 6. Geometric structure of the vector fields.

Figures. 7 (a) and (b) show the one-parameter bifurcation

(a)

(b)
Fig. 7. (a) One-parameter bifurcation diagram. (b) Magnified view of (a).

diagrams obtained using the plots of T . In Fig. 7 (a), the
generation of 11, 12, 13, and 14 is confirmed, respectively.
Between 11 and 12, 12 and 13, and 13 and 14, MMOIBs occur
successively. Figure 7 (b) shows a magnified view of the one-
parameter diagram shown in Fig. 7 (a). In the figure, the
MMOIB-generated MMOs 12(11)n can be clearly observed.
To explain why and how MMOIBs occur successively, the
one-dimensional Poincaré return map T for B = 0.3733
is shown in Fig. 8. The MMOIBs are generated in a similar
way to the period-adding bifurcations generated by the circle
map. Therefore, the successive MMOIBs are well explained
by this return map.
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Fig. 8. Poincaré return map T for B = 0.3734.

III. CONCLUSION

We investigate MMOs and MMOIBs generated by the
extended BVP oscillator with a diode. It is an extremely sim-
ple three-variable autonomous ODEs, nevertheless, exhibits
complex bifurcations. MMOIBs occur successively many
times as the bifurcation parameter is varied. We explain these
results by using the one-dimensional Poincaré return map.
Namely, MMOIBs are generated in a similar manner to those
of period-adding bifurcations in the circle map terminating
by a saddle-node bifurcations.
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