
 

  
Abstract—With the development of the Internet of Things 

(IoT), various signal processing algorithms have been widely 
used in IoT devices. Convolutional neural networks (CNN), 
image processing algorithms and speech processing algorithms 
are important signal processing algorithms that play an 
important role in various intelligent IoT devices. In order to 
enable IoT devices with limited computing power to support 
various signal processing algorithms, In this paper, we propose a 
small area reconfigurable multi-algorithm accelerator to 
accelerate various signal processing algorithms through 
hardware. The accelerator realizes reconfiguration of its own 
structure based on Dynamic Partial Reconfiguration (DPR) 
function of FPGA. A SoC verification system based on 
Cortex-M3 is constructed to verify the performance of the 
designed accelerator. The Lenet-5 network, Sobel Edge Detector 
algorithm and FIR filtering algorithm are implemented on this 
accelerator. The execution time of Lenet-5 network is compared 
with that of Intel i5 7500, Cortex-A53 and Cortex-A7 CPU. The 
execution time of Sobel Edge Detector algorithm and FIR 
filtering algorithm is compared with software implementation of 
same design on Cortex-M3 core. The comparison results show 
that the CNN computing power of the proposed accelerator 
exceeds that of Cortex-A53 and Cortex-A7 at the main 
frequency of 50MHz. The computing time of Sobel Edge 
Detector algorithm and FIR filter algorithm is also reduced in 
comparison to the software implementation. 
 

Index Terms—Multi-Algorithm Accelerator, FPGA, CNN, 
IoT 
 

I. INTRODUCTION 
ITH the development of convolution neural network, 
mobile edge computing and the wide application of 

multimedia sensors in IoT system, the IoT system is 
developing in the direction of diversification of application 
scenarios, high quality of service requirements and 
popularization of participating objects [1]. The popularity of 
multimedia sensors such as voice and image, as well as the 
development of artificial intelligence algorithms from the 
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cloud to the end, pose new challenges to the complex signal 
processing ability of IoT processors [2]. The traditional DSP 
is mainly oriented to high-speed radar signal or 
communication signal processing algorithms. It has high cost, 
large power consumption and unsatisfactory acceleration 
performance of artificial intelligence algorithms such as 
convolutional neural networks [3]. Therefore, it is not suitable 
for wide application in IoT node devices. The special 
processor chips for accelerating artificial intelligence 
algorithms, such as TPU and GPU, have achieved high 
computing throughput, but they are expensive and high power 
consumption. They are generally used in cloud computing 
[4-5], and are not suitable for the Internet of Things system. 
Therefore, it has become a research hotspot in the field of 
integrated circuit design to develop new signal processing 
accelerators for the mainstream signal algorithms in the 
current IoT systems. 

With the increasing number and variety of sensors in the 
IoT system, the corresponding signal processing algorithms 
are constantly updated. From reference [6-12], it can be 
concluded that the main signal processing algorithms in IoT 
system are image processing, speech signal processing, digital 
filtering and convolution neural network operation. These 
algorithms are composed of a combination of basic arithmetic 
units such as multiply and accumulate, matrix convolution, 
matrix addition, and data extraction. For example, the 
convolutional neural network algorithm contains convolution, 
normalization, non-linearity and extraction operations. 
Similarly, the image processing algorithm is usually 
composed of image extraction and two-dimensional 
convolution operations. Through the hardware 
implementation of common operation components of these 
signal processing algorithms, and combining the computing 
components according to the needs of the actual algorithm, 
the acceleration of various signal processing algorithms is 
realized. As a product between general-purpose chip and 
special-purpose chip, FPGA not only provides higher 
operating efficiency and lower power consumption, but also 
has the characteristics of flexible configuration. DPR 
technology enables FPGA devices to implement highly 
complex circuit functions under limited hardware resources, 
while performing software and hardware tasks at high speeds, 
it significantly reduces the system cost and power 
requirements [13]. 

In this paper, a reconfigurable small area multi-algorithm 
accelerator for signal processing applications is proposed and 
designed based on the consideration of circuit area and 
acceleration performance. Firstly, the basic arithmetic unit is 
extracted from the mainstream IoT signal processing 
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algorithms such as neural network algorithm, image 
processing and speech signal processing, and four 
reconfigurable computation acceleration chains are designed. 
Then, the basic acceleration unit is specially combined by the 
DPR technology of FPGA to realize hardware acceleration of 
convolution neural network, image processing and speech 
signal processing. 

The rest of the article is organized as follows. Section II 
introduces the overall design of the accelerator and the 
specific design of the basic acceleration unit. In Section III, 
the accelerator verification system, including SoC based on 
Cortex-M3, implementation of Lenet-5 network, Sobel edge 
detection algorithm and FIR filter implementation is 
discussed. Section IV demonstrates the acceleration 
performance and resource consumption of the accelerator. 
Finally, the conclusion and future work is furnished in Section 
V.  

II. ACCELERATOR DESIGN 

A. Accelerator Structure 
In this paper, the designed multi-algorithm accelerator is 

different from the performance-seeking accelerator. 
Considering that the IoT system has the characteristics of 
limited power consumption and diverse application scenarios, 
the designed accelerator needs to take into account the 
resource consumption and versatility of the circuit while 
improving its performance. The accelerator is mainly 
composed of four reconfigurable computation acceleration 
chains, whose structure is shown in Fig. 1. 
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Fig. 1. The architecture of the multi-algorithm accelerator 

The accelerator includes a source matrix data loading 
module(src data read), a convolution kernel buffer 
module(coe ram), a reconfigurable circuit controller(PRC), 
two ping-pong buffer blocks(block ram1 and block ram2), 
and four reconfigurable computation acceleration 
chains(acceleration chain1 to acceleration chain4). Each 
reconfigurable computation acceleration chain consists of 
four Reconfigurable Modules(RM1 to RM4). The four 
Reconfigurable Modules can be configured with different 
functions to accelerate the different signal processing 
algorithms. The entire accelerator is mounted on the system 
bus via the AHB bus, allowing other components in the SoC 
to parameterize and access the acceleration unit. 

B. Convolutional Circuit Design 
Convolution is widely present in various signal processing 

algorithms which consumes most of the computation time. In 
speech signal processing, the conversion of speech signals 
from time domain to frequency domain and the filtering of 
speech signals are all based on one-dimensional convolution. 
In CNN algorithm and image processing algorithm, 
two-dimensional convolution occupies a large number of 
operations. In CNN, the two-dimensional matrix convolution 
operation accounts for more than 90% of the total network 
computation [14]. Optimization of the convolution operation 
will significantly improve the resource utilization and 
computational performance of the signal processing 
algorithm. A convolution operation of an two-dimensional 
N*N matrix X and a k*k-sized convolution kernel W can be 
expressed as: 

 
( -1)/2 ( -1)/2

, , ,
-( -1)/2 -( -1)/2

*
k k

n m n i m j i j
i k j k

Y X W+ +
= =

= ∑ ∑  (1) 

It can be seen from the equation (1) that the amount of data 
to be loaded by convolving an N*N matrix with a k*k 
convolution kernel is k*k*(N−k+1)*(N−k+1). The 
one-dimensional convolution can be regarded as an N*1 
matrix convoluted with a k*1 convolution kernel, and the 
amount of data to be loaded is k*(N−k+1). 

Due to the nature of convolution operations, there is a large 
amount of duplication in the required data, and the loading of 
duplicate data consumes the bus access bandwidth while 
limiting the throughput of its own operation, thereby, 
affecting the performance of the entire system. To reduce the 
data bandwidth occupation of the convolution operation and 
improve the throughput rate of the acceleration unit, a low 
bandwidth occupied convolution operation circuit is designed 
from the angle of reducing the data overload rate. The 
structure of the convolution operation circuit is shown in Fig. 
2. 
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Fig. 2. The architecture of the convolution operation circuit 

Source data loading unit in the convolution circuit is the 
key to reduce data bandwidth. Source data loading unit 
consists of a data reading unit and cyclic queue. For the 
loading of one-dimensional source data, take a third-order 
convolution kernel as an example. The loading process of 
convolution data is shown in Fig. 3. 
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Fig. 3. One dimensional convolution data reading demonstration diagram 
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When the convolution begins, the source data loading unit 
loads three data of the first round of convolution operation 
into the loop queue from memory and points the read_start 
and write_start pointers of the loop queue to the front end of 
the queue. The back-level computing unit takes out the three 
data from the loop queue for operation. After each round of 
calculation, one data is taken out of the memory and written to 
one memory unit pointed by the write pointer, and then 
read_start and write_start loops are moved back by one bit. 

For the loading of two-dimensional source data, take the 
convolution of a 5*5 matrix and a 3*3 convolution kernel as 
an example. The convolution data loading process is shown in 
Fig. 4. 

When the convolution begins, the read_start and 
write_start pointers of the loop queue point to the front end of 
the queue. The source data loading unit will load the nine data 
in the first round of the convolution operation into the loop 
queue according to the column priority. The back-level 
operation unit will take out the nine data needed in the first 
round of operation from the loop queue. When the first round 
of operation is completed, the source data loading unit takes 
three data from memory and writes them into the three 
memory units pointed by the writing pointer. Then the 
read_start and write_start loops are moved back three bits. 
The back-level operation unit reads the nine data needed in 
the second round from the address pointed by the read_start. 
The subsequent data loading methods are recursive in turn. 

According to the previous analysis, for one-dimensional 
convolution, an array with N points is convoluted with a 
convolution core of order k. In theory, the number of data to 
be loaded is k* (N-k+1), and the optimized amount of data to 
be loaded is: 
 ( ) 1k + N - k * = N  (2) 

The optimization rate η  is: 

 N= -
k* N-k+

η 1
( 1)

 (3) 

For two-dimensional convolution, a matrix of N*N is 
convoluted with a convolution core of k*k. In theory, the 
number of data to be loaded is k*k*(N−k+1)*(N−k+1), while 
the optimized amount of data to be loaded is: 
 ( ( ) ) ( 1) ( 1)k* k + N - k * k * N - k + = N * k* N - k +  (4) 

The optimization rate η  is: 

 N*k* N-k+= -
k*k* N-k+ * N-k+

η ( 1)
1

( 1)( 1)
 (5) 

C. Reconfigurable Design 
DPR is a FPGA design technology provided by Xilinx to 

efficiently utilize FPGA resources and realize the reusable use 
of FPGA resources. On the one hand, it allows 
reprogramming of the FPGA designated area with new 

functionality, on the other hand, it allows the current design to 
continue running in the remaining space of the device. The 
DPR demonstration diagram is shown in Fig. 5. 

 

Conv.bit
Add.bit

Pool.bit
ReLU.bit

Static Design
FPGA

RM

 
Fig. 5. DPR demonstration diagram 

Conv. bit, Add. bit, Pool. Bit and ReLU. bit are 
downloaded to Reconfigurable Module (RM) respectively, 
and the corresponding functions can be implemented in turn. 

To support more signal processing algorithms, this 
accelerator realizes the reconfigurable design of computation 
acceleration chain based on DPR function of FPGA. Each 
computation acceleration chain of the accelerator is divided 
into four Reconfigurable Modules. Its structure is shown in 
Fig. 6. 
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Fig. 6. The reconfigurable design 

 Through the control of PRC module, each Reconfigurable 
Module can dynamically load one of the convolution circuits, 
pooling circuit, matrix addition circuit and activation circuit, 
thus realizing any combination of these four circuits, so that 
the input data stream can pass through any one or more 
computational modules. Therefore, the accelerator can realize 
the acceleration function of convolution neural network, 
image processing, speech signal processing and other signal 
processing algorithms through parameter configuration. 

AXI-S bus is used for data transmission between 
Reconfigurable Modules. AXI-S is an on-chip bus for 
high-speed data transmission in Advanced Microcontroller 
Bus Architecture (AMBA) bus cluster. It has the 
characteristics of simple control logic and high transmission 
efficiency. The PRC module uses the Partial Reconfiguration 
Controller IP provided by Xilinx to implement the control 
logic of the Reconfigurable Modules. Its structure is shown in 
Fig. 7. 
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Fig.4 Two-dimensional convolution data reading demonstration diagram 
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Fig. 7. The architecture of the PRC module 

PRC module mainly realizes the following functions: 
reconfiguration trigger signal monitoring, bitstreams file 
loading, and Reconfigurable Module status query. Virtual 
Socket Manager monitors trigger events, and trigger signals 
can be generated by hardware or software. This accelerator 
uses software trigger mode. When a trigger event occurs, 
Virtual Socket Manager maps the trigger signal to a specific 
Reconfigurable Module and manages the reconfiguration of 
the Reconfigurable Module. Each Virtual Socket Manager 
runs independently, so when one Virtual Socket Manager 
manages the Reconfigurable Module, the other can handle 
trigger events. Virtual Socket Manager must queue up to 
access Fetch Path. Fetch Path extracts bitstreams from 
external BPI Flash and sends them to the Internal 
Configuration Access Port (ICAP) for reconfiguration of the 
Reconfigurable Module. 

III. VERIFICATION PLATFORM CONSTRUCTION 

A. Design of Verification Platform Based on Cortex-M3 
In order to realize the function verification and 

performance evaluation of the accelerator, a verification 
platform is built based on the open source Cortex-M3 core of 
ARM company. Cortex-M3 is a processor core for IoT system 
released by ARM company. It achieves a good balance 
between power consumption and performance. The designed 
SoC structure is shown in Fig. 8. 
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Fig. 8. The architecture of SoC 

The designed SoC consists of functional units such as 
Cortex-M3, on-chip memory, multi-algorithm accelerator 
unit and UART. The Cortex-M3 acts as a processing core in 
the SoC for executing applications and completing the 
configuration and invocation of multi-algorithm accelerator 
units. The on-chip memory of SoC is divided into instruction 
memory and data memory, which are respectively used to 
save the instruction code and the data generated at runtime. 
The multi-algorithm accelerator unit as the object to be tested, 
realizes acceleration of various signal processing algorithms 
under the control of the processor. Peripherals such as UART 

and GPIO are used as interactive units of the SoC to indicate 
to the tester the running state of the program so that the user 
can evaluate the performance of the multi-algorithm 
accelerator unit to be tested. 

B. Implementation of CNN 
To verify the acceleration of the CNN algorithm by the 

accelerator, the classical Lenet-5 network is used in this paper. 
Lenet-5 is a convolutional neural network for handwritten 
character recognition, which is regarded as one of the earliest 
and most classical convolutional neural networks. With the 
deepening of CNN research, a series of more efficient and 
accurate CNN structures have been proposed, but Lenet-5, as 
a classical network structure, is still widely used in the 
performance evaluation of CNN acceleration unit. The 
structure of Lenet-5 network is shown in Fig. 9. 
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Fig. 9. The architecture of Lenet-5 network 

Lenet-5 network consists of five hidden layers: convolution 
layer C1 with six convolution cores, pooling layer S2, partial 
connection layer C3 with sixteen convolution cores, pooling 
layer S4 and full connection layer S6 with ten convolution 
cores [15]. Convolution layer C1 contains six 5*5 size 
convolution kernels, and the feature map is activated by 
ReLU function. Each convolution kernel convolves the 
original image with an input size of 32*32 to generate six 
28*28 feature maps. Partial Connection Layer C3 is the most 
complex layer in Lenet-5 network. It contains sixteen 5*5 
convolution cores. Each convolution core has a partial 
connection with six feature maps output by S2. After 
calculation and activation of this layer, sixteen 10*10 feature 
maps will be obtained. Partial connection relation and 
calculation process are shown in Fig. 10. 
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Fig. 10. Partial connection relation and calculation process of Layer C3 

Taking the calculation process of the 0th feature map of the 
output as an example: Firstly, the 0th convolution kernel is 
convolved with the 0, 1 and 2 feature maps output by S2 layer 
respectively. Then, the results of the three convolutions are 
added together, and a bias is added. Finally, the 0th feature 
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map of C3 layer is obtained through activation. The pooling 
layer S4 pools the output of the C3 layer, and the pooling 
result is sixteen feature maps of 5*5 size. Finally, the 
expansion layer S5 expands sixteen 5 * 5 feature maps into a 1 
* 400 one-dimensional matrix, and the S6 layer connects  

TABLE I. THE CALULATION OF EACH LAYER 

Layer Calculation formula Explain 

C1 =0 5 0 5

1 1 1 1
[C ～C ] [ * [ ～ ]]relu S K K  Convolution and ReLU 

S2 =0 5 0 5

2 2 1 1
[S ～S ] [ ～C ]pool C  Pooling 

C3 
5

0 15 0 15
3 3 2 3 3

0
[ ] [ *[ ] ]i

i
C C relu S K K

=

= ∑～ ～
 

Convolution and Matrix 
addition and ReLU 

S4 =0 15 0 15

4 4 3 3
[ ～ ] [ ～ ]S S pool C C  Pooling 

S5 = 0 15

5 4 4
[ ～ ]S S S  Expansion 

S6 =0 9 0 9

6 6 5 6 6
[ ～ ] * [ ～ ]S S S K K  Full connection 

the expanded matrix with ten convolution operators to obtain 
ten classification results, that is, the recognition results of the 
input image. Comprehensive analysis of the characteristics of 
the operation of each layer of the network, the calculation of 
each layer of Lenet-5 are summarized in Table I as above. 

It can be seen from the table above, Lenet-5 network 
consists of four operations: convolution, matrix addition, 
activation(ReLU) and pooling. Therefore, these four 
operations need to be mapped to the four reconfigurable 
modules of the reconfigurable computation acceleration chain. 
Considering the flow characteristics of the data flow between  
the four operations, the four operations are mapped in the 
order shown in Fig. 11. 
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Fig. 11. Configuration for Lenet-5 Network 

The above mapping sequence conforms to the data flow 
direction between the C1 layer and the S2 layer, and between 
the C3 layer and the S4 layer. The four operations form a 
pipeline according to the data flow direction, which can speed 
up the calculation, reduce data movement, and save power 
consumption. 

C. Implementation of Sobel Edge Detector and FIR 
In image processing algorithms, the image edge detection is 

often needed, and the edge detection based on Sobel operator 
is a common method. Sobel operator is a first-order gradient 
algorithm, which has a smooth effect on noise. It is a common 
method of edge detection when precision requirements are not 
strict [16]. Sobel operator uses two 3*3 matrix operators to 
convolute the original image and get the gray values of the 
horizontal edge and the vertical edge respectively. If A 
represents the original image, Gx and Gy represent the 
horizontal edge image and the vertical edge image 
respectively, the calculation formulas of Gx and Gy can be 
shown in Fig. 12. 
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Fig. 12. The calculation formulas of Gx and Gy 

The full edge gray value of an image can be approximated 

by the following formula: 
 = +| | | | | |

x y
G G G  (6) 

Before image edge detection, it is usually necessary to 
down sample to reduce the image size and operation data. To 
sum up, edge detection based on Sobel operator consists of 
three operations: pooling, convolution and matrix addition. 
According to the flow characteristics of data flow among the 
three operations, the three operations are mapped to the 
reconfigurable computation acceleration chain in the order 
shown in Fig. 13. 
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Fig. 13. Configuration for Sobel Edge Detector 

The fourth reconfigurable module is configured as a 
pass-through without any operation on the data. 

In speech signal processing, it is often necessary to filter 
out the specific frequency in the signal. Due to FIR filter has 
stability, linear phase, easy to design, easy to achieve on the 
hardware and other advantages, it has a wide range of 
applications. In IoT devices, support for FIR filtering has also 
become a necessary feature. Its serial structure is shown in Fig. 
14. 
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X(n) X(n-1) X(n-N+2) X(n-N+1)

h(0) h(1) h(N-2) h(N-1)

Y(n)

 
Fig. 14. The serial structure of FIR filter 

In the time domain, the output of the FIR filter is the 
convolution of the input signal with the unit impulse response 
[17]. the discrete equation can be expressed as： 
 ( ) ( )* ( ) ( ) ( - ) ( ) ( - )y n x n h n x k h n k h k x n k= = =∑ ∑  (7) 

Where y(n) is the filter output, x(n) is the sample data, and 
h(n) is the filter coefficient. It can be seen that FIR filters are 
one-dimensional convolution operations, which only needs to 
map a convolution operation to the reconfigurable computing 
acceleration chain, as shown in Fig. 15. 
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Pass-throughPass-throughPass-through

 
Fig. 15. Configuration for FIR filter 

The first reconfigurable module is configured as 
convolution operation, and the other three are pass-through 
without any operation on data. 

IV. PERFORMANCE EVALUATION 

A. Performance Analysis of Acceleration Unit 
To evaluate the performance of the accelerator designed in 

this paper, the SoC based on the Cortex-m3 kernel described 
above is used to evaluate the acceleration effect of the 
accelerator on the three algorithms Lenet-5 network, Sobel 
Edge Detector and FIR respectively. 

Firstly, a high-performance Intel processor and two 
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high-performance ARM processors are selected as the 
evaluation and comparison objects of Lenet-5 network 
acceleration effect by this accelerator. In order to calculate the 
execution time of Lenet-5 network on different CPUs, the C 
language Lenet-5 forward propagation program is run on Intel 
7500, Cortex-a53 and Cortex-a7 respectively, and is 
compared with the running time of Lenet-5 in this accelerator. 
The forward propagation execution time of Lenet-5 on each 
platform is shown in Table II. 

TABLE II. EXECUTION TIME OF LENET-5 ON EACH PLATFORM 
CPU Core Frequency Latency/Image 

Intel i5 7500 3.5GHz 1ms 
Cortex-A53 1.4GHz 11.5ms 
Cortex-A7 1.6GHz 14.2ms 
Ours 50MHz 7ms 

The comparison results show that the accelerator designed 
in this paper makes the computing power of the SoC based on 
the Cortex-m3 kernel to CNN exceed that of the 
high-performance kernel Cortex-a53 and Cortex-a7. 
Compared with Intel i5 7500, although the computing time is 
longer, the main frequency of Intel i5 7500 is 70 times that of 
Cortex-m3, while the computing time is only 1/7 of that of 
Cortex-m3. 

Secondly, this paper uses the C language descriptions of 
FIR and Sobel Edge Detector to run directly on the 
Cortex-M3 core with a frequency of 50MHz and compares its 
running time with that of the accelerator. The execution time 
is shown in Table III. 

TABLE III. EXECUTION TIME OF DIFFERENT ALGORITHMS 
Algorithm Only software Use accelerator 

Sobel Edge Detector 4.36us 1.58us 
FIR 1.64us 0.62us 

The comparison results show that the accelerator designed 
in this paper has an obvious acceleration effect on the two 
algorithms. 

B. Analysis of Resource Consumption 
To evaluate the resources consumed by the accelerator 

designed in this paper, the accelerator is implemented on the 
Xilinx xcvu9p-flga2104-2L-e-es1 FPGA. The synthesis and 
implementation tool is Vivado 17.2, and the system master 
clock is constrained to 50MHz. The comparison of resource 
consumption between the accelerator designed in this paper 
and reference [18,19] is shown in Table IV. 

TABLE IV COMPARISON OF RESOURCE CONSUMPTION 
Metrics [18] [19] Ours 
LUT 80175 14832 9460 
FF 46140 54075 12334 
BRAM 0 27 48 
DSP 83 20 24 

Compared with the other two designs, the proposed 
accelerator has less resource consumption. Moreover, the 
accelerator supports flexible configuration and can support 
more different signal processing algorithms, which is of great 
practical value in resource-limited IoT devices. 

V. CONCLUSION 
This paper presents and implements a small area 

reconfigurable multi-algorithm accelerator for signal 
processing applications, which is suitable for IoT devices. It 
can improve the computing power of IoT devices for a variety 
of signal processing algorithms. The experimental results 
show that the CNN computing power of the accelerator at 
50MHz is better than that of Cortex-A53 and Cortex-A7, and 
the computing time of FIR and Sobel Edge Detector is 
significantly reduced compared with the software 
implementation. However, in our designed, the pooling 
circuit only uses maximum pooling, and the average pooling 
will also be realized in future work. For the realization of 
CNN algorithm, we only implement Lenet-5 network on the 
accelerator, and we  aim to use the accelerator to achieve a 
larger network in the future. 
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