

Abstract—With the development of the Internet of Things

(IoT), various signal processing algorithms have been widely
used in IoT devices. Convolutional neural networks (CNN),
image processing algorithms and speech processing algorithms
are important signal processing algorithms that play an
important role in various intelligent IoT devices. In order to
enable IoT devices with limited computing power to support
various signal processing algorithms, In this paper, we propose a
small area reconfigurable multi-algorithm accelerator to
accelerate various signal processing algorithms through
hardware. The accelerator realizes reconfiguration of its own
structure based on Dynamic Partial Reconfiguration (DPR)
function of FPGA. A SoC verification system based on
Cortex-M3 is constructed to verify the performance of the
designed accelerator. The Lenet-5 network, Sobel Edge Detector
algorithm and FIR filtering algorithm are implemented on this
accelerator. The execution time of Lenet-5 network is compared
with that of Intel i5 7500, Cortex-A53 and Cortex-A7 CPU. The
execution time of Sobel Edge Detector algorithm and FIR
filtering algorithm is compared with software implementation of
same design on Cortex-M3 core. The comparison results show
that the CNN computing power of the proposed accelerator
exceeds that of Cortex-A53 and Cortex-A7 at the main
frequency of 50MHz. The computing time of Sobel Edge
Detector algorithm and FIR filter algorithm is also reduced in
comparison to the software implementation.

Index Terms—Multi-Algorithm Accelerator, FPGA, CNN,
IoT

I. INTRODUCTION
ITH the development of convolution neural network,
mobile edge computing and the wide application of

multimedia sensors in IoT system, the IoT system is
developing in the direction of diversification of application
scenarios, high quality of service requirements and
popularization of participating objects [1]. The popularity of
multimedia sensors such as voice and image, as well as the
development of artificial intelligence algorithms from the

Manuscript received July 17, 2019. This work was supported by the

National Natural Science Foundation of China (No. 61774086), the
Fundamental Research Funds for Central Universities (No. NP2019102,
NS2017023), and the Natural Science Foundation of Jiangsu Province
(No.BK20160806).

L. Zhang is with College of Electronic and Information Engineering,
Nanjing University of Aeronautics and Astronautics, Nanjing, 211100,
China (e-mail: zhangleizizizi@nuaa.edu.cn).

N. Wu is with the College of Electronic and Information Engineering,
Nanjing University of Aeronautics and Astronautics, Nanjing, 211100,
China (e-mail: wunee@nuaa.edu.cn).

F. Ge, Muhammad Rehan Yahya and F. Zhou are with the College of
Electronic and Information Engineering, Nanjing University of Aeronautics
and Astronautics, Nanjing, 211100, China

cloud to the end, pose new challenges to the complex signal
processing ability of IoT processors [2]. The traditional DSP
is mainly oriented to high-speed radar signal or
communication signal processing algorithms. It has high cost,
large power consumption and unsatisfactory acceleration
performance of artificial intelligence algorithms such as
convolutional neural networks [3]. Therefore, it is not suitable
for wide application in IoT node devices. The special
processor chips for accelerating artificial intelligence
algorithms, such as TPU and GPU, have achieved high
computing throughput, but they are expensive and high power
consumption. They are generally used in cloud computing
[4-5], and are not suitable for the Internet of Things system.
Therefore, it has become a research hotspot in the field of
integrated circuit design to develop new signal processing
accelerators for the mainstream signal algorithms in the
current IoT systems.

With the increasing number and variety of sensors in the
IoT system, the corresponding signal processing algorithms
are constantly updated. From reference [6-12], it can be
concluded that the main signal processing algorithms in IoT
system are image processing, speech signal processing, digital
filtering and convolution neural network operation. These
algorithms are composed of a combination of basic arithmetic
units such as multiply and accumulate, matrix convolution,
matrix addition, and data extraction. For example, the
convolutional neural network algorithm contains convolution,
normalization, non-linearity and extraction operations.
Similarly, the image processing algorithm is usually
composed of image extraction and two-dimensional
convolution operations. Through the hardware
implementation of common operation components of these
signal processing algorithms, and combining the computing
components according to the needs of the actual algorithm,
the acceleration of various signal processing algorithms is
realized. As a product between general-purpose chip and
special-purpose chip, FPGA not only provides higher
operating efficiency and lower power consumption, but also
has the characteristics of flexible configuration. DPR
technology enables FPGA devices to implement highly
complex circuit functions under limited hardware resources,
while performing software and hardware tasks at high speeds,
it significantly reduces the system cost and power
requirements [13].

In this paper, a reconfigurable small area multi-algorithm
accelerator for signal processing applications is proposed and
designed based on the consideration of circuit area and
acceleration performance. Firstly, the basic arithmetic unit is
extracted from the mainstream IoT signal processing

DPR based Small Area Reconfigurable
Multi-Algorithm Accelerator for IoT System

Lei Zhang, Ning Wu, Fen Ge, Muhammad Rehan Yahya and Fang Zhou

W

Proceedings of the World Congress on Engineering and Computer Science 2019
WCECS 2019, October 22-24, 2019, San Francisco, USA

ISBN: 978-988-14048-7-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2019

algorithms such as neural network algorithm, image
processing and speech signal processing, and four
reconfigurable computation acceleration chains are designed.
Then, the basic acceleration unit is specially combined by the
DPR technology of FPGA to realize hardware acceleration of
convolution neural network, image processing and speech
signal processing.

The rest of the article is organized as follows. Section II
introduces the overall design of the accelerator and the
specific design of the basic acceleration unit. In Section III,
the accelerator verification system, including SoC based on
Cortex-M3, implementation of Lenet-5 network, Sobel edge
detection algorithm and FIR filter implementation is
discussed. Section IV demonstrates the acceleration
performance and resource consumption of the accelerator.
Finally, the conclusion and future work is furnished in Section
V.

II. ACCELERATOR DESIGN

A. Accelerator Structure
In this paper, the designed multi-algorithm accelerator is

different from the performance-seeking accelerator.
Considering that the IoT system has the characteristics of
limited power consumption and diverse application scenarios,
the designed accelerator needs to take into account the
resource consumption and versatility of the circuit while
improving its performance. The accelerator is mainly
composed of four reconfigurable computation acceleration
chains, whose structure is shown in Fig. 1.

acceleration chain1

acceleration chain2

acceleration chain3

acceleration chain4
ram
mux

32b

32b

32b

32b

4×32b

4×32bblock
ram1

coe ram

src data
read

Src A
Src B
Src C

Src A
Src B
Src C

Src A
Src B
Src C

Src A
Src B
Src C

Result

Result

Result

Result

block
ram2

128b

128b

M
U

X

SoC
 B

U
S

PRC

ICAP

ICAP

ICAP

ICAP

Src A
Src B
Src C

ICAP

M
U

X
M

U
X

resultRM1 RM2 RM3 RM4

Fig. 1. The architecture of the multi-algorithm accelerator

The accelerator includes a source matrix data loading
module(src data read), a convolution kernel buffer
module(coe ram), a reconfigurable circuit controller(PRC),
two ping-pong buffer blocks(block ram1 and block ram2),
and four reconfigurable computation acceleration
chains(acceleration chain1 to acceleration chain4). Each
reconfigurable computation acceleration chain consists of
four Reconfigurable Modules(RM1 to RM4). The four
Reconfigurable Modules can be configured with different
functions to accelerate the different signal processing
algorithms. The entire accelerator is mounted on the system
bus via the AHB bus, allowing other components in the SoC
to parameterize and access the acceleration unit.

B. Convolutional Circuit Design
Convolution is widely present in various signal processing

algorithms which consumes most of the computation time. In
speech signal processing, the conversion of speech signals
from time domain to frequency domain and the filtering of
speech signals are all based on one-dimensional convolution.
In CNN algorithm and image processing algorithm,
two-dimensional convolution occupies a large number of
operations. In CNN, the two-dimensional matrix convolution
operation accounts for more than 90% of the total network
computation [14]. Optimization of the convolution operation
will significantly improve the resource utilization and
computational performance of the signal processing
algorithm. A convolution operation of an two-dimensional
N*N matrix X and a k*k-sized convolution kernel W can be
expressed as:

(-1)/2 (-1)/2

, , ,
-(-1)/2 -(-1)/2

*
k k

n m n i m j i j
i k j k

Y X W+ +
= =

= ∑ ∑ (1)

It can be seen from the equation (1) that the amount of data
to be loaded by convolving an N*N matrix with a k*k
convolution kernel is k*k*(N−k+1)*(N−k+1). The
one-dimensional convolution can be regarded as an N*1
matrix convoluted with a k*1 convolution kernel, and the
amount of data to be loaded is k*(N−k+1).

Due to the nature of convolution operations, there is a large
amount of duplication in the required data, and the loading of
duplicate data consumes the bus access bandwidth while
limiting the throughput of its own operation, thereby,
affecting the performance of the entire system. To reduce the
data bandwidth occupation of the convolution operation and
improve the throughput rate of the acceleration unit, a low
bandwidth occupied convolution operation circuit is designed
from the angle of reducing the data overload rate. The
structure of the convolution operation circuit is shown in Fig.
2.

Address
Generation

Unit
Source Data
Loading Unit

Convolution
Kernel Data

Loading Unit

Multiplier

Accumulator

Src A Src B

Result
Fig. 2. The architecture of the convolution operation circuit

Source data loading unit in the convolution circuit is the
key to reduce data bandwidth. Source data loading unit
consists of a data reading unit and cyclic queue. For the
loading of one-dimensional source data, take a third-order
convolution kernel as an example. The loading process of
convolution data is shown in Fig. 3.

5 4 3 2 1

1st unit:

2st unit:

3st unit:....

....
write_start

read_start

1 32

4 32

write_start

read_start

4 35

read_start

write_start

w1 w2 w3

*

=

Fig. 3. One dimensional convolution data reading demonstration diagram

Proceedings of the World Congress on Engineering and Computer Science 2019
WCECS 2019, October 22-24, 2019, San Francisco, USA

ISBN: 978-988-14048-7-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2019

When the convolution begins, the source data loading unit
loads three data of the first round of convolution operation
into the loop queue from memory and points the read_start
and write_start pointers of the loop queue to the front end of
the queue. The back-level computing unit takes out the three
data from the loop queue for operation. After each round of
calculation, one data is taken out of the memory and written to
one memory unit pointed by the write pointer, and then
read_start and write_start loops are moved back by one bit.

For the loading of two-dimensional source data, take the
convolution of a 5*5 matrix and a 3*3 convolution kernel as
an example. The convolution data loading process is shown in
Fig. 4.

When the convolution begins, the read_start and
write_start pointers of the loop queue point to the front end of
the queue. The source data loading unit will load the nine data
in the first round of the convolution operation into the loop
queue according to the column priority. The back-level
operation unit will take out the nine data needed in the first
round of operation from the loop queue. When the first round
of operation is completed, the source data loading unit takes
three data from memory and writes them into the three
memory units pointed by the writing pointer. Then the
read_start and write_start loops are moved back three bits.
The back-level operation unit reads the nine data needed in
the second round from the address pointed by the read_start.
The subsequent data loading methods are recursive in turn.

According to the previous analysis, for one-dimensional
convolution, an array with N points is convoluted with a
convolution core of order k. In theory, the number of data to
be loaded is k* (N-k+1), and the optimized amount of data to
be loaded is:
 () 1k + N - k * = N (2)

The optimization rate η is:

 N= -
k* N-k+

η 1
(1)

 (3)

For two-dimensional convolution, a matrix of N*N is
convoluted with a convolution core of k*k. In theory, the
number of data to be loaded is k*k*(N−k+1)*(N−k+1), while
the optimized amount of data to be loaded is:
 (()) (1) (1)k* k + N - k * k * N - k + = N * k* N - k + (4)

The optimization rate η is:

 N*k* N-k+= -
k*k* N-k+ * N-k+

η (1)
1

(1)(1)
 (5)

C. Reconfigurable Design
DPR is a FPGA design technology provided by Xilinx to

efficiently utilize FPGA resources and realize the reusable use
of FPGA resources. On the one hand, it allows
reprogramming of the FPGA designated area with new

functionality, on the other hand, it allows the current design to
continue running in the remaining space of the device. The
DPR demonstration diagram is shown in Fig. 5.

Conv.bit
Add.bit

Pool.bit
ReLU.bit

Static Design
FPGA

RM

Fig. 5. DPR demonstration diagram

Conv. bit, Add. bit, Pool. Bit and ReLU. bit are
downloaded to Reconfigurable Module (RM) respectively,
and the corresponding functions can be implemented in turn.

To support more signal processing algorithms, this
accelerator realizes the reconfigurable design of computation
acceleration chain based on DPR function of FPGA. Each
computation acceleration chain of the accelerator is divided
into four Reconfigurable Modules. Its structure is shown in
Fig. 6.

Src A
Src B
Src C

result

S
o
C
B
U
S

Applicat
ion

BPI
Flash

ICAP
configure

Triggers

Control

VSM
VSM
VSM
VSM

Fetch
Path

PRC

RM1 RM2 RM3 RM4

Fig. 6. The reconfigurable design

 Through the control of PRC module, each Reconfigurable
Module can dynamically load one of the convolution circuits,
pooling circuit, matrix addition circuit and activation circuit,
thus realizing any combination of these four circuits, so that
the input data stream can pass through any one or more
computational modules. Therefore, the accelerator can realize
the acceleration function of convolution neural network,
image processing, speech signal processing and other signal
processing algorithms through parameter configuration.

AXI-S bus is used for data transmission between
Reconfigurable Modules. AXI-S is an on-chip bus for
high-speed data transmission in Advanced Microcontroller
Bus Architecture (AMBA) bus cluster. It has the
characteristics of simple control logic and high transmission
efficiency. The PRC module uses the Partial Reconfiguration
Controller IP provided by Xilinx to implement the control
logic of the Reconfigurable Modules. Its structure is shown in
Fig. 7.

11 12 13 14 15

21 22 23 24 25

16 17 18 19 20

1 2 3 4 5

6 7 8 9 10

w7 w8 w9

w1 w2 w3

w4 w5 w6 * =
4 149 5 10 15 3 8 13

write_start

read_start

4 149 2 7 12 3 8 13

write_start

read_start

1 116 2 7 12 3 8 13

write_start

read_start

1st unit:

2st unit:

3st unit:

Fig.4 Two-dimensional convolution data reading demonstration diagram

Proceedings of the World Congress on Engineering and Computer Science 2019
WCECS 2019, October 22-24, 2019, San Francisco, USA

ISBN: 978-988-14048-7-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2019

Virtual Socket
Manager1

Fetch
Path

Virtual Socket
Manager2

Virtual Socket
Manager3

Virtual Socket
Manager4

interface to
Reconfigurable Module

interface to ICAP
AXI-S status Channel1

AXI-S Control Channel1
Tiggers1

AXI-S status Channel2
AXI-S Control Channel2

AXI-S Control Channel4

AXI-S Control Channel3

Tiggers2

Tiggers3

Tiggers4

AXI-S status Channel3

AXI-S status Channel4

Memory Mapped
interface to BPI Flash

Fig. 7. The architecture of the PRC module

PRC module mainly realizes the following functions:
reconfiguration trigger signal monitoring, bitstreams file
loading, and Reconfigurable Module status query. Virtual
Socket Manager monitors trigger events, and trigger signals
can be generated by hardware or software. This accelerator
uses software trigger mode. When a trigger event occurs,
Virtual Socket Manager maps the trigger signal to a specific
Reconfigurable Module and manages the reconfiguration of
the Reconfigurable Module. Each Virtual Socket Manager
runs independently, so when one Virtual Socket Manager
manages the Reconfigurable Module, the other can handle
trigger events. Virtual Socket Manager must queue up to
access Fetch Path. Fetch Path extracts bitstreams from
external BPI Flash and sends them to the Internal
Configuration Access Port (ICAP) for reconfiguration of the
Reconfigurable Module.

III. VERIFICATION PLATFORM CONSTRUCTION

A. Design of Verification Platform Based on Cortex-M3
In order to realize the function verification and

performance evaluation of the accelerator, a verification
platform is built based on the open source Cortex-M3 core of
ARM company. Cortex-M3 is a processor core for IoT system
released by ARM company. It achieves a good balance
between power consumption and performance. The designed
SoC structure is shown in Fig. 8.

ROM RAM

B
rid

ge

SPI UARTTimer GPIO

in
te

rr
up

t

AHB

APB

Cortex-M3
Core

 Multi-algorithm
Accelerator

Fig. 8. The architecture of SoC

The designed SoC consists of functional units such as
Cortex-M3, on-chip memory, multi-algorithm accelerator
unit and UART. The Cortex-M3 acts as a processing core in
the SoC for executing applications and completing the
configuration and invocation of multi-algorithm accelerator
units. The on-chip memory of SoC is divided into instruction
memory and data memory, which are respectively used to
save the instruction code and the data generated at runtime.
The multi-algorithm accelerator unit as the object to be tested,
realizes acceleration of various signal processing algorithms
under the control of the processor. Peripherals such as UART

and GPIO are used as interactive units of the SoC to indicate
to the tester the running state of the program so that the user
can evaluate the performance of the multi-algorithm
accelerator unit to be tested.

B. Implementation of CNN
To verify the acceleration of the CNN algorithm by the

accelerator, the classical Lenet-5 network is used in this paper.
Lenet-5 is a convolutional neural network for handwritten
character recognition, which is regarded as one of the earliest
and most classical convolutional neural networks. With the
deepening of CNN research, a series of more efficient and
accurate CNN structures have been proposed, but Lenet-5, as
a classical network structure, is still widely used in the
performance evaluation of CNN acceleration unit. The
structure of Lenet-5 network is shown in Fig. 9.

convolutions
subsample

convolutions
subsample

expansion full
connection

Input image
32*32 10*110*10 28*28 14*14 5*5 400*1

Fig. 9. The architecture of Lenet-5 network

Lenet-5 network consists of five hidden layers: convolution
layer C1 with six convolution cores, pooling layer S2, partial
connection layer C3 with sixteen convolution cores, pooling
layer S4 and full connection layer S6 with ten convolution
cores [15]. Convolution layer C1 contains six 5*5 size
convolution kernels, and the feature map is activated by
ReLU function. Each convolution kernel convolves the
original image with an input size of 32*32 to generate six
28*28 feature maps. Partial Connection Layer C3 is the most
complex layer in Lenet-5 network. It contains sixteen 5*5
convolution cores. Each convolution core has a partial
connection with six feature maps output by S2. After
calculation and activation of this layer, sixteen 10*10 feature
maps will be obtained. Partial connection relation and
calculation process are shown in Fig. 10.

0

1

2

5
4

3

feature map
0

Fig. 10. Partial connection relation and calculation process of Layer C3

Taking the calculation process of the 0th feature map of the
output as an example: Firstly, the 0th convolution kernel is
convolved with the 0, 1 and 2 feature maps output by S2 layer
respectively. Then, the results of the three convolutions are
added together, and a bias is added. Finally, the 0th feature

Proceedings of the World Congress on Engineering and Computer Science 2019
WCECS 2019, October 22-24, 2019, San Francisco, USA

ISBN: 978-988-14048-7-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2019

map of C3 layer is obtained through activation. The pooling
layer S4 pools the output of the C3 layer, and the pooling
result is sixteen feature maps of 5*5 size. Finally, the
expansion layer S5 expands sixteen 5 * 5 feature maps into a 1
* 400 one-dimensional matrix, and the S6 layer connects

TABLE I. THE CALULATION OF EACH LAYER

Layer Calculation formula Explain

C1 =0 5 0 5

1 1 1 1
[C ～C] [* [～]]relu S K K Convolution and ReLU

S2 =0 5 0 5

2 2 1 1
[S ～S] [～C]pool C Pooling

C3
5

0 15 0 15
3 3 2 3 3

0
[] [*[]]i

i
C C relu S K K

=

= ∑～ ～

Convolution and Matrix
addition and ReLU

S4 =0 15 0 15

4 4 3 3
[～] [～]S S pool C C Pooling

S5 = 0 15

5 4 4
[～]S S S Expansion

S6 =0 9 0 9

6 6 5 6 6
[～] * [～]S S S K K Full connection

the expanded matrix with ten convolution operators to obtain
ten classification results, that is, the recognition results of the
input image. Comprehensive analysis of the characteristics of
the operation of each layer of the network, the calculation of
each layer of Lenet-5 are summarized in Table I as above.

It can be seen from the table above, Lenet-5 network
consists of four operations: convolution, matrix addition,
activation(ReLU) and pooling. Therefore, these four
operations need to be mapped to the four reconfigurable
modules of the reconfigurable computation acceleration chain.
Considering the flow characteristics of the data flow between
the four operations, the four operations are mapped in the
order shown in Fig. 11.

Src A
Src B
Src C

Result

Control

Convolution Matrix
addition ReLU Pooling

Fig. 11. Configuration for Lenet-5 Network

The above mapping sequence conforms to the data flow
direction between the C1 layer and the S2 layer, and between
the C3 layer and the S4 layer. The four operations form a
pipeline according to the data flow direction, which can speed
up the calculation, reduce data movement, and save power
consumption.

C. Implementation of Sobel Edge Detector and FIR
In image processing algorithms, the image edge detection is

often needed, and the edge detection based on Sobel operator
is a common method. Sobel operator is a first-order gradient
algorithm, which has a smooth effect on noise. It is a common
method of edge detection when precision requirements are not
strict [16]. Sobel operator uses two 3*3 matrix operators to
convolute the original image and get the gray values of the
horizontal edge and the vertical edge respectively. If A
represents the original image, Gx and Gy represent the
horizontal edge image and the vertical edge image
respectively, the calculation formulas of Gx and Gy can be
shown in Fig. 12.

-1 0 1

-2 0 2

-1 0 1

1 2 1

0 0 0

-1 -2 -1

Gx= Gy=*A *A

Fig. 12. The calculation formulas of Gx and Gy

The full edge gray value of an image can be approximated

by the following formula:
 = +| | | | | |

x y
G G G (6)

Before image edge detection, it is usually necessary to
down sample to reduce the image size and operation data. To
sum up, edge detection based on Sobel operator consists of
three operations: pooling, convolution and matrix addition.
According to the flow characteristics of data flow among the
three operations, the three operations are mapped to the
reconfigurable computation acceleration chain in the order
shown in Fig. 13.

Src A
Src B
Src C

Result

Control

Pooling Convolution Matrix
addition

Pass-through

Fig. 13. Configuration for Sobel Edge Detector

The fourth reconfigurable module is configured as a
pass-through without any operation on the data.

In speech signal processing, it is often necessary to filter
out the specific frequency in the signal. Due to FIR filter has
stability, linear phase, easy to design, easy to achieve on the
hardware and other advantages, it has a wide range of
applications. In IoT devices, support for FIR filtering has also
become a necessary feature. Its serial structure is shown in Fig.
14.

Z-1 Z-1 Z-1
X(n) X(n-1) X(n-N+2) X(n-N+1)

h(0) h(1) h(N-2) h(N-1)

Y(n)

Fig. 14. The serial structure of FIR filter

In the time domain, the output of the FIR filter is the
convolution of the input signal with the unit impulse response
[17]. the discrete equation can be expressed as：
 () ()* () () (-) () (-)y n x n h n x k h n k h k x n k= = =∑ ∑ (7)

Where y(n) is the filter output, x(n) is the sample data, and
h(n) is the filter coefficient. It can be seen that FIR filters are
one-dimensional convolution operations, which only needs to
map a convolution operation to the reconfigurable computing
acceleration chain, as shown in Fig. 15.

Src A
Src B
Src C

Result

Control

Convolution

Pass-throughPass-throughPass-through

Fig. 15. Configuration for FIR filter

The first reconfigurable module is configured as
convolution operation, and the other three are pass-through
without any operation on data.

IV. PERFORMANCE EVALUATION

A. Performance Analysis of Acceleration Unit
To evaluate the performance of the accelerator designed in

this paper, the SoC based on the Cortex-m3 kernel described
above is used to evaluate the acceleration effect of the
accelerator on the three algorithms Lenet-5 network, Sobel
Edge Detector and FIR respectively.

Firstly, a high-performance Intel processor and two

Proceedings of the World Congress on Engineering and Computer Science 2019
WCECS 2019, October 22-24, 2019, San Francisco, USA

ISBN: 978-988-14048-7-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2019

high-performance ARM processors are selected as the
evaluation and comparison objects of Lenet-5 network
acceleration effect by this accelerator. In order to calculate the
execution time of Lenet-5 network on different CPUs, the C
language Lenet-5 forward propagation program is run on Intel
7500, Cortex-a53 and Cortex-a7 respectively, and is
compared with the running time of Lenet-5 in this accelerator.
The forward propagation execution time of Lenet-5 on each
platform is shown in Table II.

TABLE II. EXECUTION TIME OF LENET-5 ON EACH PLATFORM
CPU Core Frequency Latency/Image

Intel i5 7500 3.5GHz 1ms
Cortex-A53 1.4GHz 11.5ms
Cortex-A7 1.6GHz 14.2ms
Ours 50MHz 7ms

The comparison results show that the accelerator designed
in this paper makes the computing power of the SoC based on
the Cortex-m3 kernel to CNN exceed that of the
high-performance kernel Cortex-a53 and Cortex-a7.
Compared with Intel i5 7500, although the computing time is
longer, the main frequency of Intel i5 7500 is 70 times that of
Cortex-m3, while the computing time is only 1/7 of that of
Cortex-m3.

Secondly, this paper uses the C language descriptions of
FIR and Sobel Edge Detector to run directly on the
Cortex-M3 core with a frequency of 50MHz and compares its
running time with that of the accelerator. The execution time
is shown in Table III.

TABLE III. EXECUTION TIME OF DIFFERENT ALGORITHMS
Algorithm Only software Use accelerator

Sobel Edge Detector 4.36us 1.58us
FIR 1.64us 0.62us

The comparison results show that the accelerator designed
in this paper has an obvious acceleration effect on the two
algorithms.

B. Analysis of Resource Consumption
To evaluate the resources consumed by the accelerator

designed in this paper, the accelerator is implemented on the
Xilinx xcvu9p-flga2104-2L-e-es1 FPGA. The synthesis and
implementation tool is Vivado 17.2, and the system master
clock is constrained to 50MHz. The comparison of resource
consumption between the accelerator designed in this paper
and reference [18,19] is shown in Table IV.

TABLE IV COMPARISON OF RESOURCE CONSUMPTION
Metrics [18] [19] Ours
LUT 80175 14832 9460
FF 46140 54075 12334
BRAM 0 27 48
DSP 83 20 24

Compared with the other two designs, the proposed
accelerator has less resource consumption. Moreover, the
accelerator supports flexible configuration and can support
more different signal processing algorithms, which is of great
practical value in resource-limited IoT devices.

V. CONCLUSION
This paper presents and implements a small area

reconfigurable multi-algorithm accelerator for signal
processing applications, which is suitable for IoT devices. It
can improve the computing power of IoT devices for a variety
of signal processing algorithms. The experimental results
show that the CNN computing power of the accelerator at
50MHz is better than that of Cortex-A53 and Cortex-A7, and
the computing time of FIR and Sobel Edge Detector is
significantly reduced compared with the software
implementation. However, in our designed, the pooling
circuit only uses maximum pooling, and the average pooling
will also be realized in future work. For the realization of
CNN algorithm, we only implement Lenet-5 network on the
accelerator, and we aim to use the accelerator to achieve a
larger network in the future.

REFERENCES
[1] H. Yang, S. Kumara, S. T. S. Bukkapatnam, and F. Tsung, “The

Internet of Things for Smart Manufacturing: A Review,” IISE Trans.,
vol. 0, no. 0, pp. 1–35, 2019.

[2] S. B. Calo, M. Touna, D. C. Verma, and A. Cullen, “Edge computing
architecture for applying AI to IoT,” in Proceedings - 2017 IEEE
International Conference on Big Data, Big Data 2017, 2018.

[3] X. Li, Y. Cai, J. Han, and X. Zeng, “A high utilization FPGA-based
accelerator for variable-scale convolutional neural network,” Proc. Int.
Conf. ASIC, vol. 2017-October, pp. 944–947, 2018.

[4] K. M. Diab, M. M. Rafique, and M. Hefeeda, “Dynamic sharing of
GPUs in cloud systems,” in Proceedings - IEEE 27th International
Parallel and Distributed Processing Symposium Workshops and PhD
Forum, IPDPSW 2013, 2013.

[5] N. P. Jouppi et al., “In-Datacenter Performance Analysis of a Tensor
Processing Unit,” ACM SIGARCH Comput. Archit. News, 2017.

[6] F. Samie, L. Bauer, and J. Henkel, “IoT technologies for embedded
computing,” 2016.

[7] K. Bong, S. Choi, C. Kim, and H. J. Yoo, “Low-Power Convolutional
Neural Network Processor for a Face-Recognition System,” IEEE
Micro, 2017.

[8] E. Flamand et al., “GAP-8: A RISC-V SoC for AI at the Edge of the
IoT,” in Proceedings of the International Conference on
Application-Specific Systems, Architectures and Processors, 2018.

[9] A. Beatrice Dorothy, S. Britto Ramesh Kumar, and J. Jerlin Sharmila,
“IoT Based Home Security through Digital Image Processing
Algorithms,” in Proceedings - 2nd World Congress on Computing and
Communication Technologies, WCCCT 2017, 2017.

[10] M. Verhelst and B. Moons, “Embedded Deep Neural Network
Processing: Algorithmic and Processor Techniques Bring Deep
Learning to IoT and Edge Devices,” IEEE Solid-State Circuits Mag.,
2017.

[11] M. Henry et al., “The Prism: Efficient Signal Processing for the
Internet of Things,” IEEE Ind. Electron. Mag., 2017.

[12] M. Mehrabani, S. Bangalore, and B. Stern, “Personalized speech
recognition for Internet of Things,” in IEEE World Forum on Internet
of Things, WF-IoT 2015 - Proceedings, 2015.

[13] K. Vipin and S. A. Fahmy, “FPGA Dynamic and Partial
Reconfiguration,” ACM Comput. Surv., 2018.

[14] J. Chang and J. Sha, “An efficient implementation of 2D convolution
in CNN,” IEICE Electronics Express. 2017.

[15] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, 1998.

[16] S. Gupta and S. Ghosh Mazumdar, “Sobel edge detection algorithm,”
Int. J. Comput. Sci. Manag. Res., 2013.

[17] L. B. Jackson and L. B. Jackson, “FIR Filter Design Techniques,” in
Digital Filters and Signal Processing, 2013.

[18] Y. Zhou and J. Jiang, “An FPGA-based accelerator implementation
for deep convolutional neural networks,” in Proceedings of 2015 4th
International Conference on Computer Science and Network
Technology, ICCSNT 2015, 2016.

[19] S. Ghaffari and S. Sharifian, “FPGA-based convolutional neural
network accelerator design using high level synthesize,” in
Proceedings - 2016 2nd International Conference of Signal
Processing and Intelligent Systems, ICSPIS 2016, 2017.

Proceedings of the World Congress on Engineering and Computer Science 2019
WCECS 2019, October 22-24, 2019, San Francisco, USA

ISBN: 978-988-14048-7-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2019

	I. INTRODUCTION
	II. Accelerator Design
	A. Accelerator Structure
	B. Convolutional Circuit Design
	C. Reconfigurable Design

	III. Verification Platform Construction
	A. Design of Verification Platform Based on Cortex-M3
	B. Implementation of CNN
	C. Implementation of Sobel Edge Detector and FIR

	IV. Performance Evaluation
	A. Performance Analysis of Acceleration Unit
	B. Analysis of Resource Consumption

	V. Conclusion
	References
	(1) Yan Xing was changed to Fang Zhou
	(2) “Low Power” in the title was changed to “Small Area”

