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Abstract—The zeros and poles of a circuit transfer function
are computed solving a general eigenvalue problem, which could
be transformed to a standard eigenvalue task to be solved by a
suitably modified QR algorithm. Both reduction of the general
eigenvalue problem to the standard form and the iterative pro-
cedures of the QR algorithm are very sensitive to the numerical
precision of all calculations. The numerical accuracy is especially
critical for two kinds of circuits: the microwave ones characterized
by huge differences among magnitudes of the zeros and poles, and
the large scale circuits, where the errors of the zeros and poles
are increased by an extreme number of arithmetic operations. In
the paper, an illustrative example of the reduction of the general
eigenvalue problem and using the QR algorithm is shown first.
After that, three circuits of various sizes are analyzed: simpler
microwave low noise amplifier, larger power operational amplifier,
and the most complex example with a 272 integrated operational
amplifier. A meticulous comparison of obtained results shows that
a usage of newly implemented 128-bit arithmetics in GNU Fortran
or C compilers with partial pivoting can assure both efficient and
enough accurate procedures for computing the zeros and poles.

Index Terms—large scale circuits, poles and zeros, general
eigenvalue problem, numerical precision, 128-bit arithmetics.

I. Introduction

COMPUTING the poles and zeros of a circuit transfer
function for sparse systems was principally described in

[1]; however, the serious accuracy problem for the general
eigenvalue problem remains for decades. Microwave circuits
represent one typical problematic area [2], [3] due to huge
differences in absolute values of their poles or zeros. Another
typical problem consists in bad accuracy of computing multiple
eigenvalues using the QR [4], [5] and QZ [6] algorithms. For
the large scale circuits, besides these accuracy problems, the
efficiency of math procedures [7], [8], [2] also has to be taken
into account. Although for relatively simple microwave circuits
some version of variable-length arithmetic ([3], e.g.) can be
used, this way is inappropriate for the large circuits due to
computing time. In this paper, we suggest using relatively new
__float128 GCC or real(16) GFortran precisions with partial
pivoting to solve the accuracy problem for the larger circuits.

II. Description of Math Procedures With an Example
A. Reducing General Eigenvalue Problem to the Standard One

Circuit equations (linear, or linearized at an operating point
for nonlinear circuits) are defined by the matrix equation [1]:(

sD + E
)
x = z, (1)

where s represents Laplace operator, the D and E matrices are
composed of circuit reactances and resistances, and x and z are
Laplace images of circuit variables and/or sources, respectively
[7]. Poles and zeros of a transfer function are computed solving
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Fig. 1. Final forms of the matrices after the reduction of the general eigen-
value problem to the standard one to be solved by the QR algorithm. The
diagonalization of D11 and E22 is obligatory. (In this case of shapes, there is
no need to eliminate E12 because its zeroing doesn’t change other matrices.)

det
(
sD + E

)
= 0 for poles, (2a)

det
(
sD(0l) + E(kl)

)
= 0 for zeros, (2b)

where the matrix D(0l) arises from D by zeroing its l th column,
and the matrix E(kl) arises from E by replacing its l th column
by the vector z with all its elements zeroed with the exception
of the element corresponding to the k th input source.

A solution of the general eigenvalue problems (2) is more
difficult than solving the standard one. Therefore, a systematic
reduction (it doesn’t change eigenvalues) is applied transform-
ing (2a) to the standard form shown in Fig. 1. (It is an improved
alternative to [5]). After this transformation, we can go further:

det
(
sD + E

)
= (−1)nl↔

n2∏
i=n1+1

E22ii det
[
D11D11

−1︸     ︷︷     ︸
=1

(
sD11 + E11

) ]
= (−1)nl↔

n1∏
i=1

D11ii

n2∏
i=n1+1

E22ii det
(
s1 + D11

−1E11
)
= 0, (3)

where nl↔ is total number of the row and column interchanges
during the process, and 1 is unity matrix. Finally, determining
the poles is finished by computing the eigenvalues of the matrix

E ′
poles = −D11

−1E11. (4)

B. Illustrative Example of Calculating the Poles and Zeros
Consider the circuit in Fig. 2, for which (1) gets the forms
©«

C −C
C −C

−C −C 2C
L

ª®®¬ +
©«

G
G

1
−1

ª®®¬

©«

V1
V2
V3
I

ª®®¬ =
©«

VG ª®®¬
(5)

and the next sequence of the reduction operations is to be done:

Fig. 2. Simple high pass filter used as an illustrative example of the reduction.
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• The first and second rows are added to the third row.
• The first and second columns are added to the third column.
• Exchange the third and fourth rows, and then the third and fourth

columns.
• −1/2 multiple of the fourth column is added to the first, and
−1/(2G) multiple of the fourth column is added to the third.

After these operations, the matrix in (5) gets the form of Fig. 1:

s
©«

C
C

L
ª®®¬ +

©«
G/2 −G/2 −1/2 G
−G/2 G/2 −1/2 G
1/2 1/2 1/(2G) −1

2G

ª®®¬ , (6)

therefore, the QR algorithm will be applied to the matrix (4):

E ′
poles =−

( 1/C
1/C

1/L

)
×

( G/2 −G/2 −1/2
−G/2 G/2 −1/2
1/2 1/2 1/(2G)

)
.

(7)
Evaluating (7) (G = 1mS, L = 106.1033 µH, C = 53.05165 pF),
and applying 25 iterations of the QR algorithm [8], we obtain

E ′(25)
poles =

©«
−1.88496×107 −0.163957 −89.0719
−0.163957 −4.33837×107 −1.33285×1010

0.000885722 132537 3.86713×107

ª®¬ (8)︸          ︷︷          ︸
≈0with apparent two blocks: 1×1 (the upper left one), that gives

the first pole p1 = −1.88496 × 107, and 2 × 2 (the lower right
one), that gives the second and third poles by the solution of

det
(

p2,3 + 4.33837×107 1.33285×1010

−132537 p2,3 − 3.86713×107

)
= 0 (9)

as p2,3 = −2.3562×106±9.12489×106 j. (If we divide the first
pole by −2π, we obtain the anticipated frequency 3× 106 Hz.)

The second step is the calculation of the zeros. The matrix
in (2b) is obtained by the Cramer’s rule for k = 1 and l = 2:

sD(02) + E(12) = s
©«

C −C
−C

−C 2C
L

ª®®¬ +
©«

G VG

1
−1

ª®®¬ ,
(10)

and the next sequence of the reducing operations will be done:
• The first column is added to the third column.
• The first row is added to the third row.
• The third row is added to the second row.
• The second and fourth rows are exchanged, and then the second

and fourth columns are exchanged.
• Subtract the fourth row from the first and third rows.

After these operations, (10) gets an alternative form of Fig. 1:

s
©«

C
L

C
ª®®¬ +

©«
−1

−1

G 1 G VG

ª®®¬ , (11)

and the final matrix

E ′
zeros =

( 1/C
1/L

)
(12)

clearly has a triple zero eigenvalue, i.e., z1,2,3 = 0 as expected.

C. Extraordinary Movement: a Row from the Right to the Left
The transformation itself seems nothing else than a modifi-

cation of the Gauss elimination method. However, an exception
arises when the matrix D11 contains a nondiagonal element,
which is irreducible by any diagonal element of this matrix. In
such case, a row from the lower part of the matrix is multiplied
by the s operator, which is equivalent to moving a row of the
E22 matrix to the left. That nondiagonal element of D11 can
then be easily reduced by means of this transferred row.

D. Various Pivoting Methods for the Reduction Algorithms
As the reduction process very often has problems due to the

numerical accuracy, a full pivoting is preferred. Therefore, the
nth key element is selected as (i.e., from the whole submatrix):

Dnn B arg max
n5i5n2
n5 j5n2

��Di j

��, n = 1, . . . ,n2, (13a)

if |Dnn | 5 ε full max
15i<n

|Din | , then Dnn B 0. (13b)

For large scale circuits, the reduction algorithm has to be
implemented with utilizing sparsity of the matrices. However,
the application of the full pivoting is extremely difficult here
from a programming point of view. Therefore, a partial piv-
oting is mostly used in this case, and the nth key element is
chosen from the rest of the nth column of the reduced matrix:

Dnn B arg max
n5i5n2

|Din | , n = 1, . . . ,n2, (14a)

if |Dnn | 5 ε sparse max
n< j5l

��Dnj

��, then Dnn B 0. (14b)

Detailed definition of the pivoting strategy and recognizing
zero elements other than (13b) and (14b) are defined in [3].

E. Using the 128-bit Arithmetics (of GNU GCC and Fortran)
Although the pivoting methods described in Subsec. II-D

improve overall properties of the poles-zeros analysis consider-
ably, their precision is still insufficient for a number of circuits.
Therefore, we have changed the standard 64-bit arithmetics to
the newly implemented 128-bit (__float128) one, and, clearly
many (previously problematic) tasks now work well. Moreover,
as the GNU compilers have complete libraries for the 128-bit
computing, changing the source code was relatively easy.
III. Testing Examples: Different Levels of Complexity
For a clear demonstration how the 128-bit arithmetic can

improve the accuracy, we performed the poles-zeros analysis
for three practical electronic and microwave circuits of different
levels of complexity. Both poles and zeros analyses have
been performed for each circuit with both algorithms (partial
pivoting, sparse matrix and total pivoting, full matrix) with the
original 64-bit arithmetic and with the new 128-bit arithmetic.
The partial pivoting sparse matrix case was also run with an
arithmetic of a reference accuracy of 2048-bit mantissa, to
which all the previous results have been related and compared
in tables, ordered with growing order of magnitude. (For an
easier orientation in frequency, all poles and zeros presented
in tables were divided by 2π, i.e., their physical unit is Hz.)

A. Low Noise Antenna Preamplifier (the simplest, microwave)
The first and simplest example is a radio-frequency circuit,

a pHEMT LNA shown in Fig. 3. The analysis of the poles
was unproblematic; however, in the zeros analysis, using the
__float128 precisions improved the accuracy considerably.

In the right column of Table I, the accurate zeros (the blue
ones) are shown, which were computed with precise variable
size arithmetic. (2048-bit was used – this one is extremely
precise; however, it is unsuitable for large scale circuits because
such computations may be extremely time-consuming.) For the
DIFFERING zeros, two phenomena arose, see the 1st– 4th column:
• For the partial pivoting, sparse matrix, double is completely

wrong and __float128 makes it completely right to all six
displayed figures – i.e., __float128 gave perfect results!

• For the total pivoting, full matrix, it wrongly identifies exact
zero values in general, but __float128 improves the wrong
magnitudes by 3–4 orders. (All nonzero values were correct.)
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Fig. 3. Diagram of the low noise amplifier for a multiconstellation receiver of satellite navigation. The values were designed by the multiobjective optimization.

Fig. 4. Diagram of the AB-class power operational amplifier. This is the medium-complexity example of the tests of the accuracy with the results in Table II.

B. Discrete Power Operational Amplifier (medium complexity)

As a medium-complexity example, an AB-class discrete
power operational example was analyzed, as shown in Fig. 4.
Table II shows comparisons of poles and zeros in its 1st and 2nd
parts, respectively. It is clear that the following observations
can be made:
• Considering the case of partial pivoting and type double, poles

that are different from the correct values differ only at the 6th
significant place while some zeros differ at the 4th significant
place.

• Using the __float128 and using the full pivoting while keeping
double have both improved the accuracy of results to a similar
extent.

• The use of __float128 arithmetic improved accuracy for both
poles and zeros, partial pivoting and full pivoting.

C. A 272 Integrated Operational Amplifier (the most complex)
The most complex example tried is an integrated operational

amplifier of the 272 type. For running the PZ analysis on circuit
in Fig. 5, the testbench circuit in Fig. 6 was used. Comparison
tables are Tables III and IV. This time the total numbers of
poles and zeros are very high: 108 poles and 108 zeros, which
makes the tabular comparisons very difficult. Obviously for the
partial pivoting algorithm, the differences are very significant,
for example:
• The total number of zeros, 105, does not match the correct

number of zeros.
• 27 poles and more than 90 zeros differ within 6 significant

places.
• Some complex conjugate pairs of zeros have collapsed to a

single real-valued zero.
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TABLE I
Differing Zeros Comparison for the Low Noise Amplifier Example (All the Poles Were Identical)

Partial pivoting, sparse matrix Total pivoting, full matrix Variable-size ref.
(2048-bit used)double __float128 double __float128

9.91769 × 10−4±
1.71786 × 10−3 j

X 1.29496 × 105±
3.98722 × 105 j

8.26655 × 101 0
X −6.68778 × 101±

4.86649 × 101 j
0

−1.98364 × 10−3 X −3.39127 × 105±
2.46349 × 105 j

0
3.17828 × 103 X 2.55450 × 101±

7.87415 × 101 j
0

−1.03269 × 108 X 4.19262 × 105 0
3.23532 × 108±
3.74290 × 107 j

X X X 7.76010 × 1010

X X X
−7.19988 × 1010±

8.82644 × 1010 j−2.01247 × 1010

TABLE II
Differing Poles (1st Part) and Zeros (2nd Part) Comparison for the Power Amplifier Example

Partial pivoting, sparse matrix Total pivoting, full matrix Variable-size ref.
(2048-bit used)double __float128 double __float128

−6.96956 × 1010 X X X −6.96958 × 1010

−7.31332 × 1010 −7.31331 × 1010 −7.31331 × 1010 −7.31331 × 1010 −7.31330 × 1010

Partial pivoting, sparse matrix Total pivoting, full matrix Variable-size ref.
(2048-bit used)double __float128 double __float128

X X 1.47784 × 10−6 −7.89712 × 10−24 0
X X −8.47840 × 10−2 X −8.47825 × 10−2

−2.39371 × 106 X X X −2.39372 × 106

−1.32897 × 107 X X X −1.32896 × 107

−2.51184 × 107 X X X −2.51193 × 107

−8.18258 × 107 X X X −8.18451 × 107

−9.23576 × 107±
2.16513 × 108 j

X X X
−9.35970 × 107±

2.16156 × 108 j
−3.47567 × 108 X X X −3.47473 × 108

−4.92109 × 108 X X X −4.91768 × 108

−5.15993 × 108 X X X −5.16593 × 108

−7.54237 × 108 X X X −7.53995 × 108

−2.37231 × 109 X X X −2.42508 × 109

−2.42701 × 109 X X X −2.42919 × 109

unidentified X X X −9.29471 × 109

−1.11849 × 1010 X X X −1.15561 × 1010

−7.57337 × 1010 X X X −6.99856 × 1010

Fig. 5. Diagram of the 272 operational amplifier. This is the most complex example of testing PZ analysis; see also a diagram of a testbench circuit in Fig. 6.
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TABLE III
Differing Poles Comparison for the 272 Operational Amplifier Example

Partial pivoting, sparse matrix Total pivoting, full matrix Variable-size ref.
(2048-bit used)double __float128 double __float128

−7.82721 × 108 X X X −7.82722 × 108

−2.56457 × 109 X X X −2.56458 × 109

−3.09278 × 109 −3.09278 × 109 −3.09278 × 109 −3.09278 × 109 −3.09279 × 109

−3.15330 × 109 −3.15330 × 109 −3.15330 × 109 −3.15330 × 109 −3.15329 × 109

−6.05804 × 109 X X X −6.05803 × 109

−6.85518 × 109 X X X −6.85529 × 109

−9.24995 × 109 X X X −9.24994 × 109

−1.00318 × 1010 X X X −1.00319 × 1010

−1.53799 × 1010 X X X −1.53797 × 1010

−2.12536 × 1010±
4.03701 × 108 j

−2.12537 × 1010±
4.03031 × 108 j

−2.12537 × 1010±
4.03031 × 108 j

−2.12537 × 1010±
4.03031 × 108 j

−2.12537 × 1010±
4.03014 × 108 j

−2.65416 × 1010 X X X −2.65438 × 1010

−2.90609 × 1010 X X X −2.90596 × 1010

−3.60916 × 1010 X X X −3.60908 × 1010

−3.66061 × 1010 X X X −3.66051 × 1010

−3.75713 × 1010 X X X −3.75711 × 1010

−6.24794 × 1010 −6.24829 × 1010 −6.24829 × 1010 −6.24829 × 1010 −6.24830 × 1010

−6.28767 × 1010 X X X −6.28733 × 1010

−1.04441 × 1011 X X X −1.04457 × 1011

−4.03487 × 1011 X X X −4.03486 × 1011

−4.39356 × 1011 X X X −4.38947 × 1011

−5.26636 × 1011 X X X −5.26399 × 1011

−5.66946 × 1011 −5.66948 × 1011 −5.66948 × 1011 −5.66948 × 1011 −5.66950 × 1011

−7.12792 × 1011 X X X −7.12244 × 1011

−7.18657 × 1011 −7.18724 × 1011 −7.18724 × 1011 −7.18724 × 1011 −7.18723 × 1011

−8.75764 × 1011 −8.75776 × 1011 −8.75771 × 1011 −8.75771 × 1011 −8.75775 × 1011

−9.65601 × 1011 X −9.65595 × 1011 −9.65595 × 1011 −9.65596 × 1011

Fig. 6. Diagram of the testbench for the 272 operational amplifier.

• The correct highest-magnitude zero of 7.50920 × 1012 Hz is
replaced with one of value −2.57273 × 1015 Hz (of opposite
sign!).

We can still conclude that:
• The use of the __float128 type reduces the numbers of differing

poles and zeros to 8 poles and 8 zeros and the maximum
differences are at the 6th significant figure (of the real part; with
the absolute errors of imaginary parts being similar to those of
real parts).

• For the full pivoting algorithm, the results are already correct
to 5 significant places and the improvement by the use of
libquadmath is less obvious: only one zero changed at the 6th
significant place to its correct value.

IV. Conclusion
Even though the use of the __float128 type arithmetic

is not the ultimate solution to the PZ analysis accuracy issue,
the benefits of its use increase with the circuit complexity,

especially when the partial pivoting scheme has to be used.
Furthermore, the algorithm for full matrix and total pivoting is
less capable of recognizing truly zero-valued poles and zeros
(because the full-matrix algorithm by its nature does not detect
0 values). (And note that for more extensive circuits, memory
demands may make the full pivoting algorithms unusable,
which establishes the need for the alternative option of sparse-
matrix algorithm.) In this case the __float128 precision brings
the magnitude of such poles/zeros significantly closer to zero.
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TABLE IV
Differing Zeros Comparison for the 272 Operational Amplifier Example

Partial pivoting, sparse matrix Total pivoting, full matrix Variable-size ref.
(2048-bit used)double __float128 double __float128

X X −1.01548 × 100 X −1.01546 × 100

−4.28541 × 106 X X X −4.28569 × 106

−5.84862 × 106 X X X −5.84856 × 106

−6.89483 × 106 X X X −6.91173 × 106

−8.02368 × 106 X X X −8.01724 × 106

−8.19455 × 106 X X X −8.19448 × 106

−8.44644 × 106 X X X −8.44644 × 106

9.48634 × 106 X X X 8.60377 × 106

−8.96951 × 106 X X X −8.96794 × 106

−1.14224 × 107 X X X −1.14237 × 107

−1.50964 × 107 X X X −1.52075 × 107

1.25189 × 107 X X X 1.72813 × 107

−1.34644 × 107±
1.02838 × 107 j X X X

−1.82649 × 107±
9.54185 × 106 j

−2.45418 × 107±
1.08143 × 106 j X X X

−2.45418 × 107±
1.09254 × 106 j

−2.48644 × 107±
1.55590 × 107 j X X X

−2.48534 × 107±
1.55435 × 106 j

−2.69463 × 107 X X X −2.69387 × 107

−3.12548 × 107 X X X −3.12452 × 107

−4.28541 × 107 X X X −4.28569 × 107

−6.52561 × 107 X X X −6.56151 × 107

−7.06021 × 107 X X X −7.06593 × 107

−7.90403 × 107 X X X −7.93223 × 107

−8.27779 × 107 X X X −8.27776 × 107

−2.53163 × 108

unidentified
−2.13529 × 108±

1.50255 × 106 j
−2.13529 × 108±

1.50255 × 106 j
−2.13529 × 108±

1.50255 × 106 j
−2.13529 × 108±

1.50252 × 106 j
−2.94735 × 108 X X X −2.92620 × 108

−4.97600 × 108 X X X −4.97605 × 108

−6.79275 × 108 X X X −6.79855 × 108

−8.30500 × 108 X X X −8.31067 × 108

−8.86368 × 108 X X X −8.89485 × 108

−9.12112 × 108 X X X −9.12119 × 108

−9.53145 × 108 X X X −9.53142 × 108

−1.15311 × 109 X X X −1.15308 × 109

−1.37299 × 109 X X X −1.37873 × 109

−1.39374 × 109 X X X −1.39714 × 109

−1.44793 × 109 X X X −1.44926 × 109

−1.46521 × 109 X X X −1.46493 × 109

−1.54682 × 109 X X X −1.54393 × 109

−1.65363 × 109 X X X −1.65205 × 109

−1.65922 × 109 X X X −1.65948 × 109

−1.66728 × 109 X X X −1.66893 × 109

−1.73658 × 109

unidentified
−1.75519 × 109±

8.05508 × 106 j
−1.75519 × 109±

8.05508 × 106 j
−1.75519 × 109±

8.05508 × 106 j
−1.75519 × 109±

8.05507 × 106 j
−1.92274 × 109 X X X −1.92146 × 109

−2.32418 × 109 X X X −2.32408 × 109

−2.89333 × 109 X X X −2.89074 × 109

−3.11718 × 109 X X X −3.11600 × 109

−3.55107 × 109 X X X −3.54080 × 109

−3.73781 × 109 X X X −3.75018 × 109

−7.26479 × 109 X X X −7.30493 × 109

−7.64332 × 109 X X X −7.57294 × 109

−9.25159 × 109 X X X −9.35115 × 109

−1.14896 × 1010 X X X −1.15251 × 1010

−2.33399 × 1010 X X X −2.35203 × 1010

−3.47477 × 1010 X X X −3.47526 × 1010

−3.60048 × 1010 X X X −3.57007 × 1010

−6.28620 × 1010 X X X −6.29094 × 1010

−1.17474 × 1011 X X X −1.17482 × 1011

−4.03486 × 1011 X X X −4.03490 × 1011

−5.67108 × 1011 X X X −5.68858 × 1011

−7.61927 × 1011 X X X −7.59921 × 1011

−8.75708 × 1011 −8.75517 × 1011 −8.75523 × 1011 −8.75517 × 1011 −8.75514 × 1011
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